Specified Electrode/electrolyte Combination Patents (Class 429/482)
  • Publication number: 20120189922
    Abstract: The present invention relates to a process for operating a fuel cell, especially for operating a fuel cell in which the electrolyte responsible for the proton conduction is volatile. By means of the process according to the invention, better operation of such a fuel cell is possible, and they exhibit an improved lifetime.
    Type: Application
    Filed: July 9, 2010
    Publication date: July 26, 2012
    Inventors: Thomas Justus Schmidt, Jochen Baurmeister
  • Publication number: 20120183881
    Abstract: An assembling operation of a fuel cell is effectively simplified. With the simple and economical structure, the desired sealing function is achieved. The fuel cell (10) includes a membrane electrode assembly (14) and first and second metal separators (16, 18) sandwiching the membrane electrode assembly (14). Connection channels (28a, 28b) are provided on the first metal separator (16). The connection channels (28a, 28b) connect the oxygen-containing gas supply passage (20a) and the oxygen-containing gas discharge passage (20b) to the oxygen-containing gas flow field (26). The membrane electrode assembly (14) has first overlapping portions (66a, 66b) overlapped on the connection channels (28a, 28b) for sealing the connection channels (28a, 28b). The first overlapping portions (66a, 66b) comprise, in effect, a gas diffusion layer.
    Type: Application
    Filed: March 29, 2012
    Publication date: July 19, 2012
    Applicant: HONDA MOTOR CO., LTD.
    Inventors: Narutoshi SUGITA, Katsuhiko KOHYAMA, Shuhei GOTO, Hiroshi SHINKAI, Hiroyuki TANAKA, Takaki NAKAGAWA
  • Publication number: 20120183882
    Abstract: The present invention provides a separator for a fuel cell that improves efficiency of the fuel cell by removing water generated in a membrane-electrode assembly and accumulated in a channel of the separator, a manufacturing method thereof, and a fuel cell stack including the same. The separator for the fuel cell of the present invention includes: a main body of a plate shape; a channel concavely formed in at least one surface of the main body and supplying a fuel or oxygen to a membrane-electrode assembly; and a metal layer provided to a surface of the channel and including an oxide layer formed by an anodic oxidation treatment and minute grooves of a nano-scale formed in the oxide layer, thereby forming the surface of the channel to be super-hydrophilic.
    Type: Application
    Filed: September 27, 2010
    Publication date: July 19, 2012
    Applicant: POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventors: Sangmin Lee, Woon Bong Hwang
  • Patent number: 8222571
    Abstract: An apparatus for curing an electrolyte membrane of a fuel cell is disclosed, by which curing can be performed by preventing a surface of an electrolyte layer from swelling. The present invention includes an oven body, a vacuum sucking plate entering the oven body while the electrolyte membrane having an electro-catalyst liquid sprayed thereon is attached to an upper surface of the vacuum sucking plate, a magazine provided within the oven body to sequentially load a plurality of vacuum sucking plates to enter the oven body in a horizontal state, and an air-sucking terminal provided to a rear side of the magazine to sustain a vacuum state of the vacuum sucking plate by being connected to the vacuum sucking plate loaded in the magazine.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: July 17, 2012
    Assignees: Nordson Sangsan Ltd.
    Inventor: Byung Kook Yoon
  • Publication number: 20120178016
    Abstract: A cathode material for a fuel cell, the cathode material for a fuel cell including a lanthanide metal oxide having a perovskite crystal structure; and a bismuth metal oxide represented by Chemical Formula 1 below, Bi2-x-yAxByO3,??Chemical Formula 1 wherein A and B are each a metal with a valence of 3, A and B are each independently at least one element selected from a rare earth element and a transition metal element, A and B are different from each other, and 0<x?0.3 and 0<y?0.3.
    Type: Application
    Filed: January 6, 2012
    Publication date: July 12, 2012
    Applicants: SAMSUNG ELECTRO-MECHANICS CO.., LTD., SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hee-jung PARK, Doh-won JUNG
  • Publication number: 20120178013
    Abstract: A catalyst coated membrane (CCM) for a fuel cell, including an electrolyte membrane and a catalyst layer formed on at least one surface of the electrolyte membrane, a membrane and electrode assembly (MEA) for a fuel cell, including the CCM, a method of preparing the MEA, and a fuel cell including the MEA. The CCM is formed directly on the electrolyte membrane.
