Sulfur Containing Organic Solvent Compound Patents (Class 429/340)
  • Publication number: 20140272607
    Abstract: A substantially non-aqueous electrolyte solution includes an alkali metal salt, a polar aprotic solvent, and an organophosphorus compound of Formula IA, IB, or IC: where R1, R2, R3 and R4 are each independently hydrogen, halogen, alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, heteroaryl, alkoxy, alkenoxy, alkynoxy, cycloalkoxy, aryloxy, heterocyclyloxy, heteroaryloxy, siloxyl, silyl, or organophosphatyl; R5 and R6 are each independently alkyl, alkenyl, alkynyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl; R7 is and R8, R9 and R10 are each independently alkyl, cycloalkyl, aryl, heterocyclyl, or heteroaryl; provided that if the organophosphorus compound is of Formula IB, then at least one of R5, and R6 are other than hydrogen, alkyl, or alkenyl; and if the organophosphorus compound is of Formula IC, then the electrolyte solution does not include 4-methylene-1,3-dioxolan-2-one or 4,5-dimethylene-1,3-dioxolan-2-one.
    Type: Application
    Filed: March 14, 2013
    Publication date: September 18, 2014
    Applicant: UCHICAGO ARGONNE LLC
    Inventors: Khalil Amine, Lu Zhang, Zhengcheng Zhang
  • Patent number: 8802301
    Abstract: An electrolyte for a lithium ion battery includes a vitreous eutectic mixture represented by the formula AxBy, where A is a salt chosen from a lithium fluoroalkylsulfonimide or a lithium fluoroarylsulfonimide, B is a solvent chosen from an alkylsulfonamide or an arylsulfonamide, and x and y are the mole fractions of A and B, respectively.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: August 12, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Ion C. Halalay, Damon R. Frisch, Olt E. Geiculescu, Darryl D Desmarteau, Stephen E Creager, Changqing Lu
  • Publication number: 20140220455
    Abstract: A rechargeable lithium battery including a negative electrode including a silicon-based negative active material; a positive electrode including a positive active material including a sacrificial positive active material selected from lithium nickel oxides, lithium molybdenum oxides, and combinations thereof; and a non-aqueous electrolyte, is disclosed.
    Type: Application
    Filed: July 23, 2013
    Publication date: August 7, 2014
    Applicant: Samsung SDI Co., Ltd.
    Inventors: Soon-Rewl Lee, Ick-Kyu Choi, Young-Ki Kim, Young-Hun Lee, Na-Leum Yoo, Na-Ri Park, Yong-Chul Park
  • Publication number: 20140220456
    Abstract: The present application is generally directed to energy storage materials such as activated carbon comprising enhanced particle packing properties and devices containing the same. The energy storage materials find utility in any number of devices, for example, in electric double layer capacitance devices and batteries. Methods for making the energy storage materials are also disclosed.
    Type: Application
    Filed: January 8, 2014
    Publication date: August 7, 2014
    Applicant: EnerG2 Technologies, Inc.
    Inventors: Henry R. Costantino, Chad Goodwin, William D. Scott, Aaron M. Feaver
  • Patent number: 8795904
    Abstract: A series of polar and aprotic organic molecules, which, when used as solvents or additives in nonaqueous electrolytes, afford improved performance for electrochemical cells that operate at high voltages. These polar and aprotic solvents or additives may contain at least one unsaturated functionality per molecule. The unsaturated functionality is conjugated with the polar functionality of the molecule. The unsaturated functionality that is either a double or triple bond could be between carbon-carbon, or between carbon-heteroatom, or between hetroatom-heteroatom. Nonaqueous electrolyte solutions are provided comprising one or more lithium salts dissolved in the mixture solvents, which comprises, in all possible ratios, at least one of the polar, aprotic and unsaturated solvent or additives, one or more cyclic carbonic diesters such as ethylene carbonate, and one or more acyclic carbonic diesters such as dimethyl carbonate, diethyl carbonate, and ethylmethyl carbonate.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: August 5, 2014
    Assignee: The United States of America as Represented by the Secretary of the Army
    Inventor: Kang Conrad Xu
  • Patent number: 8785051
    Abstract: Provided are a nonaqueous-electrolyte battery in which short circuits between the positive- and negative-electrode layers can be suppressed with certainty and a method for producing the battery. A nonaqueous-electrolyte battery 100 includes a positive-electrode active-material layer 12 containing a Li-containing oxide; a negative-electrode active-material layer 22 on which deposition of Li metal can occur; and a sulfide-solid-electrolyte layer (SE layer) 3 disposed between these active-material layers 12 and 22. The SE layer 3 of the nonaqueous-electrolyte battery 100 includes a powder-formed layer 31 and a dense-film layer 32 formed on a surface of the powder-formed layer 31 by a vapor-phase process.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: July 22, 2014
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yasushi Mochida, Mitsuyasu Ueda, Kentaro Yoshida, Tomoharu Takeyama, Kazuhiro Goto
  • Publication number: 20140199601
    Abstract: The present invention aims to provide an additive for a non-aqueous electrolyte solution with excellent storage stability capable of forming a stable SEI on the surface of an electrode to improve cell performance such as a cycle performance, a discharge/charge capacity, and internal resistance, when the additive is used for electrical storage devices such as non-aqueous electrolyte solution secondary cells and electric double layer capacitors. The present invention also aims to provide a non-aqueous electrolyte solution containing the additive for a non-aqueous electrolyte solution and to provide an electrical storage device using the non-aqueous electrolyte solution.
