Producing Reactant Patents (Class 429/416)
  • Patent number: 8822094
    Abstract: A fuel cell system includes a fuel cell stack, a heavy hydrocarbon fuel source, and a fractionator configured to separate light ends from heavy ends of a heavy hydrocarbon fuel provided from the heavy hydrocarbon fuel source.
    Type: Grant
    Filed: April 2, 2007
    Date of Patent: September 2, 2014
    Assignee: Bloom Energy Corporation
    Inventors: Swaminathan Venkataraman, Arne Watson Ballantine, David Weingaertner
  • Patent number: 8822097
    Abstract: A power generator includes a fuel container adapted to hold a hydrogen containing fuel. A sliding valve is coupled between a fuel cell and a fuel container. A pressure responsive actuator is coupled to the two stage valve and the fuel container.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: September 2, 2014
    Assignee: Honeywell International Inc.
    Inventor: Steven J. Eickhoff
  • Publication number: 20140238316
    Abstract: A hydrogen generator that can be operated in a broad temperature range is disclosed, which comprises a first ammonia conversion part having a hydrogen-generating material which reacts with ammonia in a first temperature range so as to generate hydrogen; a second ammonia conversion part having an ammonia-decomposing catalyst which decomposes ammonia into hydrogen and nitrogen in a second temperature range; an ammonia supply part which supplies ammonia; and an ammonia supply passage which supplies ammonia from said ammonia supply part to the first and second ammonia conversion parts. The first temperature range includes temperatures lower than the second temperature range, and hydrogen is generated from ammonia by selectively using the first and second ammonia conversion parts. An ammonia-burning internal combustion engine and a fuel cell having the hydrogen generator are also disclosed.
    Type: Application
    Filed: May 1, 2014
    Publication date: August 28, 2014
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Kyoichi TANGE, Norihiko NAKAMURA, Haruyuki NAKANISHI, Hidekazu ARIKAWA
  • Patent number: 8814983
    Abstract: The present disclosure is directed to a system for delivery of a target material and/or energy. The system includes a source configured to provide a mixture containing the target material and a non-target material, a delivery conduit coupled to the source to receive the mixture from the source, and an in-line extraction device concentric to the delivery conduit. The in-line extraction device is configured to selectively extract the target material and/or energy from the mixture in the delivery conduit and to delivery it to a downstream facility.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: August 26, 2014
    Assignee: McAlister Technologies, LLC
    Inventor: Roy Edward McAlister
  • Patent number: 8815455
    Abstract: A hydrogen generator includes: a water evaporation unit configured to mix water with a raw gas; a burner; a combustion exhaust gas flow channel provided on an inner side than the water evaporation unit and through which a combustion exhaust gas from the burner flows; a reforming catalyst layer configured to produce a reformed gas; and a carbon monoxide reduction unit configured to reduce an amount of carbon monoxide contained in the reformed gas. The water evaporation unit includes a flow channel member defining a flow channel through which the raw gas and the water flow. A pitch of the flow channel member is changed according to at least one of an amount of heat exchange between the combustion exhaust gas flow channel and the water evaporation unit and an amount of heat exchange between the water evaporation unit and the carbon monoxide reduction unit.
    Type: Grant
    Filed: May 13, 2009
    Date of Patent: August 26, 2014
    Assignee: Panasonic Corporation
    Inventors: Akira Maenishi, Yuuji Mukai, Hiroki Fujioka
  • Publication number: 20140227620
    Abstract: A flow battery includes at least one cell that has a first electrode, a second electrode spaced apart from the first electrode, and an electrolyte separator layer arranged between the first electrode and the second electrode. A reactant material is stored within a storage portion and selectively delivered to the at last one cell. At least one reactant material is present in a solid phase in the storage portion and is present in a liquid phase in the at least one cell.
    Type: Application
    Filed: September 28, 2011
    Publication date: August 14, 2014
    Inventor: Michael L. Perry
  • Patent number: 8802307
    Abstract: A process for the production of dihydrogen from hydrogenated silicon by bringing the hydrogenated silicon into contact with an alkaline solution. Devices of the fuel cell type using this hydrogen production method are also described.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: August 12, 2014
    Assignees: Centre National de la Recherche Scientifique (C.N.R.S.), Universite de Franche-Comte
    Inventor: Bernard Gauthier-Manuel
  • Patent number: 8795912
    Abstract: Processes and systems for operating molten carbonate fuel cell systems are described herein. A process for operating a molten carbonate fuel cell system includes providing a hydrogen-containing stream comprising molecular hydrogen to an anode portion of a molten carbonate fuel cell; controlling a flow rate of the hydrogen-containing stream to the anode such that molecular hydrogen utilization in the anode is less than 50%; mixing anode exhaust comprising molecular hydrogen from the molten carbonate fuel cell with a hydrocarbon stream comprising hydrocarbons, contacting at least a portion of the mixture of anode exhaust and the hydrocarbon stream with a catalyst to produce a steam reforming feed; separating at least a portion of molecular hydrogen from the steam reforming feed; and providing at least a portion of the separated molecular hydrogen to the molten carbonate fuel cell anode.
