Chemically Specified Organic Solvent Containing Patents (Class 429/324)
  • Patent number: 10490852
    Abstract: The present specification relates to an additive for an electrochemical device including a compound having a silyloxy group, and an electrolyte, an electrode and an electrochemical device.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: November 26, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Minji Gu, Jeong Hwan Koh, Soojung Yeo, Myung Jin Chun
  • Patent number: 10468732
    Abstract: A polymer electrolyte including: a polymer matrix including a cross-linked fluorine-containing polymer; and a liquid electrolyte embedded in the polymer matrix.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: November 5, 2019
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Kihyun Kim, Myungjin Lee, Heungchan Lee, Dongjoon Lee, Hyunpyo Lee, Dongmin Im
  • Patent number: 10446849
    Abstract: Provided is a nonaqueous electrolyte secondary battery that allows a current cutoff mechanism to operate appropriately while maintaining high battery performance. The nonaqueous electrolyte secondary battery according to the present invention includes: a battery assembly provided with a positive electrode having a positive electrode active material layer retained on a positive electrode current collector, a negative electrode and a separator; a battery case housing the electrode assembly together with a nonaqueous electrolyte; and a current cutoff mechanism. The positive electrode active material layer includes a positive electrode active material and a conductive material. A compound containing a saturated cyclic hydrocarbon group is retained in at least a portion of the conductive material. The content of the compound containing a saturated cyclic hydrocarbon group is 0.5% by mass or more based on a value of 100% by mass for the total solid content of the positive electrode active material layer.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: October 15, 2019
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Hideyo Ebisuzaki, Masaru Ishii, Hiroshi Hamaguchi, Toru Nakai
  • Patent number: 10438753
    Abstract: This invention described the preparation of a series of compounds that can be used as co-solvents, solutes or additives in non-aqueous electrolytes and their test results in various electrochemical devices. The inclusion of these novel compounds in electrolyte systems can enable rechargeable chemistries at high voltages that are otherwise impossible with state-of-the-art electrolyte technologies. These compounds are so chosen because of their beneficial effect on the interphasial chemistries formed at high potentials, such as 5.0 V class cathodes for new Li ion chemistries. The potential application of these compounds goes beyond Li ion battery technology and covers any electrochemical device that employs non-aqueous electrolytes for the benefit of high energy density resultant from high operating voltages.
    Type: Grant
    Filed: November 23, 2010
    Date of Patent: October 8, 2019
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kang Xu, Arthur Von Cresce
  • Patent number: 10418630
    Abstract: A lithium-sulfur battery cell includes a lithium anode and a carbon-sulfur cathode including a sulfur-impregnated carbon nanostructure defined by one or more layers of elementally doped nanoporous carbon arranged on one or more carbon nanotubes.
    Type: Grant
    Filed: July 14, 2016
    Date of Patent: September 17, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Feng Wu, Renjie Chen, Ji Qian, Yusheng Ye, Xiao Guang Yang, YuHong Xu, Theodore James Miller
  • Patent number: 10403928
    Abstract: A secondary battery includes a cathode, an anode, and an electrolytic solution. The anode or the electrolytic solution, or both contain a metal salt including an unsaturated carbon bond.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: September 3, 2019
    Assignee: Murata Manufacturing Co., Ltd.