    Type: Application
    Filed: September 9, 2011
    Publication date: July 12, 2012
    Applicant: Samsung Electronics Co. Ltd.
    Inventors: Yoon-hoi Lee, Jung-ock Park, Seong-woo Choi
  • Publication number: 20120178015
    Abstract: A method of processing a ceramic electrolyte suitable for use in a fuel cell is provided. The method comprises situating a ceramic electrolyte layer over an anode layer; and subjecting the ceramic electrolyte layer to a stress prior to operation of the fuel cell, by: exposing the top surface of the electrolyte layer to an oxidizing atmosphere and the bottom surface of the electrolyte layer to a reducing atmosphere; and heating the electrolyte layer. The stress causes a substantial increase in the number of microcracks, or in the average size of the microcracks, or in both the number of the microcracks and their average size. A solid oxide fuel cell comprising a ceramic electrolyte layer processed by the disclosed method is also provided.
    Type: Application
    Filed: September 28, 2007
    Publication date: July 12, 2012
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Shu Ching Quek, Chandra Sekher Yerramalli, Todd-Michael Striker, Badri Narayan Ramamurthi, Sylvia Marie DeCarr, Venkat Subramaniam Venkataramani
  • Publication number: 20120178017
    Abstract: The present invention provides a fluoropolymer electrolyte material which has improved processability and which is easily produced. The electrolyte emulsion of the present invention comprises an aqueous medium and a fluoropolymer electrolyte dispersed in the aqueous medium. The fluoropolymer electrolyte has a monomer unit having an SO3Z group (Z is an alkali metal, an alkaline-earth metal, hydrogen, or NR1R2R3R4, and R1, R2, R3, and R4 each are individually a C1-C3 alkyl group or hydrogen). The fluoropolymer electrolyte has an equivalent weight (EW) of 250 or more and 700 or less and a proton conductivity at 110° C. and relative humidity 50% RH of 0.10 S/cm or higher. The fluoropolymer electrolyte is a spherical particulate substance having an average particle size of 10 to 500 nm. The fluoropolymer electrolyte has a ratio (the number of SO2F groups)/(the number of SO3Z groups) of 0 to 0.01.
    Type: Application
    Filed: September 17, 2010
    Publication date: July 12, 2012
    Applicants: DAIKIN INDUSTRIES, LTD., ASAHI KASEI E-MATERIALS CORPORATION
    Inventors: Takahiko Murai, Naoki Sakamoto, Naoto Miyake, Tadashi Ino, Masaharu Nakazawa, Noriyuki Shinok, Takashi Yoshimura, Masahiro Kondo
  • Patent number: 8216739
    Abstract: A support wafer made of silicon wafer comprising, on a first surface a porous silicon layer having protrusions, porous silicon pillars extending from the porous silicon layer to the second surface of the wafer, in front of each protrusion. Layers constituting a fuel cell can be formed on the support wafer.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: July 10, 2012
    Assignee: STMicroelectronics S.A.
    Inventor: Sébastien Kouassi
  • Publication number: 20120171597
    Abstract: According to one embodiment, an anode for a direct methanol fuel cell includes an anode catalyst layer containing a noble metal catalyst and a proton-conductive polyelectrolyte. A log differential pore volume distribution curve measured by a mercury intrusion porosimetry of the anode catalyst layer has a peak within a pore diameter range of 0.06 to 0.3 ?m and satisfies the following relationship: 0.5?(V1/V0)?0.9 wherein V0 is a cumulative pore volume of pores having a diameter of from 0.02 to 1 ?m, as measured by a mercury intrusion porosimetry, and V1 is a cumulative pore volume of pores having a diameter of from 0.02 to 0.2 ?m, as measured by a mercury intrusion porosimetry.
    Type: Application
    Filed: January 26, 2012
    Publication date: July 5, 2012
    Inventors: Taishi FUKAZAWA, Yoshihiro Akasaka, Jungmin Song
  • Publication number: 20120171598
    Abstract: A polymer electrolyte composition of a sulfonated block copolymer (A) having a hydrophilic segment with a sulfonic acid group and a hydrophobic segment with no sulfonic acid group, each segment having an aromatic ring is its main chain, and an aromatic polymer (B) having no sulfonic acid group with a structural unit that is identical to the structural unit contained in the hydrophobic segment of the sulfonated block copolymer is provided. The ion-exchange capacity of the composition can be in a range of 0.5 mmol/g to 2.9 mmol/g. Electrolyte membranes, membrane/electrolyte assemblies, and electrolyte fuel cells utilizing the polymer electrolyte composition are also provide.