    Type: Grant
    Filed: January 19, 2011
    Date of Patent: August 5, 2014
    Assignee: Shell Oil Company
    Inventors: Jingyu Cui, Erik Edwin Engwall, John William Johnston, Mahendra Ladharam Joshi, Scott Lee Wellington
  • Patent number: 8785064
    Abstract: A scalable endothermic reaction apparatus, system and method captures, concentrates, and converts atmospheric heat and humidity into diatomic hydrogen and stoichiometric oxygen for use within an exothermic device such as an engine, a turbine, or a fuel cell. No nitrogen or carbon compounds are introduced into the process utilized by the apparatus. All operating matter and energy utilized in the process is recycled in a closed loop system. Energy emitted from the exothermic device as waste is captured and immediately returned as waste hot water to the endothermic device. The waste output of the work-producing device is thus an exploitable asset that can be repeatedly returned in service through the endothermic device, without any emissions from an exhaust or tailpipe in the system. At peak efficiency, the exothermic and endothermic processes are formed as an apparatus that is thermally sealed in a free-standing and self-sustaining operating package.
    Type: Grant
    Filed: December 8, 2008
    Date of Patent: July 22, 2014
    Inventor: Brian Hughes Barron
  • Patent number: 8785065
    Abstract: The present invention provides a catalyst for generating hydrogen, containing a composite metal of iron and nickel, the catalyst used in a decomposition reaction of at least one compound selected from the group consisting of hydrazine and hydrates thereof; and a method for generating hydrogen, including contacting the catalyst for generating hydrogen with at least one compound selected from the group consisting of hydrazine and hydrates thereof. According to the invention, hydrogen can be efficiently generated with improved selectivity in the method for generating hydrogen that utilizes the decomposition reaction of hydrogen.
    Type: Grant
    Filed: September 7, 2012
    Date of Patent: July 22, 2014
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Qiang Xu, Sanjay Kumar Singh, Ashish Kumar Singh
  • Patent number: 8771895
    Abstract: A method that employs a model based approach to determine a maximum anode pressure set-point based on existing airflow in the exhaust gas line. This approach maximizes anode flow channel velocity during bleed events while meeting the hydrogen emission constraint, which in turn increases the amount of water purged from the anode flow channels to increase stack stability.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: July 8, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Manish Sinha, Seth E. Lerner, Patrick Frost, Victor W. Logan, Balasubramanian Lakshmanan
  • Patent number: 8771888
    Abstract: Provided is a fuel-cell system and a method of operating the fuel-cell system, wherein functions F=f(P) and P=f?1(F) of electrical output P and fuel flow-rate F required to output P are beforehand obtained, and a reformable fuel flow-rate FR is calculated from the temperature of reforming catalyst layer. When FR?Fmin, if the output demand PD?maximum output PM, and when f(PD)?FR, F is set to f(PD); and when f(PD)>FR, the P is set to the maximum value within a range of less than PD amongst P calculated from P=f1(FR), and F is set to FR. When PD>PM, and when f(PM)?FR, the cell output is set to PM, and F is set to f(PM). When f(PM)>FR, the cell output is set to the maximum value amongst P calculated from P=f1(FR), and F is set to FR.
    Type: Grant
    Filed: February 18, 2009
    Date of Patent: July 8, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventor: Susumu Hatada
  • Publication number: 20140178780
    Abstract: Apparatus for generating hydrogen gas are provided herein. In some embodiments, an apparatus for generating hydrogen gas may include a first chamber; a first mixture comprising a chemical hydride and a catalyst disposed within the first chamber; a second chamber coupled to the first chamber; a connector; a third chamber coupled by the connector to the second chamber, wherein the third chamber is fluidly coupled to the first chamber; a sealing element coupled to at least one of the second chamber or the third chamber; an outlet fluidly coupled to the first chamber; and a resilient member disposed within the third chamber and configured to control the flow of water into the first chamber via movement of the resilient member in response to hydrogen gas pressure within the apparatus.
    Type: Application
    Filed: December 21, 2012
    Publication date: June 26, 2014
    Applicant: U.S. ARMY RESEARCH LABORATORY ATTN: RDRL-LOC-I
    Inventor: U.S. ARMY RESEARCH LABORATORY ATTN; RDRL-LOC-1
  • Patent number: 8758950
    Abstract: A fuel cell system includes a reforming unit, a carbon monoxide decreasing unit, a fuel cell, a burner unit, a raw gas supply device, and a heating unit. The heating unit is controlled at a start-up operation of the fuel cell system, so as to adjust an amount of a desorbed raw gas desorbed out of components of the raw gas adsorbed to at least one of a reforming catalyst and a carbon monoxide decreasing catalyst such that a ratio of an amount of combustion air to an amount of a raw gas in the burner unit falls within a predetermined range.