    Inventors: Ichiro Yamada, Hideki Nakai, Toshio Nishi, Tadahiko Kubota
  • Patent number: 10396400
    Abstract: An electrolyte for a lithium battery includes an organic solvent; and a compound represented by Formula 1: wherein, in Formula 1, X1 to X4, A1 to A4, and R1 to R4 are further defined in the specification.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: August 27, 2019
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Minju Lee, Woocheol Shin, Seungtae Lee, Vladimir Egorov, Soojin Kim
  • Patent number: 10347950
    Abstract: The present invention provides a sealed nonaqueous electrolyte secondary battery which is equipped with a current interrupt device that is actuated by a rise in internal pressure of a battery case and in which the current interrupt device is actuated in a speedy and stable manner during an overcharge. In the sealed nonaqueous electrolyte secondary battery, an electrode body formed by a positive electrode 10 and a negative electrode that oppose each other via a separator, an electrolyte, and an overcharge inhibitor are housed in the battery case. The positive electrode 10 includes a positive electrode current collector 12 and a positive electrode active material layer 14 which is formed on the current collector and which mainly contains a positive electrode active material. In addition, a conductive material layer 16 which mainly contains a conductive material is formed between the positive electrode active material layer 14 and the separator.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: July 9, 2019
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Koji Takahata, Akihiro Ochiai
  • Patent number: 10326138
    Abstract: Materials having charge-storing properties and made variously of dipyridine-fused benzoquinones of formula (1) below or derivatives thereof, dipyridine-fused benzoquinones of formula (4) below or derivatives thereof, or dipyridine-fused benzoquinone skeleton-containing polymers are provided. In the formulas, Ar1 and Ar2 are each independently a pyridine ring that forms together with two carbon atoms on a benzoquinone skeleton, or a derivative thereof. When used as electrode active materials, these charge storage materials are capable of providing high-performance batteries possessing a high capacity, high rate characteristics and high cycle characteristics.
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: June 18, 2019
    Assignees: Waseda University, Nissan Chemical Industries, Ltd.
    Inventors: Hiroyuki Nishide, Kenichi Oyaizu, Yuya Kambe, Takuji Yoshimoto
  • Patent number: 10290846
    Abstract: A separator for an electrochemical storage system, which is arrangeable between an anode and a cathode of the electrochemical storage system, is disclosed. The separator is formed from a semipermeable carrier material. The carrier material is formed from a fiberglass fleece where at least one surface side of the fiberglass fleece facing a cathode is modified in such a way that it is impermeable for an active material of the cathode. A method for the production of a separator is also disclosed.
    Type: Grant
    Filed: May 19, 2015
    Date of Patent: May 14, 2019
    Assignee: Daimler AG
    Inventor: Andreas Hintennach
  • Patent number: 10270122
    Abstract: A problem of the present invention is to provide a liquid electrolyte for a fluoride ion battery, in which fluoride anion conductivity is imparted to an ionic liquid containing fluoride complex anions. The present invention solves the problem by providing a liquid electrolyte for a fluoride ion battery, which comprises an ionic liquid containing specific fluoride complex anions and an anion acceptor having a specific acceptor number.
    Type: Grant
    Filed: February 11, 2016
    Date of Patent: April 23, 2019
    Assignees: TOYOTA JIDOSHA KABUSHIKI KAISHA, KYOTO UNIVERSITY
    Inventors: Hirofumi Nakamoto, Zempachi Ogumi, Jun-ichi Yamaki
  • Patent number: 10256448
    Abstract: A battery includes 1) an anode, 2) a cathode, and 3) an electrolyte disposed between the anode and the cathode. The anode includes a current collector and an interfacial layer disposed over the current collector, and the interfacial layer includes an array of interconnected, protruding regions that define spaces.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: April 9, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yi Cui, Guangyuan Zheng, Steven Chu, Kai Yan
  • Patent number: 10193182
    Abstract: Disclosed are: a non-aqueous electrolyte for a lithium secondary battery containing 1-20 parts by weight of a cyano group-containing pyrimidine-based compound on the basis of 100 parts by weight of an organic solvent; and a lithium secondary battery comprising the same.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: January 29, 2019
    Assignee: LG Chem, Ltd.
    Inventors: Sung-Hoon Yu, Doo-Kyung Yang, Min-Jung Jou, Yoo-Sun Kang, Yoo-Seok Kim
  • Patent number: 10147949
    Abstract: A negative electrode material for a lithium ion battery according to an embodiment of the present disclosure includes graphite particles and amorphous carbon particles. The graphite particles have a median diameter (D50) A of 8.0 ?m or more and 11.0 ?m or less. A ratio A/B of the median diameter A (?m) to a median diameter (D50) B (?m) of the amorphous carbon particles satisfies a relation of 1.1<(A/B)?2.75.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: December 4, 2018
    Assignee: Automotive Energy Supply Corporation
    Inventors: Sohei Suga, Koichi Shinohara, Kenji Ohara, Toshihiro Horiuchi, Masanori Aoyagi, Junko Nishiyama
  • Patent number: 10141608
    Abstract: Provided are an electrolyte for a lithium secondary battery and a lithium secondary battery containing the same. The electrolyte for a secondary battery according to the present invention has excellent high-temperature stability, excellent low-temperature discharge capacity, and excellent life cycle characteristics.
