Process Or Means For Control Of Operation Patents (Class 429/428)
  • Patent number: 8329353
    Abstract: A fuel cell system of the present invention includes a fuel cell (3); a water passage (8, 10, 12, 15, 17, 18); an electric heater (19) configured to heat the water passage; a water-related temperature detector (20); a first abnormality detector (22, etc.) configured to detect first abnormalities; a second abnormality detector (28, etc.) configured to detect second abnormalities; and a controller (21), and the controller is configured to stop an operation of the fuel cell system when the first abnormality is detected by the first abnormality detector or when the second abnormality is detected by the second abnormality detector. In a case where the fuel cell system stops since the second abnormality is detected by the second abnormality detector, the controller causes the electric heater (19) to carry out an operation as an antifreezing operation when the water-related temperature detector detects a temperature that is not more than a predetermined threshold.
    Type: Grant
    Filed: June 6, 2007
    Date of Patent: December 11, 2012
    Assignee: Panasonic Corporation
    Inventors: Shigeki Yasuda, Takashi Nishikawa, Hideo Ohara, Masataka Ozeki
  • Patent number: 8329351
    Abstract: There is provided a fuel cell system capable of suppressing the increase of a control error of a motor. The system includes a fuel cell which generates a power by an electrochemical reaction between a fuel gas and an oxidizing gas, a motor driven by the generated power of the fuel cell, and a control unit which controls the generation state of the fuel cell. The control unit performs high-potential avoiding control to prevent the total voltage of the fuel cell from exceeding a predetermined high-potential avoiding voltage threshold value. In a vehicle velocity region where the control switching of the traction motor is caused, the high-potential avoiding volume is inhibited.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: December 11, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Michio Yoshida, Kenji Umayahara
  • Publication number: 20120308851
    Abstract: A method is provided for controlling a fuel cell system including a fuel cell and a secondary battery for storing output power thereof. The method includes the steps of: detecting a remaining capacity of the secondary battery; determining a rate of change of the remaining capacity, where the rate of change is defined as positive when it increases and negative when it decreases; and changing an operation state of the fuel cell based on the remaining capacity and the rate of change. The step of changing the operation state is, for example, a step of switching the operation state between a plurality of power generation modes based on the remaining capacity and the rate of change.
    Type: Application
    Filed: October 13, 2011
    Publication date: December 6, 2012
    Inventor: Takashi Akiyama
  • Publication number: 20120308903
    Abstract: Catalysts that include at least one catalytically active element and one helper catalyst can be used to increase the rate or lower the overpotential of chemical reactions. The helper catalyst can simultaneously act as a director molecule, suppressing undesired reactions and thus increasing selectivity toward the desired reaction. These catalysts can be useful for a variety of chemical reactions including, in particular, the electrochemical conversion of CO2 or formic acid. The catalysts can also suppress H2 evolution, permitting electrochemical cell operation at potentials below RHE. Chemical processes and devices using the catalysts are also disclosed, including processes to produce CO, OH?, HCO?, H2CO, (HCO2)?, H2CO2, CH3OH, CH4, C2H4, CH3CH2OH, CH3COO?, CH3COOH, C2H6, O2, H2, (COOH)2, or (COO?)2, and a specific device, namely, a CO2 sensor.
    Type: Application
    Filed: June 30, 2011
    Publication date: December 6, 2012
    Inventor: Richard I. Masel
  • Publication number: 20120301799
    Abstract: A fuel cell includes a direct liquid fuel cell and a humidifier. The direct liquid fuel cell includes an air intake channel for providing oxidant to the fuel cell and an exhaust channel for exhausting depleted oxidant. The humidifier forms a fluid connection between the air intake channel and the exhaust channel.
    Type: Application
    Filed: December 22, 2011
    Publication date: November 29, 2012
    Inventors: Larry J. Markoski, Dilip Natarajan
  • Patent number: 8318365
    Abstract: A fuel cell system of the present invention comprises a fuel cell (1) configured to generate electric power using a fuel gas, a fuel gas generator (2) configured to generate a fuel gas containing hydrogen using a raw material, a combustion burner (2a) configured to heat the fuel gas generator, a combustion fan (2b) configured to supply air to a combustion burner (2a), and a controller (101). The raw material is filled inside the fuel cell (1) before the fuel gas is supplied to the fuel cell. The controller (101) controls on-off valves (8, 9) to cause the fuel gas to branch to flow to a second path (R2) and to a fourth path (R4) when the fuel gas generated in the fuel gas generator (2) starts to be supplied to the fuel cell (1).