    Type: Grant
    Filed: May 7, 2010
    Date of Patent: June 24, 2014
    Assignee: Panasonic Corporation
    Inventors: Hiroshi Tatsui, Kiyoshi Taguchi
  • Patent number: 8758951
    Abstract: A continuous coal electrolytic cell for the production of pure hydrogen without the need of separated purification units Electrodes comprising electrocatalysts comprising noble metals electrodeposited on carbon substrates are also provided. Also provided are methods of using the electrocatalysts provided herein for the electrolysis of coal in acidic medium, as well as electrolytic cells for the production of hydrogen from coal slurries in acidic media employing the electrodes described herein. Further provided are catalytic additives for the electro-oxidation of coal. Additionally provided is an electrochemical treatment process where iron-contaminated effluents are purified in the presence of coal slurries using the developed catalyst.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: June 24, 2014
    Assignee: Ohio University
    Inventor: Gerardine Botte
  • Publication number: 20140170511
    Abstract: A method for producing electric power and regenerating an aqueous multi-electron oxidant (AMO) and a reducer in an energy storage cycle is provided. A discharge system includes a discharge unit, an acidification reactor, and a neutralization reactor. The acidification reactor converts an oxidant fluid including the AMO into an acidic oxidant fluid. The discharge unit generates electric power and a discharge fluid by transferring electrons from a positive electrode of an electrolyte-electrode assembly (EEA) to the AMO and from a reducer to a negative electrode of the EEA. The neutralization reactor neutralizes the discharge fluid to produce a neutral discharge fluid. The regeneration system splits an alkaline discharge fluid into a reducer and an intermediate oxidant in a splitting-disproportionation reactor and releases the reducer and a base, while producing the AMO by disproportionating the intermediate oxidant. The regenerated AMO and reducer are supplied to the discharge unit for power generation.
    Type: Application
    Filed: February 19, 2014
    Publication date: June 19, 2014
    Applicant: Ftorion, Inc.
    Inventor: Yuriy Vyacheslalovovich Tolmachev
  • Publication number: 20140162153
    Abstract: As integrated fossil fuel power plant and a method of operating the power plant is provided. The integrated fossil fuel power plant includes a gas turbine arrangement and a carbonate fuel cell having an anode side and a cathode side. The operating method for the integrated fossil fuel power plant includes partially expanding combustion gases in the gas turbine arrangement so that the temperature of the partially expanded combustion gases is optimised for reaction in the cathode side of the carbonate fuel cell, and feeding the partially expanded combustion gases at the optimised temperature to the cathode side of the carbonate fuel cell for reaction in the cathode side of the carbonate fuel cell.
    Type: Application
    Filed: November 22, 2013
    Publication date: June 12, 2014
    Applicant: ALSTOM Technology Ltd
    Inventor: Roberto BOVE
  • Patent number: 8748050
    Abstract: Embodiments of the present invention relate to a portable fuel cell power source including an expandable enclosure, a first reactant contained within the enclosure, one or more fuel cells and a fluid port positioned in the expandable enclosure and adapted to be in fluidic communication with the one or more fuel cells. The enclosure may also include an opening to insert a second reactant. When the first reactant is contacted with the second reactant a fuel is generated for use with one or more of the fuel cells. The volume of the portable fuel cell power source in a collapsed state may be smaller than the volume of the amount of first reactant and second reactant needed to substantially consume the first reactant in a fuel generation reaction.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: June 10, 2014
    Assignee: Societe BIC
    Inventors: Gerard F McLean, Joerg Zimmermann, Jeremy Schrooten
  • Publication number: 20140154596
    Abstract: A hydrogen generator including an initiator assembly having one or more contact members within a compressible member, and a removable fuel unit adjacent a surface of the compressible member. The fuel unit contains a hydrogen containing material that can release hydrogen gas when heated and an exothermic mixture that can react exothermically upon initiation by the initiator assembly. When no fuel unit is in the hydrogen generator, the compressible member is uncompressed and the contact members are at or below its surface, and when a fuel unit is disposed in the hydrogen generator, the compressible member is compressed so the contact members extend beyond the surface to make thermal contact with the fuel unit. Energy from the initiator assembly is conducted by the contact members to corresponding quantities of the exothermic mixture to initiate an exothermic reaction, providing heat for the release of hydrogen gas from the hydrogen containing material.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 5, 2014
    Applicant: EVEREADY BATTERY COMPANY, INC.