    Type: Grant
    Filed: May 31, 2016
    Date of Patent: November 27, 2018
    Assignee: SK Innovation Co., Ltd.
    Inventors: Jin Sung Kim, Cheol Woo Kim, Sung Yon Oh, Kwang Kuk Lee, Seong Il Lee
  • Patent number: 9985293
    Abstract: A battery includes 1) an anode, 2) a cathode, and 3) an electrolyte disposed between the anode and the cathode. The anode includes a current collector and an interfacial layer disposed over the current collector, and the interfacial layer includes an array of interconnected, protruding regions that define spaces.
    Type: Grant
    Filed: February 2, 2017
    Date of Patent: May 29, 2018
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yi Cui, Kai Yan, Steven Chu
  • Patent number: 9954254
    Abstract: Disclosed are an electrolyte for a lithium secondary battery which includes a non-aqueous solvent and a lithium salt and a lithium secondary battery including the same. The electrolyte includes 1 to 60 wt % of a cyclic carbonate and 40 to 99 wt % of a linear solvent based on a total weight of the non-aqueous solvent.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: April 24, 2018
    Assignee: LG Chem, Ltd.
    Inventors: Jong Ho Jeon, Yoo Seok Kim, Doo Kyung Yang, Shulkee Kim
  • Patent number: 9938383
    Abstract: A method for preparing a “preblend” of nano-structured carbon, such as nanotubes, fullerenes, or graphene, and a particulate solid, such as polymer beads, carbon black, graphitic particles or glassy carbon involving wet-mixing and followed by optional drying to remove the liquid medium. The preblend may be in the form of a core-shell powder material with the nano-structured carbon as the shell on the particulate solid core. The preblend may provide particularly improved dispersion of single-wall nanotubes in ethylene-?-olefin elastomer compositions, resulting in improved reinforcement from the nanotubes. The improved elastomer compositions may show simultaneous improvement in both modulus and in elongation at break. The elastomer compositions may be formed into useful rubber articles.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: April 10, 2018
    Assignee: Gates Corporation
    Inventors: Donald James Burlett, Henning Richter, Ramesh Sivarajan, Viktor Vejins
  • Patent number: 9917328
    Abstract: Described are electrolyte compositions having at least one salt and at least one compound selected from the group consisting of: wherein “a” is from 1 to 3; “b” is 1 or 2; 4?“a”+“b”?2; X is a halogen; R can be alkoxy or substituted alkoxy, among other moieties, and R1 is alkyl, substituted alkyl, aryl, substituted aryl, alkoxy, or substituted alkoxy. Also described are electrochemical devices that use the electrolyte composition.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: March 13, 2018
    Assignee: Silatronix, Inc.
    Inventors: José Adrián Peña Hueso, Jian Dong, Michael L. Pollina, Monica L. Usrey, Robert J. Hamers, Robert C. West, David Osmalov
  • Patent number: 9917329
    Abstract: Perfluoropolyether electrolytes have either one or two terminal nitrile groups and an alkali metal salt. The alkali metal salt can be a lithium salt, a sodium salt, a potassium salt, or a cesium salt. The salt can make up between 5 and 30 wt % of the electrolyte composition. Such electrolytes have shown high ionic conductivities, making them useful as lithium cell electrolytes.
    Type: Grant
    Filed: May 25, 2016
    Date of Patent: March 13, 2018
    Assignee: Seeo, Inc.