    Type: Grant
    Filed: March 14, 2008
    Date of Patent: November 27, 2012
    Assignee: Panasonic Corporation
    Inventors: Akinori Yukimasa, Masataka Ozeki, Hideo Ohara, Akinari Nakamura
  • Patent number: 8318381
    Abstract: A wireless communication device (200) and method (300) adapted to prolong the useful life of an energy storage device is disclosed. In its simplest form, it can include: detecting (310) a first threshold of an energy conversion module comprising at least one of a temperature threshold, oxygen threshold, voltage, a current threshold, a power threshold and moisture threshold; sensing (320) a temperature in proximity to a thermal module comprising at least one of a fuel tank, an electronic computing module, and a housing; and generating (330) an air stream based on the detected first threshold (310) and the sensed temperature (320). The device (200) and method (300) can automatically and dynamically manage, for example, temperature, oxygen and/or moisture of an energy storage module, to maintain the energy storage module within desired specifications and tolerances. This can help to prolong the useful life of the energy storage module and its components and help to maintain a maximum recharging capacity.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: November 27, 2012
    Assignee: Motorola Mobility LLC
    Inventor: Greg R. Black
  • Publication number: 20120295175
    Abstract: A system for producing electric power from hydrogen and hydrogen from electric power, comprising: a reversible electric power-hydrogen conversion stage comprising a fuel cell stack to produce electric power from stored hydrogen and an electrolytic cell stack to produce hydrogen from electric power; a hydrogen pressure modification stage to modify the pressure of hydrogen supplied to or produced from the reversible electric power-hydrogen conversion stage; an electric power management and conditioning stage to condition electric power from/to the reversible electric power-hydrogen conversion stage; and a management stage to differentially manage the operation of the reversible electric power-hydrogen conversion stage, the hydrogen pressure modification stage and the electric power management and conditioning stage according to whether the system produces electric power from hydrogen or hydrogen from electric power and on a user-settable operation management strategy.
    Type: Application
    Filed: January 27, 2011
    Publication date: November 22, 2012
    Applicant: Electro Power Systems S.P.A.
    Inventors: Pierpaolo Cherchi, Luca Baldini, Simone Silvini, Giuseppe Gianolio
  • Publication number: 20120295174
    Abstract: A voltage boost converter includes: a main voltage boost portion that has a first switch and a first coil, and that raises output voltage of a direct-current power source by using counter electromotive force of the coil caused by the switch performing a switching action on the coil; and a subsidiary voltage boost portion which has a capacitor that adjusts potential difference between two poles of the switch by amount of electricity stored, and which reduces switching loss of the switch by adjusting the amount of electricity in the capacitor during the switching action, and which has a second switch and a second coil. The second coil is formed by winding a wire around at least a portion of a core formed of a magnetic body. The core is provided with a gap formed of a non-magnetic body. A core region formed of a magnetic body is adjacent to the gap.
    Type: Application
    Filed: December 16, 2010
    Publication date: November 22, 2012
    Applicants: National University Corporation Yokohama National University, Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroyuki Imanishi, Kota Manabe, Nobuyuki Kitamura, Takahiko Hasegawa, Atsuo Kawamura, Yukinori Tsuruta
  • Patent number: 8313871
    Abstract: One embodiment of the invention includes a product comprising a fuel cell stack comprising at least one coolant header, and at least one heater at least partially disposed in the at least one coolant header.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: November 20, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Dirk Wexel, Jurgen Thyroff, Bernd Peter Elgas
  • Patent number: 8313867
    Abstract: The fuel cell system in accordance with the invention is used for the generation of current and heat from liquid and gaseous fuels. Said system comprises a reformer and a fuel cell stack having an operating temperature above 120° C. and providing exhaust heat that is utilized for the generation of steam in the evaporation channels (2). The evaporation channels (2) are arranged so as to be in direct thermal contact with the stack (1) that is to be cooled. A pressure-maintaining device at the outlet of the evaporation channels (2) is disposed to adjust the pressure in said channels to a value that results in the desired stack temperature.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: November 20, 2012
    Assignee: WS Reformer GmbH
    Inventors: Joachim A. Wünning, Hans-Peter Schmid
  • Patent number: 8313870
    Abstract: The present disclosure relates in part to a flow field structure comprising a hydrophilic part and a hydrophobic part communicably attached to each other via a connecting interface. The present disclosure further relates to electrochemical cells comprising the aforementioned flow fields.
    Type: Grant
    Filed: October 31, 2008
    Date of Patent: November 20, 2012
    Assignee: ElectroChem, Inc.
    Inventors: Shyhing M. Pien, Marvin Warshay
  • Patent number: 8309259
    Abstract: The present invention relates to a method for charging the cell by electrodeposition of metal fuel on the anode thereof.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: November 13, 2012
    Assignee: Arizona Board of Regents for and on Behalf of Arizona State University
    Inventors: Cody A. Friesen, Joel R. Hayes
  • Patent number: 8304125
    Abstract: Provided is a power system capable of supplying power steadily to the outside even at a low temperature. A power supply unit disposed in the power system is configured to calculate an amount of power needed to heat a fuel cell to a temperature threshold when the temperature thereof measured by an FC sensor is below the temperature threshold, set an SOC lower limit by adding the calculated amount of power to a discharge threshold of a secondary battery, and control the power supply to a first power supply portion in the range of the SOC lower limit.
