Specified Electrode/electrolyte Combination Patents (Class 429/482)
  • Patent number: 11329294
    Abstract: A laminated electrolyte membrane of an embodiment includes: a first electrolyte membrane; a second electrolyte membrane; and a nanosheet laminated catalyst layer provided between the first electrolyte membrane and the second electrolyte membrane and including a laminated structure in which a plurality of nanosheet catalysts is laminated with a gap.
    Type: Grant
    Filed: September 12, 2018
    Date of Patent: May 10, 2022
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Yoshihiko Nakano, Norihiro Yoshinaga, Wu Mei, Taishi Fukazawa
  • Patent number: 11329303
    Abstract: A fuel cell system includes: a fuel cell stack including a plurality of cells, each of which has a fuel electrode, an air electrode, and an electrolyte, and performs a power generation by a reaction between a fuel gas and air; a fuel supplier supplying the fuel gas to the fuel electrode; an air supplier supplying the air to the air electrode; a voltage detector detecting the voltage of the fuel cell stack; and a controller stopping the supplying of the fuel gas by the fuel supplier and the supplying of the air by the air supplier when the voltage of the fuel cell stack detected by the voltage detector is decreased to be lower than a threshold voltage after the power generation of the fuel cell stack is stopped.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: May 10, 2022
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Shigenori Onuma, Takashi Kakuwa, Yuichi Mikami, Tomohiro Kuroha
  • Patent number: 11302949
    Abstract: A polymer electrolyte membrane, a method for manufacturing the same, and a membrane electrode assembly containing the polymer electrolyte membrane are disclosed. The polymer electrolyte membrane includes: a fluorine-based support containing a plurality of pores due to polymer microfibrillar structures; a hybrid porous support placed on one side or both surfaces of the fluorine-based support and comprising nanowebs obtained by integrating nanofibers into a nonwoven fabric containing a plurality of pores; and ion conductors with which the pores of the porous support are filled. The polymer electrolyte membrane can reduce hydrogen permeability while being excellent in both durability and ion conductivity.
    Type: Grant
    Filed: November 30, 2018
    Date of Patent: April 12, 2022
    Inventors: Dong-Hoon Lee, Na-Young Kim, Eun-Su Lee, Jung-Hwa Park
  • Patent number: 11283087
    Abstract: A fuel cell includes: an electrolyte membrane; first and second catalyst layers respectively formed on first and second surfaces of the electrolyte membrane; and a separator, the first catalyst layer being arranged between the separator and the electrolyte membrane, wherein the separator includes first and second grooves through which reactant gas flows between the first catalyst layer and the separator.
    Type: Grant
    Filed: March 26, 2019
    Date of Patent: March 22, 2022
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Nobuaki Nonoyama, Norishige Konno, Masayuki Ito
  • Patent number: 11258077
    Abstract: A fuel cell separator capable of surely discharging produced water, and a method and apparatus for producing the same. The fuel cell separator is formed in a wave shape with recesses and projections alternately arranged in a first direction, the recesses forming reactant gas channels together with a membrane electrode assembly and the projections abutting the membrane electrode assembly, in which on a surface of the fuel cell separator that is adapted to face the membrane electrode assembly, a plurality of first grooves extending in the first direction along the corrugation of the recesses and projections is disposed at intervals from each other in a second direction orthogonal to the first direction, and a second groove extending in the second direction and communicating with the plurality of first grooves is disposed in the bottom portion of each recess.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: February 22, 2022
    Assignee: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventor: Yasuhiro Nobata
  • Patent number: 11233262
    Abstract: Provided are an electrochemical element and the like that have both durability and high performance as well as excellent reliability. The electrochemical element includes a metal support, and an electrode layer formed on/over the metal support. The metal support is made of any one of a Fe—Cr based alloy that contains Ti in an amount of 0.15 mass % or more and 1.0 mass % or less, a Fe—Cr based alloy that contains Zr in an amount of 0.15 mass % or more and 1.0 mass % or less, and a Fe—Cr based alloy that contains Ti and Zr, a total content of Ti and Zr being 0.15 mass % or more and 1.0 mass % or less.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: January 25, 2022
    Assignee: Osaka Gas Co., Ltd.
    Inventors: Mitsuaki Echigo, Hisao Ohnishi
  • Patent number: 11228041
    Abstract: Provided are a low-cost electrochemical device and the like that have both durability and high performance as well as excellent reliability. The electrochemical device includes at least one metal material, and the metal material is made of a Fe—Cr alloy that contains Ti in an amount of more than 0.10 mass % and 1.0 mass % or less.
    Type: Grant
    Filed: March 30, 2018
    Date of Patent: January 18, 2022
    Assignee: Osaka Gas Co., Ltd.