    Inventor: Mark D. Vandayburg
  • Patent number: 8722011
    Abstract: In a method by which hydrogen supplied as a combustion aid to an ammonia combustion engine is produced from ammonia, the filling amount of a decomposition catalyst in an ammonia decomposition apparatus is reduced. The method includes an ammonia decomposition apparatus that produces hydrogen as a combustion aid and an ammonia oxidation apparatus that allows a part of introduced ammonia to react with oxygen for combustion by action of an oxidation catalyst in order to supply the heat needed for the ammonia decomposition reaction, wherein the amount of ammonia and the amount of air introduced into the oxidation apparatus are controlled in accordance with the entrance temperature of an ammonia oxidation catalyst layer, so as to set the ammonia decomposition ratio in the ammonia decomposition apparatus to be 40 to 60% at all times.
    Type: Grant
    Filed: July 6, 2011
    Date of Patent: May 13, 2014
    Assignee: Hitachi Zosen Corporation
    Inventors: Susumu Hikazudani, Takuma Mori, Sadao Araki
  • Publication number: 20140116490
    Abstract: An electricity generation apparatus is disclosed. An exemplary apparatus includes a plasma container for containing a plasma sustained by radioactive decay. The plasma container has an inlet through which, in use of the apparatus, water can be introduced to the plasma container, and an outlet through which, in use of the apparatus, material can be expelled from the container. The exhausted material can include hydrogen and oxygen resulting from the dissociation of water molecules caused by interactions within the plasma. A separator can separate hydrogen from the material exhausted from the plasma container, which separator is coupled to the outlet, and a generator can generate electricity using the hydrogen as a fuel.
    Type: Application
    Filed: June 8, 2012
    Publication date: May 1, 2014
    Applicant: BAE SYSTEMS plc
    Inventor: Russell Alan Morgan
  • Publication number: 20140106249
    Abstract: A power generator includes a hydrogen producing fuel and a hydrogen storage element. A fuel cell having a proton exchange membrane separates the hydrogen producing fuel from ambient. A valve is positioned between the hydrogen storage element and the hydrogen producing fuel and the fuel cell. Hydrogen is provided to the fuel cell from the hydrogen storage element if demand for electricity exceeds the hydrogen producing capacity of the hydrogen producing fuel.
    Type: Application
    Filed: October 3, 2013
    Publication date: April 17, 2014
    Applicant: Honeywell International Inc.
    Inventor: Steven J. Eickhoff
  • Patent number: 8697300
    Abstract: A fuel cell of the present invention comprises a power generating cell (C), which has at least two surfaces, a fuel gas being supplied through one of the surfaces and oxygen being supplied through the other surface, thereby generating electric power, a cell holder (6) that holds the power generating cell (c) to face the one of the surfaces inward, whereby forming an inner space together with the power generating cell (C), and a fuel generating section (B) that is arranged in the inner space of the cell holder (6) and generates the fuel gas.
    Type: Grant
    Filed: March 18, 2009
    Date of Patent: April 15, 2014
    Assignee: ROHM Co., Ltd.
    Inventors: Masakazu Sugimoto, Masaya Yano, Hitoshi Ishizaka
  • Patent number: 8697027
    Abstract: Methods and systems of providing a source of hydrogen and oxygen with high volumetric energy density, as well as a power systems useful in non-air breathing engines such as those in, for example, submersible vehicles, is disclosed. A hydride reactor may be utilized in forming hydrogen from a metal hydride and a peroxide reactor may be utilized in forming oxygen from hydrogen peroxide. The high temperature hydrogen and oxygen may be converted to water using a solid oxide fuel cell, which serves as a power source. The power generation system may have an increased energy density in comparison to conventional batteries. Heat produced by exothermic reactions in the hydride reactor and the peroxide reactor may be transferred and utilized in other aspects of the power generation system. High temperature water produced during by the peroxide reactor may be used to fuel the hydride reactor.
    Type: Grant
    Filed: August 24, 2009
    Date of Patent: April 15, 2014
    Assignee: Alliant Techsystems Inc.
    Inventors: Ighor K. Uzhinsky, Gary K. Lund, John C. Leylegian, Florin Girlea, Jason S. Tyll, Lawrence G. Piper, Marten Byl, Wallace Chinitz
  • Patent number: 8673510
    Abstract: The present disclosure is directed to systems and methods for maintaining hydrogen-selective membranes during periods of inactivity. These systems and methods may include heating and maintaining at least the hydrogen-selective membrane of a hydrogen-producing fuel processing system in a thermally buffered state and/or controlling the chemical composition of the gas streams that may come into contact with the hydrogen-selective membrane. Controlling the chemical composition of the gas streams that may come into contact with the hydrogen-selective membrane may include maintaining a positive pressure of an inert, blanket, reducing, and/or non-oxidizing gas within the membrane separation assembly and/or periodically supplying a reducing gas stream to the membrane separation assembly.