    Inventors: Jin Yang, Kulandaivelu Sivanandan, Xiao-Liang Wang, Hany Basam Eitouni, Steven Lam
  • Patent number: 9893337
    Abstract: Electrode assemblies for use in electrochemical cells are provided. The negative electrode assembly includes negative electrode active material and an electrolyte chosen specifically for its useful properties in the negative electrode. Such properties include reductive stability and ability to accommodate expansion and contraction of the negative electrode active material. Similarly, the positive electrode assembly includes positive electrode active material and an electrolyte chosen specifically for its useful properties in the positive electrode. These properties include oxidative stability and the ability to prevent dissolution of transition metals used in the positive electrode active material. A third electrolyte can be used as separator between the negative electrode and the positive electrode. A cell is constructed with a cathode that includes a fluorinated electrolyte which does not penetrate into the solid-state polymer electrolyte separator between it and the lithium-based anode.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: February 13, 2018
    Assignee: Seeo, Inc.
    Inventors: Russell Clayton Pratt, Hany Basam Eitouni, Xiao-Liang Wang, Steven Lam, Kulandaivelu Sivanandan, Jonathan C. Pistorino, Jin Yang
  • Patent number: 9893357
    Abstract: A cathode mix for nonaqueous electrolyte secondary batteries includes a cathode active material having an olivine crystal structure, and polyvinyl pyrrolidone. Also, a nonaqueous electrolyte secondary battery includes: a cathode; an anode; and a nonaqueous electrolyte, wherein the cathode includes: a cathode active material having an olivine crystal structure; and polyvinyl pyrrolidone.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: February 13, 2018
    Assignee: Murata Manufacturing Co., Ltd.
    Inventor: Takehiko Ishii
  • Patent number: 9859589
    Abstract: It is an object of the present invention to provide a method for producing a secondary battery in which water in the outer package can be removed even when the secondary battery includes an electrolytic solution containing a halogen-containing compound.
    Type: Grant
    Filed: August 8, 2014
    Date of Patent: January 2, 2018
    Assignee: NEC Corporation
    Inventors: Jiro Iriyama, Makihiro Otohata, Kazuaki Matsumoto, Ikiko Shimanuki
  • Patent number: 9843068
    Abstract: A nonaqueous electrolyte secondary battery includes a positive electrode having a positive electrode active material layer provided on a positive electrode collector, a negative electrode having a negative electrode active material layer provided on a negative electrode collector, and a nonaqueous electrolyte. The nonaqueous electrolyte contains at least one member selected from the group consisting of sulfone compounds represented by the following formulae (1) and (2); and an inorganic phosphorus compound represented by the following formula (3) exists on the surface of a positive electrode active material: R1 represents CmH2m-n1Xn2; X represents a halogen; m represents an integer of from 2 to 7; each of n1 and n2 independently represents an integer of from 0 to 2m; R2 represents CjH2j-k1Zk2; Z represents a halogen; j represents an integer of from 2 to 7; each of k1 and k2 independently represents an integer of from 0 to 2j; each of R3, R4 and R5 independently represents H or OH; and a is 0 or 1.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: December 12, 2017
    Assignee: Sony Corporation
    Inventors: Shinya Wakita, Masayuki Ihara, Masanori Soma, Izaya Okae
  • Patent number: 9806375
    Abstract: The present invention relates to a nonaqueous electrolytic solution for use in a nonaqueous electrolytic solution secondary battery that comprises a negative electrode and a positive electrode capable of storing and releasing metal ions, and a nonaqueous electrolytic solution, wherein the nonaqueous electrolytic solution contains the specific compounds (A) and (B).