    Type: Application
    Filed: July 6, 2012
    Publication date: July 17, 2014
    Applicant: SUMITOMO SEIKA CHEMICALS CO., LTD.
    Inventors: Tomohiro Onozuka, Shohei Fujimoto, Koji Fujita
  • Patent number: 8771881
    Abstract: An electrolyte for a lithium ion secondary battery includes a non-aqueous organic solvent; a lithium salt; and a phosphonitrile fluoride trimer as an additive, and a lithium ion secondary battery comprising the same. The thickness increase rate of a lithium ion secondary battery including the electrolyte is reduced even when the battery is kept at a high temperature. Thus, the thermal stability and durability of the battery are prominently improved. The durability of the battery can be further improved by including a vinylene carbonate or ethylene carbonate group compound in the electrolyte.
    Type: Grant
    Filed: October 22, 2008
    Date of Patent: July 8, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jinsung Kim, Narae Park, Jinhyunk Lim, Suhee Han, Jinbum Kim, Jungkang Oh
  • Publication number: 20140186721
    Abstract: An electrolyte including an alkali metal salt; a polar aprotic solvent; and a triazinane trione; wherein the electrolyte is substantially non-aqueous.
    Type: Application
    Filed: March 4, 2014
    Publication date: July 3, 2014
    Applicant: UCHICAGO ARGONNE, LLC
    Inventors: Lu Zhang, Zhengcheng Zhang, Khalil Amine
  • Publication number: 20140178770
    Abstract: The Coulombic efficiency of lithium deposition/stripping can be improved while also substantially preventing lithium dendrite formation and growth using particular electrolyte compositions. Embodiments of the electrolytes include organic solvents and their mixtures to form high-quality SEI layers on the lithium anode surface and to prevent further reactions between lithium and electrolyte components. Embodiments of the disclosed electrolytes further include additives to suppress dendrite growth during charge/discharge processes. The solvent and additive can significantly improve both the Coulombic efficiency and smoothness of lithium deposition. By optimizing the electrolyte formulations, practical rechargeable lithium energy storage devices with significantly improved safety and long-term cycle life are achieved. The electrolyte can also be applied to other kinds of energy storage devices.
    Type: Application
    Filed: February 27, 2014
    Publication date: June 26, 2014
    Inventors: Wu Xu, Ji-Guang Zhang, Yaohui Zhang, Xilin Chen
  • Patent number: 8758946
    Abstract: Electrolyte suitable for use in a lithium ion cell or battery. According to one embodiment, the electrolyte includes a fluorinated lithium ion salt and a solvent system that solvates lithium ions and that yields a high dielectric constant, a low viscosity and a high flashpoint. In one embodiment, the solvent system includes a mixture of an aprotic lithium ion solvating solvent and an aprotic fluorinated solvent.
    Type: Grant
    Filed: October 4, 2007
    Date of Patent: June 24, 2014
    Assignee: Giner, Inc.
    Inventor: Robert C. McDonald
  • Patent number: 8748043
    Abstract: Disclosed is an electrochemical cell comprising a lithium anode and a sulfur-containing cathode and a non-aqueous electrolyte. The cell exhibits high utilization of the electroactive sulfur-containing material of the cathode and a high charge-discharge efficiency.