    Type: Grant
    Filed: October 11, 2010
    Date of Patent: March 18, 2014
    Assignee: DCNS SA
    Inventor: William A. Pledger
  • Patent number: 8673511
    Abstract: A sodium chloride electrolysis cell (9) receives a portion of its electrical power (47, 48: 50, 51) from a phosphoric acid fuel cell (44) which receives fuel at its anode inlet (43) from a water cooled catalytic reactor (26) that converts oxygen in the byproduct output (19) of the sodium chlorate electrolysis cell to hydrogen and water. A utility grid (53) may provide through a converter (55) power to support the electrochemical process in the sodium chlorate electrolysis cell. Temperature of the water cooled catalytic reactor is determined by the vaporization of pressurized hot water, the pressure of which may be adjusted by a controller (36) and a valve (38) in response to temperature (40).
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: March 18, 2014
    Assignee: United Technologies Corporation
    Inventors: Antonio M. Vincitore, Peter F. Foley, Derek W. Hildreth, John L. Preston
  • Patent number: 8663857
    Abstract: The present invention relates to a process for producing a continuous flow of hydrogen by catalyzed hydrolysis of a complex hydride, which comprises at least adding continuously and at constant rate a fuel solution to a reactor comprising a complex hydride stabilized on a hydroxide on a cobalt boride catalyst that is added in excess inside said reactor. Sodium borohydride is preferably used, the hydroxide is sodium hydroxide and the catalyst is supported on nickel foam. Parameters and optimal conditions to achieve continuous production of hydrogen have been determined, which is essential in the operation of fuel cells. A facility comprising a semi continuous reactor designed to perform the above process, which needs no refrigeration is also an object of the present invention, as well as a washing and reactivation process of a catalyst of the type used in the process mentioned above.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: March 4, 2014
    Assignee: Abengoa Hidrogeno, S.A.
    Inventors: María de los Ángeles Jiménez Domínguez, María del Mar Jiménez Vega, Belén Sarmiento Marrón, Asunción Fernández Camacho, Gisela Mariana Arzac De Calvo, Enrique Jiménez Roca
  • Publication number: 20140057182
    Abstract: Active metal oxygen battery cells and active metal oxygen battery flow systems are configurable to achieve very high energy density. The cells and flow systems include an active metal anode and a cathode in contact with an organic liquid phase oxygen-carrying compound for storing and delivering molecular oxygen to the cathode whereon the molecular oxygen is electro-reduced during cell discharge.
    Type: Application
    Filed: November 4, 2011
    Publication date: February 27, 2014
    Applicant: POLYPLUS BATTERY COMPANY
    Inventors: Lutgard C. DeJonghe, Steven J. Visco, Yevgeniy S. Nimon, Vitaliy Nimon
  • Patent number: 8658323
    Abstract: The invention provides a solid oxide fuel cell generation system and a start up method thereof which heat up a reformer and a cell main body without any water and nitrogen gas, and start up for a short time until a power generation and without deteriorating a reliability of the cell. In a solid oxide fuel cell generation system having a power generation cell including an anode, a cathode and a solid electrolyte membrane, a mixing portion for obtaining a mixed gas by mixing a used fuel gas discharged from the anode with a raw fuel, a reducing combustion gas generating apparatus, and a reforming portion, the reducing combustion gas generating apparatus has a starting burner generating a reducing combustion gas, and the mixing portion, the reducing combustion gas generating apparatus, the reforming portion and the anode are coupled alphabetically from an upstream side.
    Type: Grant
    Filed: October 7, 2008
    Date of Patent: February 25, 2014
    Assignee: Hitachi, Ltd.
    Inventors: Hidekazu Fujimura, Hiromi Tokoi, Shin Takahashi
  • Patent number: 8652693
    Abstract: A reformer including a vaporization part provided with a supply port through which raw fuel is supplied, the supply port being provided at a central section of a tubular container; and reforming parts provided at both sides of the container, each reforming part containing reforming catalyst that reforms the raw fuel that flows into the reforming part from the vaporization part into fuel gas and provided with a fuel-gas supply port through which the fuel gas is discharged.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: February 18, 2014
    Assignee: KYOCERA Corporation
    Inventors: Mitsuhiro Nakamura, Takashi Ono
  • Patent number: 8647781
    Abstract: This invention provides a redox fuel cell comprising an anode and a cathode separated by an ion selective polymer electrolyte membrane; means for supplying a fuel to the anode region of the cell; means for supplying an oxidant to the cathode region of the cell; means for providing an electrical circuit between the anode and the cathode; a non-volatile catholyte solution flowing in fluid communication with the cathode, the catholyte solution comprising a redox mediator which is at least partially reduced at the cathode in operation of the cell, and at least partially regenerated by, optionally indirect, reaction with the oxidant after such reduction at the cathode, and a transition metal complex of a multidentate macrocyclic N-donor ligand as a redox catalyst catalysing the regeneration of the mediator.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: February 11, 2014
    Assignee: Acal Energy Limited
    Inventors: Kathryn Knuckey, David Rochester, Andrew Martin Creeth
  • Publication number: 20130344407
    Abstract: A hydrogen generator is provided for generating hydrogen gas for a fuel cell stack. The hydrogen generator includes a reaction area and a reactant storage area for storing a reactant composition for reacting to generate hydrogen gas. The hydrogen generator also includes a high pH solution contained within a solution storage area. Hydrogen gas is discharged through an outlet that passes through a filter to supply gas to the fuel cell. A predetermined quantity of high pH solution is injected into the reaction area to stop the reaction when electrical power is no longer demanded.