    Type: Grant
    Filed: August 25, 2014
    Date of Patent: October 31, 2017
    Assignee: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Hiroaki Yoshida, Yasuyuki Shigematsu, Minoru Kotato
  • Patent number: 9742034
    Abstract: The present invention discloses a new metal cyano-substituted benzimidazolide salt having formula (I) and its preparation. This new cyano-substituted benzimidazole derivatives exhibited excellent thermal stability. The organic salt of the present invention were soluble in an alkyl carbonate solvent, such as propylene carbonate (PC), dimethyl carbonate (DMC) and ethylene carbonate (EC)/DMC cosolvent. The non-aqueous electrolyte prepared by mixing the organic metal salt of the present invention with the alkyl carbonate solvent shows high conductivity and excellent electrochemical stability. The non-aqueous electrolyte is suitable for use in primary or secondary rechargeable batteries.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: August 22, 2017
    Assignee: NATIONAL TAIWAN UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Yaw-Terng Chern, Jyh-Long Jeng, Szu-Yuan Chen, An-Shing Wei, Bing-Joe Hwang
  • Patent number: 9647268
    Abstract: Provided is a battery having a high charging/discharging capacity density as compared with a conventional one. The battery (1) is characterized by comprising a positive electrode (2), a negative electrode (3), and an electrolytic solution interposed between the positive electrode (2) and the negative electrode (3) and formed by dissolving an electrolytic solution in a solvent, wherein the positive electrode (2) includes rubeanic acid or a rubeanic acid derivative as an active material and the solvent includes an ionic liquid. In the battery (1), it is possible to neutralize, by anions present in the ions, positive charges generated when rubeanic acid or the rubeanic acid derivative is oxidized. Therefore, rubeanic acid or the rubeanic acid derivative can take three states from an oxidant to a reductant, so that a high charging/discharging capacity density can be obtained in comparison with a conventional one.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: May 9, 2017
    Assignees: HONDA MOTOR CO., LTD., MURATA MANUFACTURING CO., LTD.
    Inventors: Hidehisa Mokudai, Toru Sukigara, Masaharu Sato, Tomoaki Onoue
  • Patent number: 9634356
    Abstract: Disclosed are an electrolyte for a lithium secondary battery which includes a non-aqueous solvent and a lithium salt, wherein the non-aqueous solvent includes an anion receptor, a cyclic carbonate, and a linear solvent, wherein an amount of the cyclic carbonate is in a range of 1 wt % to 30 wt % based on a total weight of the non-aqueous solvent, and a lithium secondary battery including the same.
    Type: Grant
    Filed: April 25, 2014
    Date of Patent: April 25, 2017
    Assignee: LG Chem, Ltd.
    Inventors: Jong Ho Jeon, Yoo Seok Kim, Doo Kyung Yang, Shulkee Kim
  • Patent number: 9490499
    Abstract: A negative electrode active material for a lithium ion secondary battery, made up of substantially spherical graphite particles (A), having fine protrusions on the surfaces thereof and obtained by impregnating and coating substantially spherical graphite particles with a mixture of pitch and carbon black, followed by baking in a range of 900 to 1500° C. In accordance with Raman spectroscopic analysis of the particles (A) using argon laser Raman scattering light, there exists a G-band composite peak comprising peaks in the vicinity of 1600 cm?1, and 1580 cm?1, respectively, and at least one peak in the vicinity of D-band at 1380 cm?1, an interlayer distance of the lattice plane d002, obtained by wide-range X-ray diffraction, being in the range of 0.335 to 0.337 nm.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: November 8, 2016
    Assignee: NIPPON CARBON CO., LTD.
    Inventors: Takanobu Kawai, Ken-ichi Hongawa, Hayato Matsumoto, Kazuaki Yamashita
  • Patent number: 9391345
    Abstract: A electrolyte for a lithium battery includes a silane/siloxane compound represented by SiR4?x?yR?xR?y, by Formula II, or Formula III: where each R is individually an alkenyl, alkynyl, alk(poly)enyl, alk(poly)ynyl, aryl; each R? is represented by; each R? is represented by Formula I-B; R1 is an organic spacer; R2 is a bond or an organic spacer; R3 is alkyl or aryl; k is 1-15; m is 1-15; n is 1 or 2; p is 1-3; x? is 1-2; and y? is 0-2.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: July 12, 2016
    Assignee: UCHICAGO ARGONNE, LLC
    Inventors: Jian Dong, Zhengcheng Zhang, Khalil Amine
  • Patent number: 9263731
    Abstract: Disclosed herein are lithium or lithium-ion batteries that employ an aluminum or aluminum alloy current collector protected by conductive coating in combination with electrolyte containing aluminum corrosion inhibitor and a fluorinated lithium imide or methide electrolyte which exhibit surprisingly long cycle life at high temperature.