    Inventors: Mitsuaki Echigo, Hisao Ohnishi, Kazuyuki Minami, Yuji Tsuda
  • Patent number: 11196072
    Abstract: A composite proton-conducting membrane comprising an inorganic polymer whose pores are filled with an organic polymer, wherein both the inorganic polymer and the organic polymer are proton conductors and wherein said composite proton-conducting membrane can operate in the absence of solvents, such as water.
    Type: Grant
    Filed: June 26, 2019
    Date of Patent: December 7, 2021
    Inventors: Dominic Francis Gervasio, Peiwen Li, Xinhai Xu, Shuyang Zhang, Xiaoxin Wang
  • Patent number: 11189842
    Abstract: An electrochemical cell includes a fuel electrode, an air electrode containing a perovskite type oxide as a main component, the perovskite type oxide being represented by a general formula ABO3 and containing La and Sr at the A site, and a solid electrolyte layer arranged between the fuel electrode and the air electrode. The air electrode includes a first portion and a second portion, the first portion being located on the most upstream side in a flow direction of an oxidant gas that flows through a surface of the air electrode, the second portion being located on the most downstream side in the flow direction. A first ratio of a La concentration to a Sr concentration detected at the first portion through Auger electron spectroscopy is at least 1.1 times a second ratio of a La concentration to a Sr concentration detected at the second portion through Auger electron spectroscopy.
    Type: Grant
    Filed: June 22, 2020
    Date of Patent: November 30, 2021
    Assignee: NGK INSULATORS, LTD.
    Inventors: Shinji Fujisaki, Takashi Ryu, Makoto Ohmori
  • Patent number: 11186732
    Abstract: A method for manufacturing a vertically aligned carbon nanotube substrate includes the steps of treating a vertically aligned carbon nanotube array in an untreated state with a plasma to generate a vertically aligned carbon nanotube array in a plasma-treated state and adhering a coating onto at least a portion of the vertically aligned carbon nanotube array in the plasma-treated state to generate a vertically aligned carbon nanotube array in a coated state. The step of treating can include exposing the vertically aligned carbon nanotube substrate in the untreated state to the plasma in a plasma chamber. The step of adhering can include using a process of thermal evaporation or e-beam ablation. The method can also include the step of adhering a plurality of fluorophores to at least a portion of the vertically aligned carbon nanotube array in the coated state.
    Type: Grant
    Filed: June 13, 2017
    Date of Patent: November 30, 2021
    Assignee: IRONWOOD 12 LLC
    Inventor: Christopher J. Fleming
  • Patent number: 11183709
    Abstract: Provided are a polymer represented by Formula 1, an electrolyte including the same, and a lithium battery including the polymer.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: November 23, 2021
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myunghwan Jeong, Kyoungsoo Kim, Yongchan You, Manseok Han, Taejeong Kim, Erang Cho
  • Patent number: 11114667
    Abstract: The present invention pertains to an electrode-forming composition, to use of said electrode-forming composition in a process for the manufacture of an electrode, to said electrode and to an electrochemical device comprising said electrode. The electrode-forming composition comprises at least one partially fluorinated fluoropolymer comprising recurring units derived from at least one fluorinated monomer and at least one functional hydrogenated monomer comprising at least one carboxylic acid end group, at least one electro-active compound, at least one liquid medium comprising at least one organic carbonate or at least one ionic liquid, and at least one metal salt.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: September 7, 2021
    Assignees: Solvay SA, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, Commissariat à l'Énergie Atomique et aux Énergies Alternatives
    Inventors: Olivier Pras, Hélène Rouault, Aurélie Guyomard-Lack, Jean Le Bideau, Dominique Guyomard, Bernard Lestriez, Christine Hamon, Marc-David Braida, Julio A. Abusleme
  • Patent number: 11069903
    Abstract: A catalyst, includes: a carbon support that possesses functional groups including a carboxyl group; and a metal that is supported onto the carbon support, wherein the proportion of the carboxyl group to the functional groups is 10% or higher. A method for producing a catalyst includes: (i) supporting metal particles onto a carbon support; (ii) bringing the carbon support into contact with an acid solution; and (iii) calcining the carbon support after Step (ii), wherein the carbon support included in the produced catalyst possesses functional groups including a carboxyl group, and the proportion of said carboxyl group to the functional groups is 10% or higher.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: July 20, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Shuzo Tsuchida, Ryouhei Seki, Yasuhiro Ueyama
  • Patent number: 11031600
    Abstract: A lithium ion secondary battery includes: a cathode; an anode: a separator; and an electrolytic solution containing lithium hexafluorophosphate (LiPF6) as a lithium salt, wherein the cathode includes a current collector and a cathode mixture formed on the current collector, and wherein the cathode mixture contains an aluminum oxide, a part or an entirety of a surface of the aluminum oxide being coated with carbon.
    Type: Grant
    Filed: December 15, 2015
    Date of Patent: June 8, 2021
    Assignee: LG ENERGY SOLUTION, LTD.