    Type: Grant
    Filed: April 6, 2010
    Date of Patent: November 6, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Minoru Noguchi, Takeshi Fujino, Eisuke Komazawa
  • Patent number: 8304124
    Abstract: A hydrogen generator (100) includes: a desulfurizer (4) having a desulfurizing agent which removes by adsorption a sulfur compound in a raw material; a reformer (1) having a reforming catalyst which generates a hydrogen-containing gas from the raw material; a combustor (5) which heats the reformer (1); and an ignitor (103) which ignites the raw material in the combustor (5), is configured to start combustion of the combustor (5) by using the raw material passed through the desulfurizer (4), and further includes: an upper limit changing device (8) which changes an upper limit of an ignition confirmation time of the ignitor (103); and a change instruction receiving device (101) which receives a signal related to an instruction of the change.
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: November 6, 2012
    Assignee: Panasonic Corporation
    Inventors: Yukimune Kani, Kunihiro Ukai, Seiji Fujihara, Hidenobu Wakita
  • Patent number: 8298711
    Abstract: In a fuel cell power source system comprising a fuel cell, a fuel supplier for supplying a fuel to the fuel cell, an electricity storing member capable of charging and discharging an energy, and a control circuit for controlling outputs of the fuel cell and the electricity storing member and the fuel supplier for supplying a power to an external load, there are provided a method of operating the fuel cell power source system and a fuel cell system promoting safety of the fuel cell system and reducing a deterioration in the fuel cell by removing the fuel remaining at inside of the fuel cell after stopping the fuel supplier. At an initial stage of supplying the power to the external load and inside of the fuel cell system, the power is supplied from the electricity storing member, and the electricity storing member is charged by using an output outputted from the fuel cell by generating the power by the fuel cell by using the fuel remaining at inside of the fuel cell system after stopping the external load.
    Type: Grant
    Filed: January 12, 2006
    Date of Patent: October 30, 2012
    Assignee: Seiko Instruments Inc.
    Inventors: Norimasa Yanase, Fumiharu Iwasaki, Kazutaka Yuzurihara, Tsuneaki Tamachi, Takafumi Sarata, Toru Ozaki
  • Publication number: 20120270125
    Abstract: The present invention is directed to a fuel cell system with various features for optimal operations of an electronic device, a battery charger or a fuel refilling device. The fuel cell system includes an information storage device associated with the fuel supply, pump and/or refilling device. The information storage device can be any electronic storage device including, but not limited to, an EEPROM or a PLA. The information storage device can include encrypted information. The information storage device can include software code for confirming the identification of the cartridge before operation of the electronic device and/or refilling device. The present invention is also directed to system architecture for a fuel cell system that utilizes information storage devices.
    Type: Application
    Filed: June 20, 2012
    Publication date: October 25, 2012
    Applicant: SOCIETE BIC
    Inventors: Paul Adams, Andrew J. Curello, Floyd Fairbanks
  • Patent number: 8293416
    Abstract: A fuel cell system includes at least: a hydrogen generator (4) which is supplied with a raw material to generate a fuel gas containing hydrogen; a humidifier (5) which is supplied with the fuel gas, generated in the hydrogen generator, to humidify the fuel gas by utilizing heat energy and an off gas supplied thereto; and a fuel cell (8) which is supplied with the fuel gas humidified in the humidifier and an oxidizing gas to generate electric power while discharging the heat energy and the off gas, and further includes a condenser (6) which cools down steam of the off gas, discharged from the fuel cell, by heat exchange with a cooling medium to convert the steam into condensed water, and supplies the condensed water to the humidifier to humidify the fuel cell.
    Type: Grant
    Filed: April 25, 2007
    Date of Patent: October 23, 2012
    Assignee: Panasonic Corporation
    Inventors: Susumu Kobayashi, Susumu Hatano
  • Patent number: 8293413
    Abstract: A fuel cell system is provided with an air compressor for supplying a fuel cell stack with air; a temperature sensor for detecting the temperature of air in the gas downstream from an intercooler, at the middle of an oxidation gas supplying channel; and a control section. The control section is provided with a cooling section abnormality determining unit for determining presence or absence of an abnormality of a first cooling water pump, and an air compressor operation controlling unit for controlling the rotational speed of the air compressor in accordance with the air temperature detected by the temperature sensor when it is determined that an abnormality has occurred.