    Type: Application
    Filed: June 25, 2012
    Publication date: December 26, 2013
    Applicant: EVEREADY BATTERY COMPANY, INC.
    Inventor: Alvin R. Mick
  • Publication number: 20130337351
    Abstract: The synthesis of single graphene sheets decorated with metal or metal oxide nanoparticles, and their uses.
    Type: Application
    Filed: April 11, 2012
    Publication date: December 19, 2013
    Inventors: Lawrence T. Drzal, Inhwan Do, Anchita Monga
  • Publication number: 20130337352
    Abstract: A controller (81) in a fuel cell system (1A) operates a fuel cell (60) in a normal mode or in a special mode which is switched by the controller (81); in which in the normal mode, the fuel cell (60) is operated so as to satisfy at least one of a first operation condition and a second operation condition, the first operation condition being a condition in which an operation time of the fuel cell per unit period is equal to or shorter than a unit allowable operation time defined based on a total durable operation time of at least one of the fuel cell and the auxiliary device, the second operation condition being a condition in which the number of times of operation of the fuel cell per unit time is equal to or less than a unit allowable number of times of operation defined based on a total durable number of times of operation of at least one of the fuel cell and the auxiliary device, and in the special mode, the fuel cell (60) is operated without being limited by at least one of the first operation condition an
    Type: Application
    Filed: July 13, 2011
    Publication date: December 19, 2013
    Applicant: PANASONIC CORPORATION
    Inventors: Shinji Miyauchi, Motomichi Katou
  • Publication number: 20130337350
    Abstract: A power supply device is provided. The power supply device includes a fuel cell, a hydrogen generator, a check valve and an exhaust valve. The fuel cell has a hydrogen inlet and a hydrogen outlet. The hydrogen generator is connected to the hydrogen inlet and used for generating hydrogen. The check valve is disposed in the hydrogen inlet and used for preventing the hydrogen within the fuel cell from flowing to the hydrogen generator, and preventing exterior air from entering the fuel cell. The exhaust valve is disposed in the hydrogen outlet for exhausting the hydrogen within the fuel cell.
    Type: Application
    Filed: August 19, 2013
    Publication date: December 19, 2013
    Applicant: Industrial Technology Research Institute
    Inventors: Jie-Ren Ku, Chan-Li Hsueh, Ya-Yi Hsu, Fang-Hei Tsau, Reiko Ohara, Shing-Fen Tsai, Chien-Chang Hung, Ming-Shan Jeng, Cheng-Yen Chen
  • Patent number: 8597841
    Abstract: The present invention provides a method for generating a gas that may be used for startup and shutdown of a fuel cell. In a non-limiting embodiment, the method may include generating a nitrogen-rich stream; merging the nitrogen-rich stream with a hydrocarbon fuel stream into a feed mixture stream; and catalytically converting the feed mixture into a reducing gas.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: December 3, 2013
    Assignee: LG Fuel Cell Systems Inc.
    Inventors: Mark Vincent Scotto, Daniel P. Birmingham, Crispin L. DeBellis, Mark Anthony Perna, Gregory C. Rush
  • Patent number: 8597848
    Abstract: There is disclosed a fuel cell system or the like capable of sufficiently reducing an exhaust hydrogen concentration even in a case where a fuel cell is operated in a state of a low power generation efficiency. A bypass valve is arranged between an oxidation gas supply path and a cathode-off gas channel. In a state in which supply of an oxidation gas to a cathode falls short, pumping hydrogen is included in a cathode-off gas. Therefore, a valve open degree of the bypass valve is regulated, and a flow rate of bypass air is regulated to control the exhaust hydrogen concentration.
    Type: Grant
    Filed: October 20, 2006
    Date of Patent: December 3, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyuki Imanishi, Kota Manabe, Tomoya Ogawa, Go Tejima, Yoshiaki Naganuma, Hironori Noto
  • Patent number: 8596047
    Abstract: The vehicle electrocatalyzer for recycling carbon dioxide to fuel hydrocarbons includes a main tubular member having a plurality of tubular catalytic cells, electrically connected in series disposed inside and separated from one another by semipermeable membranes allowing the passage of fluids, but not solids. The electrocatalyzer can be attached in the exhaust system where hydrogen could be generated by the electrolysis of water. Metallic copper, iron, carbonaceous materials (such as activated carbon, carbon nanomaterials, or graphite), metal oxides, or metal-supported catalysts may be used in each catalytic cell. A DC current connected across the cells is used to initiate reaction of the carbon dioxide with hydrogen gas. The resulting hydrocarbons are recycled back to the vehicle engine and used as a makeup fuel.