    Inventors: Kaoru Konno, Eisuke Haba, Hiroo Nishiyama, Kouichi Takei, Hiroki Mikuni
  • Patent number: 11024865
    Abstract: Disclosed are an antioxidant for fuel cells and a membrane-electrode assembly including the same. The membrane-electrode assembly may have obtained greatly improved durability by using an antioxidant having a novel composition that may provide excellent antioxidant activity and long-term durability.
    Type: Grant
    Filed: June 24, 2019
    Date of Patent: June 1, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Industry Foundation of Chonnam National University
    Inventors: In Yu Park, Bo Ki Hong, Jae Jun Ko, Aniket Kumar, Sun Ju Song, Jae Woon Hong
  • Patent number: 10998556
    Abstract: The present invention relates to a catalyst for a solid polymer fuel cell, including platinum, cobalt, and zirconium supported as a catalytic metal on a carbon powder carrier, in which the supporting ratio of platinum, cobalt, and zirconium on the carbon powder carrier is Pt:Co:Zr=3:0.5 to 1.5:0.1 to 3.0 by molar ratio. In the present invention, it is preferable that the peak position of Pt3Co seen in the X-ray diffraction pattern of catalyst particles is 2?=41.10° or more and 42.00° or less, and moderate alloying has occurred in the catalytic metal.
    Type: Grant
    Filed: September 7, 2017
    Date of Patent: May 4, 2021
    Assignee: TANAKA KIKINZOKU KOGYO K.K.
    Inventors: Wataru Hashimoto, Tatsunori Namai, Minoru Ishida, Hitoshi Nakajima, Kazuki Okaya, Takeshi Kaieda, Koichi Matsutani
  • Patent number: 10985386
    Abstract: The fuel cell of the present disclosure includes: a unit cell including: a fuel electrode, an air electrode and electrolyte disposed between the fuel electrode and the air electrodes; a separator for separating a fuel gas flowing though the fuel electrode and air flowing through the air electrode; and a sealing constituted of a glass composition for bonding the separator and the electrolyte, and at least a surface region of the sealing portion exposed to the fuel gas and the air does not contain Ba.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: April 20, 2021
    Assignee: PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO., LTD.
    Inventors: Takehito Goto, Shigenori Onuma, Tomohiro Kuroha
  • Patent number: 10978735
    Abstract: A stretchable polymer electrolyte includes a stretchable copolymer; a lithium salt; and an organic liquid, wherein the stretchable copolymer includes a non-crosslinked first repeating unit, a non-crosslinked second repeating unit, and a crosslinked third repeating unit, the first repeating unit includes a first hard segment and a first soft segment, the second repeating unit includes a second hard segment and a second soft segment, and the third repeating unit includes a third hard segment and a third soft segment.
    Type: Grant
    Filed: October 17, 2018
    Date of Patent: April 13, 2021
    Assignees: SAMSUNG ELECTRONICS CO., LTD., THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITY
    Inventors: Minsang Song, Yongming Sun, Jeffrey Lopez, Yi Cui, Zhenan Bao
  • Patent number: 10971736
    Abstract: An electrode separator structure includes a conductive gas-resistant plate and a conductive porous structure. The conductive gas-resistant plate has a receiving space and at least a set of an inlet port and an outlet port, wherein the inlet port and the outlet port have passages communicating the receiving space. The conductive porous structure is disposed in the receiving space and communicates with the set of the inlet port and the outlet port to form reaction gas flow paths, wherein the conductive porous structure includes plural holes laminated as at least two porous layers, and the at least two porous layers are laminated in a staggered arrangement along a direction vertical to an extending plane of the conductive porous structure.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: April 6, 2021
    Assignee: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ying-Ying Hsu, Cheng-Hung San
  • Patent number: 10926228
    Abstract: The present invention relates to a method of altering the relative proportions of protons, deuterons and tritons in a sample using a membrane. The membrane comprises a 2D material and an ionomer. The invention also relates to a method of making said membranes.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: February 23, 2021
    Assignee: The University of Manchester
    Inventors: Marcelo Lozada, Andre K. Geim
  • Patent number: 10910660
    Abstract: Disclosed is a method of manufacturing a membrane-electrode assembly for fuel cells. The method includes (a) admixing a metal catalyst, an ionomer and a first dispersion solvent to prepare a first admixture, (b) heat treating the first admixture prepared in (a) to form an ionomer-fixed metal catalyst, and (c) immersing the ionomer-fixed metal catalyst formed in (b) in a solvent, wherein the solvent in (c) may include one or more selected from the group consisting of ethanol, propanol, and isopropyl alcohol. The membrane-electrode assembly for fuel cells manufactured by the method may have substantially improved durability.