    Type: Grant
    Filed: October 13, 2011
    Date of Patent: February 16, 2016
    Assignee: A123 Systems LLC
    Inventors: Konstantin Tikhonov, Tobias Johnson, Jesse Chau, Ka Ki Yip, Marc Juzkow
  • Patent number: 9236634
    Abstract: Described herein are materials for use in electrolytes that provide a number of desirable characteristics when implemented within batteries, such as high stability during battery cycling up to high temperatures, high voltages, high discharge capacity, high coulombic efficiency, and excellent retention of discharge capacity and coulombic efficiency over several cycles of charging and discharging. In some embodiments, a high voltage electrolyte includes a base electrolyte and a set of additive compounds, which impart these desirable performance characteristics.
    Type: Grant
    Filed: March 19, 2014
    Date of Patent: January 12, 2016
    Assignee: Wildcat Discorvery Technologies, Inc.
    Inventors: Gang Cheng, Bin Li, Steven Kaye
  • Patent number: 9225015
    Abstract: A lithium air battery including a negative electrode comprising lithium, a positive electrode using oxygen as a positive active material, and an organic electrolyte including an organic compound capable of intercalating and deintercalating electrons involved in an electrochemical reaction.
    Type: Grant
    Filed: July 31, 2012
    Date of Patent: December 29, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Dong-joon Lee, Dong-min Im, Young-gyoon Ryu, Victor Roev, Min-sik Park, Sang-bok Ma
  • Patent number: 9118088
    Abstract: The present invention provides an electrolyte solution and a lithium ion secondary battery which maintain for a long period high battery characteristics represented by the discharge capacity retention rate after the charge/discharge cycle, and simultaneously achieve also the high safety represented by the flame retardation. The present invention provides an electrolyte solution containing a nonaqueous solvent, an electrolyte, a specific compound having a perfluoroalkyl group in the molecule, and an additive having a fluorine atom and/or a phosphorus atom in the molecule.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: August 25, 2015
    Assignee: ASAHI KASEI E-MATERIALS CORPORATION
    Inventors: Asami Ohashi, Yoshiyuki Ishii
  • Patent number: 9112237
    Abstract: Disclosed is an electrolyte for a rechargeable lithium battery and a rechargeable lithium battery including the same, and the electrolyte includes a lithium salt composition including a first lithium salt; and a second lithium salt of lithium bisfluorosulfonyl imide represented by the following Chemical Formula 1 at a mole ratio of 1:0.05 to 1:1, and a non-aqueous organic solvent.
    Type: Grant
    Filed: March 9, 2012
    Date of Patent: August 18, 2015
    Assignees: Samsung SDI Co., Ltd., ROBERT BOSCH GMBH
    Inventor: Seung-Mo Kim
  • Patent number: 9099758
    Abstract: A lithium-air cell is provided which incorporates a cathode comprised of a lithium aluminum germanium phosphate (LAGP) glass-ceramic material for facilitating an oxygen reduction reaction. The lithium-air cell further includes a lithium anode and a solid electrolyte which may be in the form of a membrane comprising LAGP glass-ceramic and/or polymer ceramic materials.
    Type: Grant
    Filed: June 3, 2011
    Date of Patent: August 4, 2015
    Assignee: University of Dayton
    Inventors: Binod Kumar, Jitendra Kumar
  • Publication number: 20150140450
    Abstract: An electrolyte solution including a non-aqueous organic solvent and a magnesium salt represented by Formula 1: wherein in Formula 1, groups CY1, CY2, A1 to A10, and variable n are defined in the specification.
    Type: Application
    Filed: April 17, 2014
    Publication date: May 21, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Basab ROY, Dong-young KIM, Youn-hee LIM, Seok-soo LEE
  • Publication number: 20150118580
    Abstract: What is disclosed is a non-aqueous electrolyte for non-aqueous electrolyte battery including a non-aqueous solvent and at least lithium hexafluorophosphate as a solute. This electrolyte is characterized by containing at least one siloxane compound represented by the general formula (1) or the general formula (2). This electrolyte has a storage stability which is improved than electrolytes prepared by adding conventional siloxane compounds.