    Type: Grant
    Filed: June 29, 2007
    Date of Patent: October 23, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tetsuya Bono
  • Patent number: 8293414
    Abstract: An electric system has a fuel cell for generating electric power by being supplied with a reactive gas, an electric storage device having a voltage lower than a voltage output from the fuel cell, a first power supply line connected to the fuel cell, a second power supply line connected to the electric storage device, a first electric accessory serving as at least part of a fuel cell accessory for operating the fuel cell, a first DC-to-DC converter for performing bidirectional voltage conversion between the first power supply line and the second power supply line and a second DC-to-DC converter for lowering a voltage for supply electric power to the first electric accessory.
    Type: Grant
    Filed: September 3, 2008
    Date of Patent: October 23, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Satoshi Aoyagi, Hibiki Saeki, Hiroyuki Abe, Hiroaki Takanohashi
  • Patent number: 8293421
    Abstract: The aim of the invention is to improve the accuracy of estimating residual water content in a fuel cell system adopting an intermittent operation mode and to accurately suppress cell voltage reduction due to water accumulation caused by the intermittent operation. The fuel cell system includes: a fuel cell having a cell laminate; an estimating unit for estimating a residual water content distribution in a reactant gas flow channel and a moisture content distribution in an electrolyte membrane in a cell plane of each single cell while taking into consideration water transfer that occurs between an anode electrode and a cathode electrode via the electrolyte membrane; and an operation control unit which changes the content of an intermittent operation when a residual water content in the reactant gas flow channel estimated by the estimating unit is equal to or greater than a predetermined threshold.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: October 23, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Okuyoshi, Masaaki Matsusue, Masashi Toida
  • Patent number: 8288046
    Abstract: A current sensor assembly that monitors current flow through segments of a fuel cell stack. The current sensor assembly includes a first plate including a first non-conductive substrate having a first conductive path therethrough and that is in electrical communication with a first segment of the fuel cell stack. A second plate includes a second non-conductive substrate having a second conductive path therethrough and that is in electrical communication with a second segment of the fuel cell stack. A first current sensor is operably disposed between the first plate and the second plate and facilitates a first current flow between the first conductive path and the second conductive path. The first current sensor generates a first current signal based on the first current flow.
    Type: Grant
    Filed: September 29, 2004
    Date of Patent: October 16, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Michael W Murphy, Robert L Fuss
  • Patent number: 8288043
    Abstract: There is disclosed a fuel cell system or the like capable of stably operating an auxiliary machine and the like, even when recovering a poisoned electrode catalyst and warming up a fuel cell. A controller derives a target operation point sufficient for recovering activity of the poisoned electrode catalyst, and realizes shift of an operation point to a target operation point in a state in which an output power is held to be constant. The operation is switched to a low-efficiency operation point, whereby an output voltage of the fuel cell lowers, but the voltage is raised to an allowable input voltage of a high-voltage auxiliary machine by a DC/DC converter.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: October 16, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kota Manabe, Kimihide Horio
  • Patent number: 8288049
    Abstract: An energy management system controls the temperature of a fuel cell system while a vehicle is not running. The energy management system includes a fuel cell stack, a blower that provides air to the fuel cell stack, a water supply, and a hydrogen supply. A hydrogen supply valve is connected between the hydrogen supply and the fuel cell stack. A heater is connected to an output of the fuel cell stack. A controller controls the hydrogen supply valve and the blower to power the heater to warm the fuel cell stack and the water supply. The controller starts the blower and opens the hydrogen supply valve if heating is necessary and if a tank level signal exceeds a first tank level value. The controller activates a purge, drains water from the water supply, and inhibits vehicle startup if the tank level signal does not exceed a first tank level value.
    Type: Grant
    Filed: March 2, 2004
    Date of Patent: October 16, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: William S Wheat, Mark A Meltser, David A Masten
  • Patent number: 8283083
    Abstract: A fuel cell system including: a fuel cell supplied with a fuel gas to a fuel electrode thereof and air to an air electrode thereof; a fuel gas supplying device which supplies the fuel gas to the fuel electrode; an air supplying device which supplies air to the air electrode; a fuel gas pressure regulator which regulates fuel gas pressure at the fuel electrode; a purge valve which discharges exhaust fuel gas from the fuel electrode to the outside; and a controller. The controller continues power generation of the fuel cell, controlling the fuel gas pressure regulator to lower the fuel gas pressure at the fuel electrode, having the air supplying device continuing supplying air to the air electrode with the purge valve closed; and after the fuel gas pressure at the fuel electrode becomes equal to or lower than the atmospheric pressure, stops power generation of the fuel cell.
    Type: Grant
    Filed: December 9, 2005
    Date of Patent: October 9, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Tetsuya Kamihara, Takashi Iimori, Hitoshi Igarashi
  • Publication number: 20120251908
    Abstract: A system and method for removing contaminants from a fuel cell stack. The method includes exposing the cathode and anode of the stack to an air purge, then exposing the cathode and anode of the stack to a water flush and then again exposing the cathode and anode of the stack to an air purge to dry the stack. In one technique, the stack is removed from the vehicle at a maintenance facility to perform the air purge and water flush, and in another technique, the stack remains in the vehicle and appropriate hoses are connected to the stack for the air purges and water flush.