    Type: Grant
    Filed: September 13, 2018
    Date of Patent: February 2, 2021
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Dae Yong Son, Yoon Hwan Cho, Jin Seong Choi, Yong Min Kim
  • Patent number: 10910662
    Abstract: Implementations of a solid oxide fuel cell (SOFC) include a current collector, an electrolyte layer, and an anode. The electrolyte layer may be a solid electrolyte layer. The anode may include one or more micro-pathways that extend between the current collector and the electrolyte layer. The micro-pathways may be constructed of yttria stabilized zirconia (YSZ). Each micro-pathway is in contact with the electrolyte layer and provides a direct pathway between the electrolyte layer and the current collector. The direct pathway created by the micro-pathways may be the shortest distance between the electrolyte layer and the current collector. Each of the one or more micro-pathways may be coated with electrocatalyst nanoparticles. A barrier material may be disposed between each micro-pathway and the current collector to prevent contact between the current collector and the electrocatalyst nanoparticles.
    Type: Grant
    Filed: September 26, 2017
    Date of Patent: February 2, 2021
    Assignee: Nissan North America, Inc.
    Inventor: Dianne Atienza
  • Patent number: 10903502
    Abstract: An electrochemical cell includes a fuel electrode, an air electrode containing a perovskite type oxide as a main component, the perovskite type oxide being represented by a general formula ABO3 and containing La and Sr at the A site, and a solid electrolyte layer arranged between the fuel electrode and the air electrode. The air electrode includes a center portion and an outer peripheral portion, the center portion being located at a center of the air electrode in a plane direction perpendicular to a thickness direction of the air electrode, the outer peripheral portion surrounding the center portion in the plane direction. A first ratio of an La concentration to an Sr concentration detected at the outer peripheral portion through Auger electron spectroscopy is at least 1.1 times a second ratio of an La concentration to an Sr concentration detected at the center portion through Auger electron spectroscopy.
    Type: Grant
    Filed: June 23, 2020
    Date of Patent: January 26, 2021
    Assignee: NGK INSULATORS, LTD.
    Inventors: Shinji Fujisaki, Takashi Ryu, Makoto Ohmori
  • Patent number: 10833357
    Abstract: Rechargeable lithium-ion batteries that have a high-capacity are provided. The lithium-ion batteries contain an anode structure that is of unitary construction and includes a non-porous region and a porous region including a top porous layer (Porous Region 1) having a first thickness and a first porosity, and a bottom porous layer (Porous Region 2) located beneath the top porous layer and forming an interface with the non-porous region. At least an upper portion of the non-porous region and the entirety of the porous region are composed of silicon, and the bottom porous layer has a second thickness that is greater than the first thickness, and a second porosity that is greater than the first porosity.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Joel P. de Souza, John Collins, Devendra K. Sadana
  • Patent number: 10833344
    Abstract: A proton-conductive electrochemical device and method for manufacturing the device. The device comprising a positive electrode able to reduce an oxidizing species, a negative electrode able to oxidize a reducing species, and a proton-conductive electrolyte, in contact with the positive and negative electrode. The device further comprises a layer able to diffuse protons and electrons, and forms a protective barrier against contaminants for the electrolyte. The layer is in contact with both the electrolyte and the negative electrode, and comprises a material of the type ABB?O3 or a material of the type ABO3, wherein A is an element chosen from group II of the periodic table, B is an element chosen from cerium and group IVB of the periodic table, B? is an element chosen from lanthanides or group VIIIB of the periodic table, and the layer has a porosity of less than 10% by volume.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: November 10, 2020
    Assignees: ELECTRICITE DE FRANCE, UNIVERSITE DE MONTPELLIER, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE-CNRS-
    Inventors: Mathieu Marrony, Gilles Taillades, Jacques Roziere, Julian Dailly
  • Patent number: 10833356
    Abstract: Rechargeable lithium-ion batteries that have a high-capacity and a fast charge rate are provided. The lithium-ion batteries contain an anode structure that is of unitary construction and includes a non-porous region and a porous region including a top porous layer (Porous Region 1) having a first thickness and a first porosity, and a bottom porous layer (Porous Region 2) located beneath the top porous layer and forming an interface with the non-porous region. At least an upper portion of the non-porous region and the entirety of the porous region are composed of silicon, and the bottom porous layer has a second thickness that is greater than the first thickness, and a second porosity that is greater than the first porosity.
    Type: Grant
    Filed: July 3, 2018
    Date of Patent: November 10, 2020
    Assignee: International Business Machines Corporation
    Inventors: Joel P. de Souza, Devendra K. Sadana, John Collins
  • Patent number: 10826097
    Abstract: A fuel cell includes a power generating body including a membrane electrode assembly, a resin frame placed around the power generating body, and a pair of separators laminated on the resin frame so as to sandwich the power generating body and the resin frame. The resin frame has a resin-frame-side manifold in which reaction gas flows in a direction passing through the resin frame, an opening that holds the power generating body, and a gas introduction channel formed through the resin frame between the resin-frame-side manifold and the opening. Each separator has a separator-side manifold through which the reaction gas flows, and which is provided at a position corresponding to the resin-frame-side manifold in a lamination direction, and the gas introduction channel has a gas introduction part that extends into the separator-side manifold, when viewed in the lamination direction.