    Type: Grant
    Filed: April 14, 2008
    Date of Patent: June 10, 2014
    Assignee: Sion Power Corporation
    Inventor: Yuriy V. Mikhaylik
  • Publication number: 20140154590
    Abstract: The invention relates to an electrolyte, comprising at least one lithium salt, a solvent, and at least one compound according to general formula (1). The invention further relates to lithium-based energy stores comprising such an electrolyte.
    Type: Application
    Filed: August 2, 2012
    Publication date: June 5, 2014
    Applicant: WESTFALISCHE WILHELMS UNIVERSITAT MUNSTER
    Inventors: Elisabeth Kramer, Rene Schmitz, Stefano Passerini, Martin Winter
  • Publication number: 20140154588
    Abstract: A method for preparing an ionic liquid nanoscale ionic material, the ionic liquid nanoscale ionic material and a battery that includes a battery electrolyte that comprises the ionic liquid nanoscale ionic material each provide superior performance. The superior performance may be manifested within the context of inhibited lithium dendrite formation.
    Type: Application
    Filed: July 10, 2012
    Publication date: June 5, 2014
    Applicant: CORNELL UNIVERSITY
    Inventors: Lynden A. Archer, Surya S. Moganty, Yingying Lu
  • Publication number: 20140141340
    Abstract: An electrolyte for a rechargeable lithium battery that includes a lithium salt and a non-aqueous organic solvent including a compound represented by the following Chemical Formula 1 is described: The compound represented by Chemical Formula 1 is included at greater than or equal to 0.001 volume % and less than 1 volume % based on a total volume of the non-aqueous organic solvent. A rechargeable lithium battery including the electrolyte is also described.
    Type: Application
    Filed: March 1, 2013
    Publication date: May 22, 2014
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Vladimir Egorov, Woo-Cheol Shin, Pavel Alexandrovich Shatunov
  • Publication number: 20140134501
    Abstract: This invention relates to electrolytic solutions and secondary batteries containing same. The electrolytic solutions contain (a) one or more ionic salts; (b) one or more non-aqueous solvents; (c) at least one solid electrolyte interphase former; (d) at least one fluorinated compound; and (e), optionally, at least one high temperature stability compound. Components (c), (d) and (e) are each different compounds and each are different from the ionic salts (a) and solvents (b).
    Type: Application
    Filed: November 12, 2012
    Publication date: May 15, 2014
    Applicant: NOVOLYTE TECHNOLOGIES, INC.
    Inventors: Jing Li, Martin W. Payne
  • Patent number: 8722255
    Abstract: A non-aqueous electrolytic solution is advantageously used in preparation of a lithium secondary battery excellent in cycle characteristics. In the non-aqueous electrolytic solution for a lithium secondary battery, an electrolyte salt is dissolved in a non-aqueous solvent. The non-aqueous electrolytic solution further contains a vinylene carbonate compound in an amount of 0.01 to 10 wt. %, and an alkyne compound in an amount of 0.01 to 10 wt. %.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: May 13, 2014
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuhiro Miyoshi, Takaaki Kuwata
  • Publication number: 20140127594
    Abstract: There is provided an electrolyte solution including a solvent formed from a sulfone, and a magnesium salt dissolved in the solvent.
    Type: Application
    Filed: September 23, 2013
    Publication date: May 8, 2014
    Applicant: Sony Corporation
    Inventors: Yuri Nakayama, Hideki Kawasaki, Hiroyuki Morioka
  • Patent number: 8697293
    Abstract: A non-aqueous electrolyte solution for a lithium secondary battery includes a lithium salt and an organic solvent. Based on 100 parts by weight of the non-aqueous electrolyte solution, the non-aqueous electrolyte solution includes 1 to 5 parts by weight of sultone compound having a carbon-carbon unsaturated bond in a cyclic structure; 1 to 5 parts by weight of cyclic carbonate compound with a vinyl group; 5 to 10 parts by weight of cyclic carbonate compound that is substituted with halogen; and 1 to 5 parts by weight of dinitrile compound. This non-aqueous electrolyte solution improves stability of a SEI film formed on a surface of an anode of a lithium secondary battery and thus improves normal temperature cycle performance and high temperature cycle performance.