    Type: Application
    Filed: March 30, 2011
    Publication date: October 4, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ashish Bhandari, Balasubramanian Lakshmanan
  • Patent number: 8277999
    Abstract: A fuel cell system has an apparatus sending gas to the fuel cell; a part calculating an amount of residual water in the fuel cell system based on an operating and an environmental condition; a part judging whether at least one state quantity value that includes a generating duration of the fuel cell, an amount of electric power generated, and an amount of temperature change of a coolant is equal to or less than a prescribed threshold value; a part calculating a sending apparatus operating time for decreasing the residual water amount to a prescribed value; and a control part operating the gas sending apparatus until the end of the operating time, wherein the operating time calculating part calculates a different operating time depending on whether one of the state quantity values is equal to or less than a prescribed threshold value.
    Type: Grant
    Filed: January 30, 2007
    Date of Patent: October 2, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Takahide Izutani, Nobuyuki Kitamura
  • Patent number: 8279331
    Abstract: An electronic apparatus is provided that includes a fuel cell device, an image pickup device, a temperature sensor, and a system controller. The electronic apparatus is mobile and may be held in a user's hand while being operated. The fuel cell device controls generation of electrical power. The image pickup device is position relative to the fuel cell device and converts an image into an image pickup signal. The temperature sensor obtains a temperature from the image pickup device. The system controller configured to control operation of the fuel cell device based on the temperature from the image pickup device.
    Type: Grant
    Filed: August 26, 2010
    Date of Patent: October 2, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hiroshi Hosoe
  • Patent number: 8277989
    Abstract: A fuel cell system that includes a compressor for providing cathode air to the cathode side of a fuel cell stack and an air filter for filtering the air sent to the compressor to prevent particulates and other contaminants from entering the compressor and the fuel cell stack. The fuel cell system also includes a mass flow meter that measures the flow of air to the compressor and a pressure sensor that measures the pressure of the airflow at the output of the compressor. An electronic compressor map is provided that defines the operating characteristics of the compressor. By knowing the flow through the compressor and the pressure at the outlet of the compressor, an algorithm can determine where on the compressor map the compressor is operating, and from that determine the inlet pressure to the compressor, which in turn shows whether the air filter is clogged or otherwise damaged.
    Type: Grant
    Filed: December 16, 2008
    Date of Patent: October 2, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Joseph D. Rainville, Matthew C Kirklin
  • Patent number: 8277997
    Abstract: Fuel cell systems and methods for controlling the operation of fuel cell assemblies included therein. In some embodiments, the fuel cell assemblies include a fuel processor and a fuel cell stack, and the fuel cell system includes a control system that controls the operation thereof based upon at least one variable associated therewith. In some embodiments, the variable is associated with the hydrogen (or other product) stream from the fuel processor. In some embodiments, the variable is the pressure of this stream. In some embodiments, the control system controls the operation of the fuel cell system to maintain the pressure of the hydrogen stream within one or more threshold values. In some embodiments, the control system controls the operation of the fuel cell system to maintain the pressure of the hydrogen stream within selected threshold values and to maintain the fuel cell stack's output voltage above a selected threshold.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: October 2, 2012
    Assignee: Idatech, LLC
    Inventors: Arne LaVen, Mesa Scharf
  • Patent number: 8277990
    Abstract: A fuel cell system for a vehicle, controlling a power generation amount of a fuel cell. A required power generation amount of the fuel cell and a target operational state corresponding to required power generation amount are calculated. An operational state of the fuel cell is detected. A correction power generation amount used for correcting the required power generation amount and an allowable power generation amount that the fuel cell can stably generate based on the operational state of the fuel cell are also calculated. Further, an output power generation amount of the fuel cell is determined based on a relation between the allowable power generation amount and the power generation amount obtained by correcting the required power generation amount by the correction power generation amount.
    Type: Grant
    Filed: March 31, 2006
    Date of Patent: October 2, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Kenji Umayahara
  • Patent number: 8277992
    Abstract: A method of operating a fuel cell electrochemical system includes receiving at least one of a cost of electricity and a cost of fuel and adjusting at least one of an operating efficiency and throughput of the fuel cell based on the at least one of the received cost of electricity and the received cost of fuel.