    Type: Grant
    Filed: April 11, 2018
    Date of Patent: November 3, 2020
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kenji Sato, Sachio Okada, Hideya Kadono
  • Patent number: 10826083
    Abstract: In solid polymer electrolyte fuel cell stacks, increasing the height of support features in the transition regions and/or increasing the depth of the transition regions improves the flow of reactants therein and thus improves the sharing of flow in the channels in the reactant flow fields. The support feature height and transition region depth are increased so as to be out of plane with respect to the landings and channels in the reactant flow fields. The invention is suitable for cells employing metal flow field plates or plates in which no adhesives are employed in the transition regions.
    Type: Grant
    Filed: June 24, 2015
    Date of Patent: November 3, 2020
    Assignees: Daimler AG, Ford Motor Company, Nissank Motor Co., Ltd.
    Inventors: Simon Farrington, Christian Caussel
  • Patent number: 10826098
    Abstract: A composite polymer electrolyte membrane has a high proton conductivity even under low-humidity, low-temperature conditions, a reduced dimensional change rate, a high mechanical strength and high chemical stability, and produces a solid polymer electrolyte fuel cell with a high output and high physical durability, a membrane electrode assembly, and a solid polymer electrolyte fuel cell containing the same. This composite polymer electrolyte membrane contains a composite layer composed mainly of a polyazole-containing nanofiber nonwoven fabric (A) and an ionic group-containing polymer electrolyte (B), the polyazole-containing nanofiber nonwoven fabric (A) being basic.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: November 3, 2020
    Assignees: Toray Industries, Inc., Japan Vilene Company, Ltd.
    Inventors: Yumiko Okamoto, Daisuke Izuhara, Junpei Yamaguchi, Shusuke Shirai, Tomoyuki Kunita, Hiroaki Umeda, Yuuta Wakamoto, Tatsunori Ito, Noriko Michihata, Takashi Tarao
  • Patent number: 10818950
    Abstract: A composite polymer electrolyte membrane for a fuel cell may be manufactured by the following method: partially or totally filling the inside of a pore of a porous support with a hydrogen ion conductive polymer electrolyte solution by performing a solution impregnation process; and drying the hydrogen ion conductive polymer electrolyte solution while completely filling the inside of the pore with the hydrogen ion conductive polymer electrolyte solution by performing a spin dry process on the porous support of which the inside of the pore is partially or totally filled with the hydrogen ion conductive polymer electrolyte solution.
    Type: Grant
    Filed: February 1, 2018
    Date of Patent: October 27, 2020
    Assignees: GLOBAL FRONTIER CENTER FOR MULTISCALE ENERGY SYSTEMS, KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Jin Young Kim, Kyung-jin Lee, Kyungah Lee, Nayoung Kim, So Young Lee, Sung Jong Yoo, Jong Hyun Jang, Hyoung-Juhn Kim, Jonghee Han, Suk Woo Nam, Tae Hoon Lim
  • Patent number: 10811716
    Abstract: An ion-conducting membrane includes: (i) a first ion-conducting layer including one or more first ion-conducting polymers; and (ii) a barrier layer including graphene-based platelets.
    Type: Grant
    Filed: July 10, 2013
    Date of Patent: October 20, 2020
    Assignee: Johnson Matthey Fuel Cells Limited
    Inventors: Jonathan Charles Frost, Jonathan David Brereton Sharman, Nadia Michele Permogorov
  • Patent number: 10797333
    Abstract: The present invention discloses a preparation method of an alkaline anion exchange membrane and a use of the membrane in a fuel cell. The preparation method of the alkaline anion exchange membrane contains: taking polyvinyl alcohol as a substrate, which provides mechanical strength for the membrane; taking a commercialized alkaline resin as an anion exchange resin of chemically reactive groups, performing a cross-linking reaction between polyvinyl alcohol and the alkaline resin by mixing; meanwhile, during the process of forming the alkaline anion exchange membrane, adding an organic salt of transition metal, and doping transition metal ions into the membrane. By taking advantages of catalytic characteristics of the transition metal ions, the fuel leaking from the anode of the cell can perform a catalytic reaction in time in the ion exchange membrane, and thereby improve an ion conductivity of the membrane and efficiently decrease a resistance of the cell.