    Type: Grant
    Filed: April 24, 2009
    Date of Patent: April 15, 2014
    Assignee: LG Chem, Ltd.
    Inventors: So-Young Park, Hee-Gyoung Kang, Joon-Sung Bae
  • Patent number: 8673504
    Abstract: The objective of the present invention is to prevent deterioration and expanding of anode active material and to improve charge-discharge cycle characteristics in a non-aqueous electrolyte secondary battery comprising an anode of which current collector has thereon a thin layer of an anode active material containing a metal. To solve this problem, in a non-aqueous electrolyte secondary battery wherein a thin layer of anode active material containing a metal which absorbs and discharges lithium is formed on a current collector and the thin layer of the anode active material is divided into columns by a gap formed along the thickness thereof, a compound represented by the following formula is contained in the non-aqueous electrolyte. A-N?C?O In the above formula, A represents an element or a group other than hydrogen.
    Type: Grant
    Filed: May 3, 2012
    Date of Patent: March 18, 2014
    Assignees: SANYO Electric Co., Ltd., Mitsubishi Chemical Corporation
    Inventors: Keiji Saisho, Hidekazu Yamamoto, Masahiro Takehara
  • Patent number: 8673507
    Abstract: Disclosed is an inhibitor of the reduction of life cycle of a redox shuttle additive that undergoes oxidation-reduction cycling, the inhibitor being at least of one compound selected from the group consisting of vinylene carbonates, ethylene carbonates, cyclic sulfites and unsaturated sultones. Also, Disclosed is a non-aqueous electrolyte and secondary battery comprising the same inhibitor.
    Type: Grant
    Filed: March 5, 2013
    Date of Patent: March 18, 2014
    Assignee: LG Chem, Ltd.
    Inventors: Soon Ho Ahn, Sung Hoon Yu, Byung Hoon Oh, Joo Mi Jeon
  • Patent number: 8652692
    Abstract: Non-aqueous alkali metal (e.g., Li)/oxygen battery cells constructed with a protected anode that minimizes anode degradation and maximizes cathode performance by enabling the use of cathode performance enhancing solvents in the catholyte have negligible self-discharge and high deliverable capacity. In particular, protected lithium-oxygen batteries with non-aqueous catholytes have this improved performance.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: February 18, 2014
    Assignee: PolyPlus Battery Company
    Inventors: Steven J. Visco, Yevgeniy S. Nimon, Bruce Katz
  • Publication number: 20140023936
    Abstract: An electrolyte includes a lithium polysulfide of formula Li2Sx, where x>2; a shuttle inhibitor; and a non-aqueous solvent. Lithium-sulfur batteries may incorporate such electrolytes.
    Type: Application
    Filed: July 17, 2012
    Publication date: January 23, 2014
    Inventors: Ilias Belharouak, Rui Xu
  • Patent number: 8632918
    Abstract: A non-aqueous rechargeable electrochemical cell includes an electrolyte composition produced through the dissolution of a thermally stable lithium salt in a lactone solvent. The resulting cell has stable performance in a wide temperature range between ?40° C. and 80° C. The resulting cell operates across this wide temperature range with a commercially acceptable capacity retention, power loss characteristics, and safety characteristics across this temperature range.
    Type: Grant
    Filed: February 1, 2006
    Date of Patent: January 21, 2014
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kang Xu, Shengshui Zhang, T. Richard Jow
  • Publication number: 20140017571
    Abstract: Representative embodiments provide a liquid or gel separator utilized to separate and space apart first and second conductors or electrodes of an energy storage device, such as a battery or a supercapacitor. A representative liquid or gel separator comprises a plurality of particles, typically having a size (in any dimension) between about 0.5 to about 50 microns; a first, ionic liquid electrolyte; and a polymer. In another representative embodiment, the plurality of particles comprise diatoms, diatomaceous frustules, and/or diatomaceous fragments or remains. Another representative embodiment further comprises a second electrolyte different from the first electrolyte; the plurality of particles are comprised of silicate glass; the first and second electrolytes comprise zinc tetrafluoroborate salt in 1-ethyl-3-methylimidalzolium tetrafluoroborate ionic liquid; and the polymer comprises polyvinyl alcohol (“PVA”) or polyvinylidene fluoride (“PVFD”).