    Type: Grant
    Filed: November 1, 2011
    Date of Patent: October 2, 2012
    Assignee: Bloom Energy Corporation
    Inventors: Fred Mitlitsky, K. R. Sridhar, Matthias Gottmann, Swaminathan Venkataraman
  • Patent number: 8279332
    Abstract: An electronic apparatus includes a fuel cell device, an image pickup device, a lens unit, a temperature sensor, and a system controller. The electronic apparatus is mobile and held in a user's hand while being operated. The fuel cell device controls electrical power generation. The image pickup device is positioned relative to the fuel cell device and converts an image into an image pickup signal. The lens unit provides the image to the image pickup device. The temperature sensor obtains a temperature from the lens unit. The system controller controls operation of the fuel cell device based on the temperature. A secondary battery stores electrical power generated by the fuel cell device. When the temperature exceeds a reference temperature and a remaining power level in the secondary battery is equal to a reference power level, the system controller halts a moving supply of fuel to the fuel cell device.
    Type: Grant
    Filed: June 8, 2012
    Date of Patent: October 2, 2012
    Assignee: Canon Kabushiki Kaisha
    Inventor: Hiroshi Hosoe
  • Patent number: 8277993
    Abstract: A fuel cell system is provided which can accurately detect an insulation resistance even during a high-potential prevention control. The fuel cell system includes: a fuel cell that generates electric power through an electrochemical reaction between a fuel gas and an oxidant gas; an insulation resistance measurement unit that measures an insulation resistance between the fuel cell and an outer conductor; and a control unit that controls a power generation state of the fuel cell, and the control unit carries out a high-potential prevention control that avoids a voltage of the fuel cell becoming equal to or higher than a predetermined high-potential prevention voltage threshold lower than an open circuit voltage of the fuel cell, and changes the high-potential prevention voltage threshold during an insulation resistance detection performed by the insulation resistance measurement unit.
    Type: Grant
    Filed: September 4, 2008
    Date of Patent: October 2, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Michio Yoshida, Kenji Umayahara
  • Patent number: 8273490
    Abstract: Provided is a fuel cell system that can change the number of active phases in a DC/DC converter in order to prevent overcurrent from flowing through one point (e.g., a reactor of the DC/DC converter) in the system. In step S1, whether or not the system is in a state that causes a rapid change in a voltage command value is checked. If the system is in a state that causes a rapid change in the voltage command value, the processing goes to step S2, and if not, the processing goes to step S3. In step S2, a DC/DC converter is prohibited from being driven in a single phase and the processing ends. In step S3, the DC/DC converter is permitted to be driven in a single phase and the processing ends.
    Type: Grant
    Filed: December 18, 2008
    Date of Patent: September 25, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Umayahara, Takeshi Maenaka, Atsushi Imai
  • Patent number: 8273485
    Abstract: Fuel cells having an efficient means of thermal insulation such that all of the components requiring high temperature operation are contained within a single housing and whereby such thermal insulation is disposed exterior to such housing.
    Type: Grant
    Filed: May 18, 2006
    Date of Patent: September 25, 2012
    Assignee: Lilliputian Systems, Inc.
    Inventors: Samuel B. Schaevitz, Aleksander Franz, Roger Barton, Alan P. Ludwiszewski
  • Patent number: 8268496
    Abstract: An object of the present invention is to provide a fuel cell system capable of starting below freezing point without increasing the size of the diluter. The fuel cell system 1 comprises an OCV purge execution unit 42 replacing gas retained in a fuel cell 10 by supplying additional anode gas from a supply device 20 to the fuel cell 10 when starting up the fuel cell. In addition, the fuel cell system 1 comprises a low temperature startup determination unit 41 determining whether to perform low temperature startup or normal startup on the fuel cell 10. The OCV purge execution unit 42 decreases the pressure of additional anode gas supplied from the supply device 20 and increases the total replacing amount of gas retained in the fuel cell 10 in a case of performing low temperature startup, as compared with a case of performing normal startup.
    Type: Grant
    Filed: November 24, 2008
    Date of Patent: September 18, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Jumpei Ogawa, Chihiro Wake
  • Patent number: 8268494
    Abstract: A fuel cell system comprising: a fuel cell 1 having a fuel gas passage 1D and an oxidizing gas passage 1E; a fuel gas feeder 2; an oxidizing gas feeder 3; a fuel gas exhaust passage 8; an oxidizing gas exhaust passage 9; a test gas feeder 20 configured to feed a test gas to either the fuel gas passage 1D or the oxidizing gas passage 1E; a flow rate detector 5 configured to detect the flow rate of the test gas; a first passage blocking device 4; and a controller 10, wherein said controller 10 controls said first passage blocking device 4 to block off the passage and controls the test gas feeder 2 to feed the test gas to said fuel cell 1, thereby obtaining a detected value from the flow rate detector 5 or an airtightness value that is numerical information into which the detected value is converted.