    Type: Grant
    Filed: July 25, 2011
    Date of Patent: December 3, 2013
    Assignees: King Fahd University of Petroleum and Minerals, King Abdulaziz City for Science and Technology
    Inventors: Reyad Awwad Khalaf Shawabkeh, Abdalla Mahmoud Abulkibash, Muhammad A. Al-Saleh
  • Publication number: 20130316256
    Abstract: This fuel cell system monitors the temperature of an off-gas combusting unit detected by a combustor temperature detecting unit in a constant output operation state such as a rated operation state where a sweeping current of a cell stack becomes constant, rather than directly measuring the fuel property, and controls the flow rate of the cathode gas so that the temperature of the off-gas combusting unit reaches a target temperature. Moreover, the fuel cell system determines the fuel property based on the variation of the flow rate of the cathode gas changed until the temperature of the off-gas combusting unit reaches the target temperature and the temperature of the cathode gas. Thus, it is possible to simplify the configuration required for determining whether the fuel property has changed or not as compared to a conventional method of measuring a plurality of factors of the fuel property.
    Type: Application
    Filed: December 27, 2011
    Publication date: November 28, 2013
    Applicant: JX NIPPON OIL & ENERGY CORPORATION
    Inventors: Keisuke Kaneko, Takeshi Ibuka
  • Patent number: 8586261
    Abstract: Techniques for packaging and utilizing solid hydrogen-producing fuel are described herein. The fuel may be in the form of a bonded/compressed powder, granules, or pellets. The fuel is packaged in cartridges having hydrogen-permeable enclosures. In operation, the fuel undergoes a hydrogen-releasing Thermally Initiated Hydrolysis (TIH) reaction. A cartridge may comprise one or more fuel chambers, and several cartridges may be assembled together.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: November 19, 2013
    Assignee: Protonex Technology Corporation
    Inventors: Michael T. Kelly, Jeffrey V. Ortega
  • Patent number: 8557457
    Abstract: A method of operating a fuel cell system includes the steps of detecting whether supply of a raw fuel to a fuel cell module is stopped or not, starting supply of water vapor to an electrode surface of an anode based on the temperature of a fuel cell stack when stop of the supply of the raw fuel is detected, starting supply of reverse electrical current to an electrolyte electrode assembly in a direction opposite to electrical current flowing at the time of power generation based on the temperature of the fuel cell stack, stopping the supply of the reverse electrical current at least based on any of the temperature of the fuel cell stack and the temperature of an evaporator, and stopping the supply of the water vapor at least based on any of the temperature of the fuel cell stack and the temperature of the evaporator.
    Type: Grant
    Filed: August 22, 2008
    Date of Patent: October 15, 2013
    Assignee: Honda Motor Co., Ltd.
    Inventor: Koji Dan
  • Patent number: 8557483
    Abstract: Fuel cell fuel supplies having single and multiple compartments for storing and containing fuel cell fuel precursor reagents. These fuel supplies allow storage and packaging of precursors for in situ production and use of fuel cell fuel. A method for making fuel cell fuel and a fuel cell system is also disclosed.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: October 15, 2013
    Assignee: Societe BIC
    Inventors: Paul Adams, Andrew J Curello, Floyd Fairbanks
  • Patent number: 8551302
    Abstract: Hydrogen generating apparatus that is capable of controlling the amount of hydrogen generation. The hydrogen generating apparatus has an electrolyzer, a first electrode, a second electrode, a switch, which is located between the first electrode and the second electrode, a flow rate meter, which measures an amount of hydrogen generation in the second electrode, and a switch controller, which receives a set value, compares the amount of hydrogen generation measured by the flow rate meter with the set value, and controls an on/off status of the switch. The amount of hydrogen generation can be controlled by use of on/off time and/or on/of frequency of the switch.
    Type: Grant
    Filed: May 13, 2008
    Date of Patent: October 8, 2013
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Jae-Hyoung Gil, Jae-Hyuk Jang, Arunabha Kundu, Sung-Han Kim, Kyoungsoo Chae
  • Patent number: 8545195
    Abstract: The invention is a hydrogen generator including a pump for pumping a liquid from a reservoir to a reaction area, where the liquid reacts to produce hydrogen gas, and a fuel cell system including the hydrogen generator and a fuel cell stack. The pump is a diaphragm pump with mechanically operated liquid inlet and outlet valves that are opened by cam-operated pushrods, and the pushrods are isolated from the liquid flowpath through the pump by diaphragms. All valves in the liquid flow path between the liquid reservoir and the reaction area are mechanically operated valves.