    Type: Application
    Filed: August 9, 2012
    Publication date: January 16, 2014
    Applicant: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Vera Nicholaevna Lockett, Mark D. Lowenthal, Neil O. Shotton, William Johnstone Ray, Theodore I. Kamins
  • Publication number: 20130323571
    Abstract: The present invention provides a lithium-ion electrochemical cell comprising an ionic liquid electrolyte solution and a positive electrode having a carbon sheet current collector.
    Type: Application
    Filed: May 13, 2013
    Publication date: December 5, 2013
    Inventors: Hongli Dai, Michael Erickson, Marc Juzkow
  • Patent number: 8574773
    Abstract: A battery electrolyte solution contains from 0.01 to 80% by weight of an aromatic phosphorus compound. The aromatic phosphorus compound provides increased thermal stability for the electrolyte, helping to reduce thermal degradation, thermal runaway reactions and the possibility of burning. The aromatic phosphorus compound has little adverse impact on the electrical properties of the battery, and in some cases actually improves battery performance.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: November 5, 2013
    Assignee: Dow Global Technologies LLC
    Inventors: David R. Wilson, Ravi B. Shankar, Houxiang Tang, Andrew J. Pasztor, Jr., Peter M. Margl, William J. Kruper, Jr., Mark D. Newsham, Jing Jin, Matthew M. Yonkey, Deidre A. Strand, Thomas D. Gregory, Jamie L. Cohen, Jeremy R. Stajdl
  • Patent number: 8568932
    Abstract: The present invention provides a nonaqueous electrolytic solution in which an electrolyte salt is dissolved in a nonaqueous solvent, containing 0.01% to 30% by weight of a 1,2-cyclohexanediol derivative having a specific structure; and a lithium secondary battery using the nonaqueous electrolytic solution. The lithium secondary battery exhibits excellent battery characteristics such as electrical capacity, cycle property, and storage property and can maintain excellent long-term battery performance.
    Type: Grant
    Filed: August 10, 2006
    Date of Patent: October 29, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuhiro Miyoshi, Chisen Hashimoto, Masahide Kondo
  • Publication number: 20130280622
    Abstract: An object of the invention is to provide a nonaqueous electrolytic solution which is capable of bringing about a nonaqueous-electrolyte secondary battery improved in initial charge capacity, input/output characteristics, and impedance characteristics. The invention relates to a nonaqueous electrolytic solution which comprises: a nonaqueous solvent; LiPF6; and a specific fluorosulfonic acid salt, and to a nonaqueous-electrolyte secondary battery containing the nonaqueous electrolytic solution.
    Type: Application
    Filed: June 21, 2013
    Publication date: October 24, 2013
    Applicant: MITSUBISHI CHEMICAL CORPORATION
    Inventors: Hiroyuki TOKUDA, Hiroaki Yoshida, Atsushi Watari
  • Publication number: 20130280618
    Abstract: The present invention includes an electrolyte in which an organic acid lithium salt (A) and a boron compound (B) are mixed.
    Type: Application
    Filed: September 26, 2011
    Publication date: October 24, 2013
    Applicant: SEKISUI CHEMICAL CO., LTD.
    Inventors: Kenichi Shinmei, Yoshiharu Konno, Masashi Kanoh
  • Patent number: 8557439
    Abstract: The present invention has an objective to improve the storage characteristics and pulse discharge characteristics, especially in the high temperature region of 100° C. or more, of a lithium battery comprising a positive electrode including manganese oxide, a negative electrode, and a non-aqueous electrolyte. To achieve this objective, the lithium battery of the present invention includes a positive electrode (3) including manganese oxide in mixed crystal state, a negative electrode (4) desorbing lithium ions during discharging, and a non-aqueous electrolyte having lithium ion conductivity. The aforementioned manganese oxide in mixed crystal state includes at least ?-type manganese oxide and ?-type manganese oxide. The aforementioned non-aqueous electrolyte includes at least one additive selected from the group consisting of cyclic sultone compounds and sulfone compounds.
    Type: Grant
    Filed: March 2, 2009
    Date of Patent: October 15, 2013
    Assignee: Panasonic Corporation
    Inventors: Takuyuki Okano, Toshihiko Ikehata
  • Patent number: 8551662
    Abstract: A nonaqueous electrolyte which contains a nonaqueous organic solvent and a lithium salt dissolved therein is provided. Also provided is a lithium secondary battery employing the nonaqueous electrolyte.