    Type: Application
    Filed: June 10, 2013
    Publication date: April 30, 2015
    Inventors: Yuki Kondo, Makoto Kubo, Takayoshi Morinaka, Kenta Yamamoto
  • Patent number: 9012093
    Abstract: The present invention provides an electrolyte solution for a lithium ion secondary battery comprising 65 to 99% by volume of a phosphate ester compound, 0.01 to 30% by volume of a fluorinated carbonate compound, and 0.1 to 10% by volume of a halogenated phosphate ester compound and/or 0.1 to 30% by volume of a solvent having a specific dielectric constant of 15 or more, and a lithium ion secondary battery having the same.
    Type: Grant
    Filed: February 25, 2013
    Date of Patent: April 21, 2015
    Assignee: NEC Corporation
    Inventors: Kazuaki Matsumoto, Kazuhiko Inoue, Daisuke Kawasaki
  • Patent number: 9005817
    Abstract: A lithium battery electrode body includes: a collector electrode; and an electrode mixture layer in which a plurality of first particles including electrode active material and a plurality of second particles including solid electrolyte are mixed, wherein the electrode mixture layer is provided on one of sides of the collector electrode, and an average particle size of the plurality of second particles is smaller than an average particle size of the plurality of first particles.
    Type: Grant
    Filed: August 9, 2010
    Date of Patent: April 14, 2015
    Assignee: Seiko Epson Corporation
    Inventor: Sukenori Ichikawa
  • Patent number: 8993175
    Abstract: A polymer electrolyte including: a lithium salt; an organic solvent; a fluorine compound; and a polymer of a monomer represented by Formula 1 below. H2C?C—(OR)n—OCH?CH2??Formula 1 In Formula 1, R is a C2-C10 alkylene group, and n is in a range of about 1 to about 1000.
    Type: Grant
    Filed: November 10, 2009
    Date of Patent: March 31, 2015
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-sik Hwang, Han-su Kim, Jae-man Choi, Moon-seok Kwon
  • Patent number: 8993178
    Abstract: A magnesium battery (10) is constituted of a negative electrode (1), a positive electrode (2) and an electrolyte (3). The negative electrode (1) is formed of metallic magnesium and can also be formed of an alloy. The positive electrode (2) is composed of a positive electrode active material, for example, a metal oxide, graphite fluoride ((CF)n) or the like, etc. The electrolytic solution (3) is, for example, a magnesium ion-containing nonaqueous electrolytic solution prepared by dissolving magnesium(II) chloride (MgCl2) and dimethylaluminum chloride ((CH3)2AlCl) in tetrahydrofuran (THF). In the case of dissolving and depositing magnesium by using this electrolytic solution, the following reaction proceeds in the normal direction or reverse direction.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: March 31, 2015
    Assignee: Sony Corporation
    Inventors: Yuri Nakayama, Kenta Yamamoto, Yoshihiro Kudo, Hideki Oki
  • Patent number: 8980214
    Abstract: A difluorophosphate effective as an additive for a nonaqueous electrolyte for secondary battery is produced by a simple method from inexpensive common materials. The difluorophosphate is produced by reacting lithium hexafluorophosphate with a carbonate in a nonaqueous solvent. The liquid reaction mixture resulting from this reaction is supplied for providing the difluorophosphate in a nonaqueous electrolyte comprising a nonaqueous solvent which contains at least a hexafluorophosphate as an electrolyte lithium salt and further contains a difluorophosphate. Also provided is a nonaqueous-electrolyte secondary battery employing this nonaqueous electrolyte.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: March 17, 2015
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Ryoichi Kato, Hirofumi Suzuki, Jun Sasahara, Hitoshi Suzuki
  • Patent number: 8980480
    Abstract: The present disclosure is directed to a primary electrochemical cell having an improved discharge performance, and/or improved reliability under physical abuse and/or partial discharge. More particularly, the present disclosure is directed to such a primary cell that comprises an improved cathode material comprising iron disulfide and a select pH-modifier and an improved non-aqueous electrolyte that comprises a solvent, a salt, pH-modifiers, and selected organic or inorganic additives, which improve cell stability and discharge performance.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: March 17, 2015
    Assignee: Spectrum Brands, Inc.