    Type: Grant
    Filed: November 22, 2016
    Date of Patent: October 6, 2020
    Assignee: HANGZHOU DIANZI UNIVERSITY
    Inventors: Haiying Qin, Cai Zhu, Yongping Hu, Kaijian Chen, Jiabin Liu, Zhe Kong, Hongbo Wang, Yan He, Zhenguo Ji
  • Patent number: 10727476
    Abstract: The present invention aims to provide an electrode for lithium ion batteries which exhibits excellent electrical conductivity even if its thickness is large. The electrode for lithium ion batteries of the present invention includes a first main surface to be located adjacent to a separator of a lithium ion battery and a second main surface to be located adjacent to a current collector of the lithium ion battery. The electrode has a thickness of 150 to 5000 ?m. The electrode contains, between the first main surface and the second main surface, a conductive member (A) made of an electronically conductive material and a large number of active material particles (B). At least part of the conductive member (A) forms a conductive path that electrically connects the first main surface to the second main surface. The conductive path is in contact with the active material particles (B) around the conductive path.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: July 28, 2020
    Assignees: SANYO CHEMICAL INDUSTRIES, LTD., NISSAN MOTOR CO., LTD.
    Inventors: Yusuke Mizuno, Yasuhiro Shindo, Yasuhiro Tsudo, Kenichi Kawakita, Yuki Kusachi, Yasuhiko Ohsawa, Hajime Satou, Hiroshi Akama, Hideaki Horie
  • Patent number: 10714761
    Abstract: A fuel cell catalyst layer includes a plurality of carbon particles, a plurality of catalyst particles, and at least one plate-shaped carbon member disposed between the plurality of carbon particles. The plurality of catalyst particles are supported on surfaces of the plurality of carbon particles. The plate-shaped carbon member may be replaced with a rod-shaped carbon member.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: July 14, 2020
    Assignee: Panasonic Intellectual Property Management Co., Ltd.
    Inventors: Kazuya Yamasaki, Hitoshi Ishimoto, Masashi Shoji, Keiichi Kondou
  • Patent number: 10700372
    Abstract: Membrane electrode assembly comprising oxygen evolution reaction catalyst disposed in gas distribution layer (100, 700) or between gas distribution layer (100, 700 and gas dispersion layer (200, 600). Membrane electrode assemblies described herein are useful, for example, in electrochemical devices such as a fuel cell.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: June 30, 2020
    Assignee: 3M Innovative Properties Company
    Inventors: Gregory M. Haugen, Ljiljana L. Atanasoska, Radoslav Atanasoski, Andrew T. Haug, Dennis F. Van Der Vliet, Jimmy L. Wong, Andrew M. Armstrong
  • Patent number: 10693146
    Abstract: Provided is a method for efficiently manufacturing fine metal particles applicable as a fuel cell electrode catalyst. Provided is a method of manufacturing fine metal particles, including the step of: a hydrogen bubbling step to perform bubbling to a reaction solution, wherein: the reaction solution is prepared by allowing seeds of fine metal particles in a dispersed state and a water soluble noble metal precursor to co-exist in a water-containing solvent; and the bubbling is performed with a reaction gas containing a hydrogen gas, is provided.
    Type: Grant
    Filed: April 16, 2014
    Date of Patent: June 23, 2020
    Assignee: University of Yamanashi
    Inventors: Masahiro Watanabe, Hiroyuki Uchida, Hiroshi Yano, Makoto Uchida
  • Patent number: 10644327
    Abstract: A fuel cell cathode contains a perovskite oxide as a main component. The perovskite oxide is expressed by the general formula ABO3 and including La and Sr at the A site. A solid electrolyte layer is disposed between an anode and the cathode. The cathode has a surface on an opposite side to the solid electrolyte layer. A first ratio of a Sr concentration relative to an La concentration is less than or equal to 4 times a second ratio of the Sr concentration relative to the La concentration. The first ratio is detected by the use of X-ray photoelectron spectroscopy on the surface of the cathode. The second ratio of a Sr concentration relative to a La concentration is detected by the use of X-ray photoelectron spectroscopy on an exposed surface exposed by surface processing of the surface and positioned within 5 nm of the surface in relation to a direction of thickness.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: May 5, 2020
    Assignee: NGK INSULATORS, LTD.
    Inventors: Shinji Fujisaki, Yoshihiko Yamamura, Takashi Ryu, Makoto Ohmori
  • Patent number: 10622647
    Abstract: A fuel cell includes a first separator including a reactant gas buffer portion which includes a first buffer region and a second buffer region. The first buffer region has a first depth in the stacking direction. First embossed portions are formed in the first buffer region. Each of the first embossed portions has a first diameter and a first radius of a corner at a distal end of each of the first embossed portions. The second buffer region has a second depth in the stacking direction larger than the first depth. Second embossed portions are formed in the second buffer region. Each of the second embossed portions has a second diameter and a second radius of a corner at a distal end of each of the second embossed portions. The second diameter is smaller than the first diameter or the second radius is smaller than the second diameter.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: April 14, 2020
    Assignee: HONDA MOTOR CO., LTD.