    Type: Grant
    Filed: May 31, 2011
    Date of Patent: October 8, 2013
    Assignee: Mitsubishi Chemical Corporation
    Inventors: Masamichi Onuki, Minoru Kotato, Isao Konno, Shinichi Kinoshita, Noriko Shima
  • Patent number: 8546023
    Abstract: Disclosed is a secondary battery including a cathode, an anode, a separator, and an electrolyte, wherein the electrolyte includes a ternary eutectic mixture prepared by adding (c) a carbonate-based compound to a eutectic mixture containing (a) an amide group-containing compound and (b) an ionizable lithium salt, and the carbonate-based compound is included in an amount of less than 50 parts by weight based on 100 parts by weight of the electrolyte. The use of the disclosed ternary eutectic mixture having flame resistance, chemical stability, high conductivity, and a broad electrochemical window, as the electrolyte material, improves both the thermal stability and quality of the battery.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: October 1, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Jiwon Park, Jae Seung Oh, Byoung-bae Lee, Shin Jung Choi, Jaeduk Park
  • Publication number: 20130244121
    Abstract: This invention relates to novel applications for alliform carbon, useful in conductors and energy storage devices, including electrical double layer capacitor devices and articles incorporating such conductors and devices. Said alliform carbon particles are in the range of 2 to about 20 percent by weight, relative to the weight of the entire electrode. Said novel applications include supercapacitors and associated electrode devices, batteries, bandages and wound healing, and thin-film devices, including display devices.
    Type: Application
    Filed: September 16, 2011
    Publication date: September 19, 2013
    Applicants: Universite Paul Sabatier De Toulouse France, Drexel University
    Inventors: Yury Gogotsi, Vadym Mochalin, John Kenneth McDonough, Patrice Simon, Pierre-Louis Taberna
  • Patent number: 8530099
    Abstract: Novel multifunctional sulfone/fluorinated ester compounds are described. These compounds may be useful as non-aqueous electrolyte solvents, specialty solvents, and starting materials and intermediates for synthesis of dyes, agricultural chemicals, and pharmaceuticals.
    Type: Grant
    Filed: December 16, 2011
    Date of Patent: September 10, 2013
    Assignee: E I du Pont de Nemours and Company
    Inventors: Xudong Chen, William L. Holstein
  • Patent number: 8524400
    Abstract: Disclosed is an electrolyte for a secondary battery comprising an electrolyte salt and an electrolyte solvent, the electrolyte comprising both a lactam-based compound and a sulfinyl group-containing compound. Also, disclosed is an electrode having a solid electrolyte interface (SEI) film partially or totally formed on a surface thereof, the SEI film being formed by electrical reduction of the above compounds. Further, a secondary battery comprising the electrolyte and/or the electrode is disclosed.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: September 3, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Ho-Chun Lee, Jeong-Ju Cho
  • Patent number: 8524399
    Abstract: Disclosed is a non-aqueous electrolyte including an electrolyte salt and an electrolyte solvent, the non-aqueous electrolyte further including a compound containing both a carboxy group and a (meth)acrylic group, and a secondary battery including the non-aqueous electrolyte. The use of the compound containing both the carboxy group and the (meth)acrylic group as a component for an electrolyte significantly reduces the increase of battery thickness at high temperature storage.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: September 3, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Soojin Kim, Jeong-Ju Cho
  • Publication number: 20130224604
    Abstract: Disclosed is an electrolyte for a secondary lithium battery and a secondary lithium battery including the same, and the electrolyte includes an additive represented by Formula 1. The definitions of each substituent in Formula 1 are the same as in the specification.
    Type: Application
    Filed: November 28, 2012
    Publication date: August 29, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventor: Samsung SDI Co., Ltd.
  • Publication number: 20130224606
    Abstract: The present invention directs to a non-aqueous electrolyte solution, including (I) at least one compound selected from the group consisting of fluorinated linear sulfones and fluorinated linear sulfonic acid esters, and (II) an electrolyte salt. Such a non-aqueous electrolyte solution has high oxidation resistance, minimizes its decomposition even when hydrofluoric acid is produced. Also, the solution is less likely to cause, in the case of being used for a secondary cell, swelling of the cell and lowering of the battery performance.