    Inventors: M. Edgar Armacanqui, Wen Li, John Hadley, Janna Rose
  • Publication number: 20150072246
    Abstract: A non-aqueous liquid electrolyte for a secondary battery, the non-aqueous liquid electrolyte containing an electrolyte, an organic typical metal compound and an organic solvent, the organic solvent containing the electrolyte and the organic typical metal compound, the organic typical metal compound being contained in the organic solvent in an amount of 1 mol/L or less.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 12, 2015
    Applicant: FUJIFILM CORPORATION
    Inventors: Yohei ISHIJI, Michio ONO
  • Patent number: 8962754
    Abstract: A nonaqueous electrolyte and a lithium ion battery with reduced temporal variations in battery characteristics from initial values are provided. A mixed solution is prepared by dissolving a lithium salt such as LiPF6 in a nonaqueous solvent such as ethylene carbonate. Allylboronate ester and siloxane are mixed with the mixed solution. The content of the allylboronate ester is 1 wt % or less. The content of the siloxane is 2 wt % or less. 2-Allyl-4,4,5,5-tetramethyl-1,3,2-dioxaborolane is used as the allylboronate ester. At least one kind selected from hexamethyldisiloxane and 1,3-divinyltetramethyldisiloxane is used as the siloxane.
    Type: Grant
    Filed: May 8, 2012
    Date of Patent: February 24, 2015
    Assignee: Shin-Kobe Electric Machinery Co., Ltd.
    Inventors: Hiroshi Haruna, Shingo Itoh
  • Patent number: 8951676
    Abstract: An electrolyte for use in electrochemical cells is provided. The properties of the electrolyte include high conductivity, high Coulombic efficiency, and an electrochemical window that can exceed 3.5 V vs. Mg/Mg+2. The use of the electrolyte promotes the electrochemical deposition and dissolution of Mg without the use of any Grignard reagents, other organometallic materials, tetraphenyl borate, or tetrachloroaluminate derived anions. Other Mg-containing electrolyte systems that are expected to be suitable for use in secondary batteries are also described.
    Type: Grant
    Filed: March 14, 2013
    Date of Patent: February 10, 2015
    Assignee: Pellion Technologies, Inc.
    Inventors: Robert Ellis Doe, George Hamilton Lane, Robert E. Jilek, Jaehee Hwang
  • Patent number: 8940433
    Abstract: The present invention relates to an electrolyte solution comprising at least one solvent as component A, at least one electrolyte as component B and from 0.1 to 20% by weight, based on the total electrolyte solution, of at least one heteroaromatic compound of the general formula (I) as component C, the use of such a compound in electrolyte solutions, the use of such an electrolyte solution in an electrochemical cell or for metal plating, and also electrochemical cells comprising a corresponding electrolyte solution.
    Type: Grant
    Filed: December 13, 2010
    Date of Patent: January 27, 2015
    Assignee: BASF SE
    Inventors: Xiao Steimle, Itamar Michael Malkowsky, Klaus Leitner
  • Patent number: 8940445
    Abstract: A storage battery is provided comprising a positive electrode of vanadium, a negative electrode of zinc, and an electrolyte of potassium hydroxide dissolved in alcohol or glycol. Upon charging, the vanadium oxidizes to vanadium pentoxide and zinc oxide is reduced to the metal. The reverse reactions occur during discharge.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: January 27, 2015
    Inventor: John E. Stauffer
  • Publication number: 20150024121
    Abstract: A process for producing a separator-electrolyte layer for use in a lithium battery, comprising: (a) providing a porous separator; (b) providing a quasi-solid electrolyte containing a lithium salt dissolved in a first liquid solvent up to a first concentration no less than 3 M; and (c) coating or impregnating the separator with the electrolyte to obtain the separator-electrolyte layer with a final concentration ?the first concentration so that the electrolyte exhibits a vapor pressure less than 0.01 kPa when measured at 20° C., a vapor pressure less than 60% of that of the first liquid solvent alone, a flash point at least 20 degrees Celsius higher than a flash point of the first liquid solvent alone, a flash point higher than 150° C., or no detectable flash point. A battery using such a separator-electrolyte is non-flammable and safe, has a long cycle life, high capacity, and high energy density.
    Type: Application
    Filed: July 22, 2013
    Publication date: January 22, 2015
    Inventors: Hui He, Bor Z. Jang, Yanbo Wang, Aruna Zhamu