    Inventors: Naoki Yamano, Narutoshi Sugita, Jun Kondo
  • Patent number: 10559398
    Abstract: A device includes an ion-conducting membrane with ion-conducting ceramic particles, and an ion-conducting polymer that surrounds the ion-conducting membrane. The ion-conducting polymer includes a pressure-deformable film with a glass transition temperature lower than an operation temperature of the device.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: February 11, 2020
    Assignee: International Business Machines Corporation
    Inventors: Naga Phani B. Aetukuri, Robert D. Miller, Young-Hye Na, John Campbell Scott, Sogol Yahyazadeh
  • Patent number: 10516181
    Abstract: An electrolyte membrane for a reformer-less fuel cell is provided. The electrolyte membrane is assembled with fuel and air manifolds to form the fuel cell. The fuel manifold receives an oxidizable fuel from a fuel supply in a gaseous, liquid, or slurry form. The air manifold receives air from an air supply. The electrolyte membrane conducts oxygen in an ionic superoxide form when the fuel cell is exposed to operating temperatures above the boiling point of water to electrochemically combine the oxygen with the fuel to produce electricity. The electrolyte membrane includes a porous electrically non-conductive substrate, an anode catalyst layer deposited along a fuel manifold side of the substrate, a cathode catalyst layer deposited along an air manifold side of the substrate, and an ionic liquid filling the substrate between the anode and cathode catalyst layers. Methods for manufacturing and operating the electrolyte membrane are also provided.
    Type: Grant
    Filed: August 28, 2014
    Date of Patent: December 24, 2019
    Assignee: PALO ALTO RESEARCH CENTER INCORPORATED
    Inventor: Saroj Sahu
  • Patent number: 10505203
    Abstract: The present invention relates to a positive electrode of a lithium-air battery having a side reaction prevention layer with a partially introduced metal catalyst, and a method for preparing the same, and in particular, to a positive electrode of a lithium-air battery having a side reaction prevention layer with a metal catalyst sporadically partially introduced to a surface thereof, and a method for preparing the same. The lithium-air battery according to the present invention suppresses a side reaction at an interface between a positive electrode active material and an electrolyte thereby effectively reduces an overvoltage when charged, and therefore, does not cause liquid electrolyte decomposition, which is effective in enhancing a cycle life.
    Type: Grant
    Filed: January 16, 2017
    Date of Patent: December 10, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Dong Wook Lee, Byung Gook Lyu, Jae Sung Han, Jong Hyun Chae, Doo Kyung Yang, Eun Kyung Cho
  • Patent number: 10483550
    Abstract: Provided is a solid oxide cell including a fuel electrode layer, electrolyte layer and an air electrode layer, wherein a diffusion barrier layer is provided between the air electrode layer and the electrolyte layer, the diffusion barrier layer includes: a first diffusion barrier layer formed on the electrolyte layer and including a sintered ceria-based metal oxide containing no sintering aid; and a second diffusion barrier layer formed on the first diffusion barrier layer and including a sintered product of a ceria-based metal oxide mixed with a sintering aid, the first diffusion barrier layer includes a sintered product of nanopowder and macropowder of a ceria-based metal oxide, and the first diffusion barrier layer and the second diffusion barrier layer are sintered at the same time. The diffusion barrier layer is densified, shows high interfacial binding force and prevents formation of a secondary phase derived from chemical reaction with the electrolyte.
    Type: Grant
    Filed: June 22, 2017
    Date of Patent: November 19, 2019
    Assignee: Korea Institute of Science and Technology
    Inventors: Kyung Joong Yoon, Seung-Hwan Lee, Mansoo Park, Jongsup Hong, Hyoungchul Kim, Ji-Won Son, Jong Ho Lee, Byung Kook Kim, Hae-Weon Lee
  • Patent number: 10476095
    Abstract: A fuel cell may include a fuel supply unit for supplying hydrogen to a fuel cell stack; an air supply unit for supplying air to the fuel cell stack; and the fuel cell stack that generates energy using hydrogen and air supplied from the fuel supply unit and the air supply unit, wherein the fuel cell stack has a mesh structure and comprises a conductive polymer electrode containing about 0.1 to 1 wt % of polyethylene oxide (PEO) having a molecular weight of about 1,000 to 6,000 kg/mol.
    Type: Grant
    Filed: October 30, 2017
    Date of Patent: November 12, 2019
    Assignees: Hyundai Motor Company, Kia Motors Corporation, Korea Advanced Institute of Science and Technology
    Inventors: Youjung Song, Won Jung Kim, Ki Ung Jeon, Yeon Sik Jung
  • Patent number: 10468650
    Abstract: The present disclosure relates to a lithium sulfur battery, and the battery includes a cathode and an anode arranged facing each other; a separator interposed between the cathode and the anode; and an electrolyte, and further includes at least one or more membranes of a lithium ion conductive polymer membrane positioned between the cathode and the separator and having a sulfonic acid group (—SO3H), and a metal oxide membrane positioned between the anode and the separator, and therefore, an electrode active material loss is reduced, an improved lifespan characteristic is obtained by blocking the spread of lithium polysulfide to the anode, and in addition thereto, enhanced safety is obtained by suppressing a dendrite growth in the anode.