    Type: Grant
    Filed: May 23, 2011
    Date of Patent: September 18, 2012
    Assignee: Panasonic Corporation
    Inventors: Hideo Kasahara, Soichi Shibata, Hideo Ohara, Yoshikazu Tanaka
  • Patent number: 8268497
    Abstract: A fuel cell system includes: a fuel cell stack including a plurality of fuel cells connected in series; a fuel supply portion supplying a fuel to each fuel cell; a current regulation portion regulating an electric current flowing from the fuel cell stack in such a way that an output voltage of the fuel cell stack is a predetermined set voltage; a voltage detection portion detecting an output voltage of each fuel cell; a fuel-supply control portion regulating a fuel supply to each fuel cell by the fuel supply portion in such a way that the difference decreases between an output voltage of each fuel cell detected by the voltage detection portion; a fuel-stoichiometric ratio detection portion detecting a fuel stoichiometric ratio of the fuel cell stack; and a fuel-stoichiometric ratio control portion regulating the set voltage in such a way that a fuel stoichiometric ratio detected by the fuel-stoichiometric ratio detection portion is a target fuel stoichiometric ratio set in advance.
    Type: Grant
    Filed: June 12, 2008
    Date of Patent: September 18, 2012
    Assignee: Panasonic Corporation
    Inventors: Masahiro Takada, Takashi Akiyama
  • Patent number: 8268493
    Abstract: The present disclosure relates to in-situ, line-of-sight measurements of partial pressure and temperature associated with at least one flow channel of a fuel cell. Tunable diode laser absorption spectroscopy (TDLAS) is employed for measurements for which water transition states sensitive to temperature and partial pressure are utilized. Measurements are achievable for a fuel cell operating under both steady-state and time-varying load conditions. For steady-state operation, the water partial pressure increases with increasing current density on a cathode side of the fuel cell due to production of water by electrochemical reaction. Temperature in a gas phase remains relatively constant since the fuel cell housing temperature is controlled externally. For non-steady-state operation of the fuel cell through a time-varying current profile, the water partial pressure responds to the load changes rapidly and follows a current profile.
    Type: Grant
    Filed: May 30, 2007
    Date of Patent: September 18, 2012
    Assignee: University of Connecticut
    Inventors: Baki M. Cetegen, Michael W. Renfro, Saptarshi Basu
  • Patent number: 8263275
    Abstract: There is provided a fuel cell system in which a constantly accurate impedance measurement is made possible regardless of a response characteristic of the voltage converting device. A superimposed signal analysis section analyzes an impedance measuring signal after passing through a DC/DC converter to thereby notify a superimposed signal amplitude control section of an analysis result. A superimposed signal amplitude control section controls an amplitude value of the impedance measuring signal generated by a superimposed signal generating section based on the result notified from the superimposed signal analysis section.
    Type: Grant
    Filed: June 30, 2006
    Date of Patent: September 11, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kota Manabe, Masahiro Shige
  • Patent number: 8263270
    Abstract: A fuel cell vehicle is provided with a fuel cell which generates electric power by a reaction of a reaction gas and discharges water, a tank which accumulates water discharged from the fuel cell, a heater which vaporizes water accumulated in the tank, a discharge valve which switches between accumulating and discharging of the water with respect to the tank, an external air temperature sensor which detects an external air temperature, a vehicle speed sensor which detects a vehicle speed, a selector with which the driver selects an operation of the discharge valve between accumulating and discharging of the water with respect to the tank, and an ECU which controls these components and includes a control section and a control data storage section.
    Type: Grant
    Filed: April 4, 2006
    Date of Patent: September 11, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Katsumi Kanasugi
  • Patent number: 8257876
    Abstract: To improve a response performance in a fuel cell system in which an on/off valve such as an injector is disposed in a fuel supply passage, by decreasing a pressure adjusting error occurring when the drive cycle of the on/off valve fluctuates. A fuel cell system comprises a fuel cell, a fuel supply passage for supplying to the fuel cell a fuel gas supplied from a fuel supply source, an on/off valve for adjusting a gas state on the upstream side of the fuel supply passage to supply the gas to the downstream side thereof, and control means for driving and controlling the on/off valve. The control means calculates a feed-forward correction flow rate based on the drive cycle of the on/off valve, corrects the command value of the gas injection flow rate of the on/off valve by use of the feed-forward correction flow rate, and drives and controls the on/off valve based on the command value.
    Type: Grant
    Filed: October 29, 2008
    Date of Patent: September 4, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Norimasa Ishikawa
  • Patent number: 8257875
    Abstract: A system for communicating measurement data from each fuel cell or a group of fuel cells in a fuel cell stack, including a plurality of fuel cells and a plurality of stack plates, where one stack plate is between each fuel cell and on each end of the stack. The system includes a plurality of embedded smart plates where each embedded smart plate is mechanically and electrically coupled to at least one of the plurality of stack plates, and where each embedded smart plate includes optical transceivers on a top side and a bottom side of the smart plate. The system further includes at least one aggregator device having at least one optical transceiver to initiate a series of communications between the embedded smart plates to determine the location and data collected by each of the smart plates.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: September 4, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: David D. Rea, Michael F. Zawisa, Kenneth L. Kaye
  • Patent number: 8260464
    Abstract: A control technique for use in a fuel processor is disclosed. In one aspect, a control system includes a subsystem manager controller the operation of a respective physical subsystem for each of a plurality of physical subsystems in the fuel processor. The subsystem managers take their direction from a master control manager. In a second aspect, the subsystem managers collectively form a layer operating in conjunction with a second layer capable of interfacing the subsystem managers to their respective physical subsystems, a third layer capable of interfacing the subsystem managers with the second layer. In a third aspect, master control manager manages the operation of each physical subsystem through a respective subsystem manager, directs state transitions of the subsystem managers, and routs interaction between the subsystem managers from the master control manager.