    Type: Application
    Filed: October 11, 2011
    Publication date: August 29, 2013
    Applicant: DAIKIN INDUSTRIES, LTD.
    Inventors: Meiten Koh, Hideo Sakata, Hitomi Nakazawa, Kyouhei Sawaki, Tomoyo Sanagi, Akiyoshi Yamauchi, Aoi Nakazono, Akinori Tani, Masahiro Tomita, Yuki Adachi
  • Patent number: 8512900
    Abstract: A nonaqueous electrolytic solution secondary battery includes a positive electrode, a negative electrode, and a nonaqueous electrolytic solution having an electrolyte salt dissolved in a nonaqueous solvent. The nonaqueous solvent contains 80% by mass or more of a cyclic carbonate which does not have a carbon-carbon multiple bond and which does not contain a halogen and contains a cyclic sulfone compound having any one of structures represented by the following formulae (1) to (4): wherein each of R1 and R2 represents CmH2m where 1?m?4. Also, each of R3 to R10 independently represents CnH2n+1 where 1?n?4.
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: August 20, 2013
    Assignee: Sony Corporation
    Inventor: Atsumichi Kawashima
  • Patent number: 8512897
    Abstract: Provided are (1) a novel phenyl sulfonate compound, (2) a nonaqueous electrolytic solution comprising an electrolyte salt dissolved in a nonaqueous solvent and containing a phenyl sulfonate compound of the following general formula (II) in an amount of from 0.01 to 10% by mass of the nonaqueous electrolytic solution, and (3) a lithium battery containing the nonaqueous electrolytic solution and excellent in low-temperature cycle property. (wherein X1 to X5 each independently represents a fluorine atom or a hydrogen atom, and from one to four of these are fluorine atoms; R2 represents a linear or branched alkyl group having from 1 to 6 carbon atoms, a linear or branched alkyl group having from 1 to 6 carbon atoms in which at least one hydrogen atom is substituted with a halogen atom, or an aryl group having from 6 to 9 carbon atoms).
    Type: Grant
    Filed: October 24, 2008
    Date of Patent: August 20, 2013
    Assignee: Ube Industries, Ltd.
    Inventors: Koji Abe, Kazuhiro Miyoshi
  • Patent number: 8501355
    Abstract: Provided are an electrolyte which may prevent the degradation of the battery performance by including a functional group which can react with a side reaction site which is responsible for decomposition of negative electrode material components and a functional group which can react with moisture which is responsible for decomposition of positive electrode material components in an electrolyte of the battery to ensure the stability of the battery at high temperatures, and a secondary battery manufactured by adding the same. The present invention may employ a compound including a functional group which can react with a side reaction site of a negative electrode material and a functional group which can react with moisture to maximize the improvement of the storage performance of a secondary battery at high temperatures.
    Type: Grant
    Filed: March 2, 2010
    Date of Patent: August 6, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Yo Jin Kim, Han Ho Lee, Seung Don Choi
  • Publication number: 20130196212
    Abstract: A 1.5V battery and manufacturing method thereof is disclosed. The battery includes a positive electrode composed of 80%-90 weight-% of pyrite, up to 3.5% of conductive carbon black, 3%-5% of graphite, 2%-4% of oxide or lithium oxide and 1%-4% of water-soluble adhesive; a negative electrode composed of lithium metal or a lithium-aluminum alloy; an electrolyte composed of an organic solvent selected from three or more of NMP, PC, DME, DOL, isoxazoles, THF, DMSO and SFL; and an inorganic salt solute selected from one or more of LiClO4, LiCF3SO3, LiI, LiAsF6 and LiBF4; and a separator made of polyethylene resins.
    Type: Application
    Filed: January 3, 2008
    Publication date: August 1, 2013
    Inventors: Wenshuo Pan, Xianwen He, Zhongfen Lao
  • Publication number: 20130196236
    Abstract: Disclosed is an electrode for a magnesium secondary battery. The electrode includes a current collector and a magnesium plating layer formed on the surface of the current collector. The electrode is simple to produce and is inexpensive. In addition, the electrode is in the form of a thin film. Therefore, the electrode is useful for the fabrication of a magnesium secondary battery with high energy density. Further disclosed is a magnesium secondary battery including the electrode.
    Type: Application
    Filed: March 14, 2013
    Publication date: August 1, 2013
    Applicant: LG CHEM, LTD.