    Type: Grant
    Filed: October 19, 2015
    Date of Patent: November 5, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Chang Hun Park, Min Chul Jang, Doo Kyung Yang, Byong Kuk Son, Jung Hun Choi, Taek Gyoung Kim, Myeong Hun Song
  • Patent number: 10377849
    Abstract: An ion conducting and electron conducting polymer is comprised of a first polymer of a single-sulfonic acid polymer or a multi-sulfonic acid polymer and a second polymer of an EDOT analog monomer having the following formula: wherein z=O or S; Y2=—COH, —C6H13, or —COOH; a=0 or 1; Y3=—CH3, —C2H5, —CH2C6H6, —C6H13, —C8H17, —CH2OC6H13, or —CH2OC6H6; and b=0 or 1; wherein a sulfonic acid group of each branch of the first polymer electronically interacts with one or more thiophene rings of the second polymer; and wherein any remaining sulfonic acid groups on each branch of the first polymer are converted to SO3Li.
    Type: Grant
    Filed: November 13, 2017
    Date of Patent: August 13, 2019
    Assignee: Nissan North America, Inc.
    Inventor: Rameshwar Yadav
  • Patent number: 10381653
    Abstract: An electrode ink composition that forms a fuel cell catalyst layer with reduced mudcracking is provided. The ink composition includes a solvent, a platinum group metal-containing catalyst composition dispersed in the solvent, a primary polymer dispersed within the solvent, the primary polymer being an ionomer, and a secondary polymer dispersed within the solvent, the secondary polymer interacting with the primary polymer via a non-covalent interaction.
    Type: Grant
    Filed: March 2, 2017
    Date of Patent: August 13, 2019
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Roland J. Koestner, Swaminatha P. Kumaraguru, Irina A. Kozhinova
  • Patent number: 10367219
    Abstract: The present specification relates to a polymer electrolyte membrane, a membrane electrode assembly including the same, and a fuel cell including the membrane electrode assembly.
    Type: Grant
    Filed: July 6, 2016
    Date of Patent: July 30, 2019
    Assignee: LG CHEM, LTD.
    Inventors: Insung Bae, Moonchan Lee, Hyuk Kim, Minkyu Min, Ji Hun Kim, Curie Park
  • Patent number: 10340529
    Abstract: A fuel cell comprises an anode, a cathode, a solid electrolyte layer, and a current collecting member. The cathode contains a perovskite composite oxide as a main component and contains a compound that includes at least one of S and Cr as a secondary component. The cathode has a surface facing the current collecting member. The surface of the cathode includes a first region that is electrically connected to the current collecting member and a second region that is separated from the current collecting member. The first region and the second region respectively contain a main phase that is configured from a perovskite composite oxide and a secondary phase that is configured from the compound. The occupied surface area ratio of the secondary phase in the first region is greater than the occupied surface area ratio of the secondary phase in the second region.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: July 2, 2019
    Assignee: NGK INSULATORS, LTD.
    Inventor: Makoto Ohmori
  • Patent number: 10276881
    Abstract: The invention relates to a stack of cells of a fuel cell comprising an anode plate and a cathode plate, at a first one of the two ends thereof, the stack ending in a first anode or cathode end plate, respectively, arranged on the cathode or anode plate, respectively, of the last cell of the stack, said first end plate defining a circuit for the cooling fluid of the last cell and said first end plate being an anode or cathode plate, respectively, identical to the anode and cathode plates, respectively, of the cells but missing the opening for dispensing reagent. It is thus possible to simplify the development and the assembly of a stack of cells of a fuel cell with proton-exchange membrane while ensuring a good seal and satisfactory cooling at the end of the stack.
    Type: Grant
    Filed: October 2, 2015
    Date of Patent: April 30, 2019
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Arnaud Cerceau, Marion Paris, Eric Patras, Elisabeth Rossinot, Helene Trouve
  • Patent number: 10263261
    Abstract: Provided is electrically conductive ink that shows favorable flowability and that can also suppress deformation, such as flattening, upon application of surface pressure. The electrically conductive ink is applied onto a substrate 21 of a separator 11 that constitutes a cell 13 of a fuel cell stack by way of screen printing so as to form ribs 22 on the substrate 21, wherein the electrically conductive ink has viscoelasticity, as measured by a rotary rheometer, that exhibits a loss tangent of 1 with a strain of 10 to 100%.
    Type: Grant
    Filed: October 22, 2015
    Date of Patent: April 16, 2019
    Assignee: ZEON CORPORATION
    Inventors: Kouichirou Maeda, Kenichi Tokuda