    Type: Grant
    Filed: November 14, 2007
    Date of Patent: September 4, 2012
    Assignee: Texaco Inc.
    Inventors: Vesna R. Mirkovic, W. Spencer Wheat, Hugh N. To, Dennis J. Benedetto
  • Patent number: 8252474
    Abstract: An object of the invention is to provide a fuel cell system capable of improving accuracy of water content estimation during a standstill. A fuel cell system includes a fuel cell having a plurality of single cells laminated together and an estimating unit for estimating residual water content distributions in a fuel gas flow channel and an oxidation gas flow channel and a moisture content distribution in an electrolyte membrane in a cell plane of each single cell while taking into consideration water transfer that occurs between an anode electrode and a cathode electrode via the electrolyte membrane. The estimating unit estimates a residual water content of the fuel gas flow channel during a standstill from a shutdown to a restart of the fuel cell system based on temperature information on each single cell acquired during the standstill.
    Type: Grant
    Filed: June 17, 2011
    Date of Patent: August 28, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Okuyoshi, Masaaki Matsusue, Masashi Toida
  • Patent number: 8252472
    Abstract: Fluid control valves, such as a humidifying module bypass valve, an inlet shutoff valve, an outlet shutoff valve are opened and closed by the pressure of air flowing in a fluid flow path. The pressure of air flowing in the fluid flow path is regulated, based on a drive demand pressure emitted to drive the flow control valves, by the flow rate of air discharged from an air compressor, the degree of opening of a fuel cell bypass valve, the degree of opening of an air pressure regulation valve, etc. The drive demand pressure for driving a shutoff valve is set such that, for example, the greater the absolute value of the negative pressure inside the fuel cell stack, the higher the drive demand pressure, and the air pressure is controlled to be the drive demand pressure.
    Type: Grant
    Filed: November 21, 2007
    Date of Patent: August 28, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasuhiro Osada, Tetsuya Bono
  • Publication number: 20120214028
    Abstract: A fuel cell system (1) comprises a fuel cell unit (10); and a control unit (20); the control unit including: an allowable operation time setting section (22) which sets an allowable operation time (T6) of the fuel cell unit for each unit period (T3); and an operation control section (21) which operates the fuel cell unit such that an actual operation time (T7) of the fuel cell unit per unit period is not more than the allowable operation time; the allowable operation time setting section calculates an accumulated value of reference values (T5) of the allowable operation time for each unit period which correspond to past all unit periods and an accumulated value of values of the actual operation time for each unit period which correspond to past all unit periods, the reference values of the allowable operation time for each unit period being set based on the durable operation time (T2) and the guaranteed usage period (T1); and if a remaining operation time (T9) which is a difference value between the accumulat
    Type: Application
    Filed: September 1, 2011
    Publication date: August 23, 2012
    Applicant: PANASONIC CORPORATION
    Inventors: Hiroshi Nagasato, Takanori Shimada, Yoshikazu Tanaka
  • Patent number: 8247122
    Abstract: A fuel cell system has a fuel cell generating power using a fuel gas and an oxidizing agent gas serving as materials of the system and a material supply section supplying the materials to the fuel cell. The power generated by the fuel cell is extracted to a load. A device for controlling the fuel cell system has: a material flow calculation section calculating a material flow supplied to the fuel cell so as to cause the fuel cell to generate the power of a required power generation amount; a material reduction limit detection section calculating a limit for reducing the material flow, based on a power generation state of the fuel cell; and a material flow change section controlling the material supply section so as to change the material flow calculated by the material flow calculation section to the limit calculated by the material reduction limit detection section.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: August 21, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Masaru Okamoto
  • Patent number: 8247123
    Abstract: An electric power source control apparatus (50) includes a required electric power decision portion that receives an operation input signal from an outside of an electric power source (20), and decides an amount of electric power required of the electric power source (20), in accordance with the operation input signal; and an electric power source operation portion that operates the electric power source (20) in accordance with the amount of the required electric power. The electric power source operation portion limits an amount of electric power used for heating when the amount of the required electric power is larger than an amount of electric power that can be supplied by the electric power source, during heating.
    Type: Grant
    Filed: October 13, 2005
    Date of Patent: August 21, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Syuuji Hirakata