    Inventor: LG Chem, Ltd.
  • Patent number: 8492036
    Abstract: The present invention provides a cathode having a protection layer formed by a complex between the surface of a cathode active material and an aliphatic nitrile compound, as well as an electrochemical device comprising the cathode. Also, the present invention provides an electrochemical device comprising: (1) a cathode having a protection layer formed by a complex between the surface of a cathode active material and an aliphatic nitrile compound; (2) an anode having a passivation layer formed by a compound selected from the group consisting of vinylene carbonate, its derivative and an ether compound; and (3) an electrolyte solution containing a lithium salt and a solvent.
    Type: Grant
    Filed: December 11, 2012
    Date of Patent: July 23, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Young Soo Kim, Soon Ho Ahn
  • Publication number: 20130183576
    Abstract: An object is to provide a higher-performance secondary battery, particularly to provide a secondary battery having a low impedance. The present exemplary embodiment is a secondary battery comprising an electrode assembly in which a positive electrode and a negative electrode are arranged to face each other, an electrolyte liquid, and a package accommodating the electrode assembly and the electrolyte liquid, wherein the negative electrode includes a negative electrode active substance containing at least one selected from a metal (a) capable of being alloyed with lithium, and a metal oxide (b) capable of occluding and releasing lithium ions, a negative electrode binder, and a negative electrode current collector; and the electrolyte liquid contains a sulfide compound.
    Type: Application
    Filed: August 26, 2011
    Publication date: July 18, 2013
    Applicant: NEC CORPORATION
    Inventors: Masahiro Suguro, Daisuke Kawasaki, Midori Shimura, Kazuaki Matsumoto, Yoko Hashizume
  • Patent number: 8481216
    Abstract: Disclosed is an inhibitor of the reduction of life cycle of a redox shuttle additive that undergoes oxidation-reduction cycling, the inhibitor being at least of one compound selected from the group consisting of vinylene carbonates, ethylene carbonates, cyclic sulfites and unsaturated sultones. Also, Disclosed is a non-aqueous electrolyte and secondary battery comprising the same inhibitor.
    Type: Grant
    Filed: October 24, 2006
    Date of Patent: July 9, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Soon Ho Ahn, Sung Hoon Yu, Byung Hoon Oh, Joo Mi Jeon
  • Publication number: 20130164635
    Abstract: The present invention relates to a solid composite for use in the cathode of a lithium- sulphur electric current producing cell wherein the solid composite comprises 1 to 75 wt.-% of expanded graphite, 25 to 99 wt.-% of sulphur, 0 to 50 wt.-% of one or more further conductive agents other than expanded graphite, and 0 to 50 wt.
    Type: Application
    Filed: May 26, 2011
    Publication date: June 27, 2013
    Applicant: Sion Power Corporation
    Inventors: Ruediger Schmidt, Alexander Panchenko, Bastian Ewald, Philip Hanefeld, Sorin Ivanovici, Helmut Moehwald, Igor P. Kovalev
  • Publication number: 20130164637
    Abstract: A non-aqueous electrolyte solution includes an electrolyte solution including an amide compound and a lithium salt, and a dinitrile compound substituted by a hetero atom at a main chain, and a lithium secondary battery includes the non-aqueous electrolyte solution. By using the non-aqueous electrolyte solution, a lithium secondary battery having an improved swelling phenomenon and an increased charging/discharging performance may be provided.
    Type: Application
    Filed: January 31, 2013
    Publication date: June 27, 2013
    Applicant: LG CHEM, LTD.
    Inventor: LG Chem, Ltd.
  • Patent number: RE44705
    Abstract: A battery capable of improving the storage characteristics and the cycle characteristics is provided. The battery includes a cathode, an anode, and an electrolytic solution. The electrolytic solution is impregnated in a separator provided between the cathode and the anode. A solvent of the electrolytic solution contains a given sulfone compound such as bis(trimethylsilyl)-2,2-difluorosulfoacetate. Compared to a case that a solvent does not contain the foregoing sulfone compound, the chemical stability of the electrolytic solution is improved, and the decomposition reaction of the electrolytic solution is suppressed.
    Type: Grant
    Filed: February 1, 2013
    Date of Patent: January 14, 2014
    Assignee: Sony Corporation
    Inventors: Masayuki Ihara, Hiroyuki Yamaguchi, Tadahiko Kubota