    Type: Grant
    Filed: October 21, 2011
    Date of Patent: October 1, 2013
    Assignee: Eveready Battery Co., Inc.
    Inventor: Russell H. Barton
  • Patent number: 8535838
    Abstract: A power supply device is provided. The power supply device includes a fuel cell, a hydrogen generator, a check valve and an exhaust valve. The fuel cell has a hydrogen inlet and a hydrogen outlet. The hydrogen generator is connected to the hydrogen inlet and used for generating hydrogen. The check valve is disposed in the hydrogen inlet and used for preventing the hydrogen within the fuel cell from flowing to the hydrogen generator, and preventing exterior air from entering the fuel cell. The exhaust valve is disposed in the hydrogen outlet for exhausting the hydrogen within the fuel cell.
    Type: Grant
    Filed: July 30, 2010
    Date of Patent: September 17, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Jie-Ren Ku, Chan-Li Hsueh, Ya-Yi Hsu, Fang-hei Tsau, Reiko Ohara, Shing-Fen Tsai, Chien-Chang Hung, Ming-Shan Jeng, Cheng-Yen Chen
  • Patent number: 8535835
    Abstract: A fuel cell module that can accommodate a single fuel cell stack efficiently and that can enhance power generation efficiency, and a fuel cell device comprising the fuel cell module.
    Type: Grant
    Filed: March 24, 2009
    Date of Patent: September 17, 2013
    Assignee: KYOCERA Corporation
    Inventors: Mitsuhiro Nakamura, Takashi Ono
  • Publication number: 20130236801
    Abstract: The present invention relates to a process for direct amination of hydrocarbons to amino hydrocarbons, comprising (a) the reaction of a reactant stream E comprising at least one hydrocarbon and at least one aminating reagent to give a reaction mixture R comprising at least one amino hydrocarbon and hydrogen in a reaction zone RZ, and (b) electrochemical removal of at least a portion of the hydrogen formed in the reaction from the reaction mixture R by means of at least one gas-tight membrane electrode assembly which is in contact with the reaction zone RZ on the retentate side and which has at least one selectively proton-conducting membrane, at least a portion of the hydrogen being oxidized over an anode catalyst to protons on the retentate side of the membrane, and the protons, after passing through the membrane, being partly or fully reacted with an oxidizing agent over a cathode catalyst to give water on the permeate side, and the oxidizing agent originating from a stream O which is contacted with the
    Type: Application
    Filed: March 1, 2013
    Publication date: September 12, 2013
    Applicant: BASF SE
    Inventors: Bernd Bastian SCHAACK, Alexander Panchenko, Philipp Brueggemann
  • Publication number: 20130230784
    Abstract: A water reactive hydrogen fueled power system includes devices and methods to combine reactant fuel materials and aqueous solutions to generate hydrogen. The generated hydrogen is converted in a fuel cell to provide electricity. The water reactive hydrogen fueled power system includes a fuel cell, a water feed tray, and a fuel cartridge to generate power for portable power electronics. The removable fuel cartridge is encompassed by the water feed tray and fuel cell. The water feed tray is refillable with water by a user. The water is then transferred from the water feed tray into the fuel cartridge to generate hydrogen for the fuel cell which then produces power for the user.
    Type: Application
    Filed: February 7, 2013
    Publication date: September 5, 2013
    Applicant: SIGNA CHEMISTRY, INC.
    Inventors: Andrew P. WALLACE, John M. MELACK, Michael LEFENFELD
  • Patent number: 8512901
    Abstract: The invention relates to a high-temperature fuel cell system which can be operated with at least one hydrocarbon compound, preferably with methane or a gas containing methane such as natural gas or biogas. It is the object of the invention to increase the efficiency of high-temperature fuel cell systems and to allow a more flexible operation. In the system in accordance with the invention, individual fuel cells are present which are connected electrically in series and form the stacks.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: August 20, 2013
    Assignee: Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
    Inventors: Mihails Kusnezoff, Sebastian Reuber
  • Publication number: 20130209903
    Abstract: The present invention provides a solid oxide fuel cell system capable of preventing excess temperature rises while increasing overall energy efficiency. The present invention is a solid oxide fuel cell system, including: a fuel cell module, a fuel supply device, a heat storing material, and a controller which, based on power demand, increases the fuel utilization rate when output power is high and to lower it when output power is low, and changes the electrical power actually output at a delay after changing the fuel supply amount. The controller has a stored heat estimating circuit for estimating the residual heat based on fuel supply and on power output at a delay relative thereto. When a utilizable amount of heat is accumulated in the heat storage material, the fuel supply is reduced so that the fuel utilization rate increases relative to the same electrical power.
    Type: Application
    Filed: March 28, 2013
    Publication date: August 15, 2013
    Applicant: TOTO LTD.
    Inventor: TOTO LTD.