    Type: Application
    Filed: March 2, 2012
    Publication date: July 5, 2012
    Applicant: UBE INDUSTRIES, LTD.
    Inventors: Tetsuji HIRANO, Nobuharu HISANO, Tatsuya ARAI, Masayuki KINOUCHI
  • Publication number: 20120171596
    Abstract: A monolithic electrolyte assembly comprising improved as well as new associated structures and processes operative in the general field of solid oxide electrolytic devices is disclosed. The invention provides a reliable and durable interconnect for both structural and electrical components of such devices. In the present invention, thin-film-based solid oxide fuel cells and solid oxide oxygen/hydrogen generators may be fabricated using primarily solid metal alloys as underlying components of thin film and thick film structures built thereon.
    Type: Application
    Filed: August 4, 2010
    Publication date: July 5, 2012
    Inventor: Donald Bennett Hilliard
  • Publication number: 20120171599
    Abstract: Provided is a fuel cell for being implanted which enables a long time operation while reducing its size so as to be implanted in a living body. The fuel cell to be adopted includes: a container which contains a fuel such as glucose and an electrolyte solution therein; a pair of electrodes which are arranged in the container and have a noble metal catalyst fixed thereon; an aeration portion which is formed on at least one part of the outer surface of the container and has air permeability and waterproofness; and septa and for injecting the fuel from the outside into the container or discharging it from the container.
    Type: Application
    Filed: March 9, 2012
    Publication date: July 5, 2012
    Applicant: OLYMPUS CORPORATION
    Inventors: Takayuki KISHIDA, Toshimasa AKAGI, Hiroki HIBINO
  • Publication number: 20120171595
    Abstract: Provided is a power generation cell for a solid electrolyte fuel cell using a lanthanum gallate solid electrolyte as a solid electrolyte, particularly a structure of a fuel electrode of the power generation cell for the solid electrolyte fuel cell. The fuel electrode is of a power generation cell for a solid electrolyte fuel cell in which particles (2) of a B-doped ceria (wherein, B represents one or two or more of Sm, La, Gd, Y and Ca) are attached to the surface of the framework of porous nickel having a framework structure in which a network is formed by mutual sintering of nickel particles (1). The ceria particles (2) are distributed with the highest density and attached around the framework structure portions (3) the sectional areas of which are made small by the mutual sintering of the nickel particles (1) to be bonded to each other.
    Type: Application
    Filed: February 28, 2012
    Publication date: July 5, 2012
    Inventors: Takashi Yamada, Norikazu Komada
  • Patent number: 8211587
    Abstract: A plasma sprayed ceramic-metal fuel electrode is provided. The fuel electrode has particular application in connection with a solid oxide fuel cell used within a power generation system. The fuel cell advantageously comprises an air electrode, an electrolyte formed on at least a portion of the air electrode, a plasma sprayed ceramic-metal fuel electrode formed on at least a portion of the electrolyte, and an interconnect layer to connect adjacent cells in a generator.
    Type: Grant
    Filed: September 16, 2003
    Date of Patent: July 3, 2012
    Assignee: Siemens Energy, Inc.
    Inventors: Roswell J. Ruka, George R. Folser, Srikanth Gopalan
  • Publication number: 20120164555
    Abstract: According to an aspect of the present invention, there is provided a collector member 10 comprising a sheet-shaped base material 11 having a carbon-containing fiber 11a and catalyst particles 12 adhered to an outer periphery of the fiber 11a, containing a noble metal or an alloy thereof, and having an average particle diameter of 0.1 to 2 ?m.
    Type: Application
    Filed: March 12, 2012
    Publication date: June 28, 2012
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Mutsuki YAMAZAKI, Yoshihiko Nakano, Wu Mei
  • Publication number: 20120164554
    Abstract: A membrane electrode assembly for a fuel cell comprises a solid polymer electrolyte membrane, an anode being formed on one side of the solid polymer electrolyte membrane and containing a catalyst and a solid polymer electrolyte, a cathode being formed on another side of the solid polymer electrolyte membrane and containing a catalyst and a solid polymer electrolyte, an anode gas diffusion layer formed on one side of the anode, and a cathode gas diffusion layer formed on one side of the cathode. In addition, a formic acid oxidation electrode containing palladium and a solid polymer electrolyte is formed between the anode gas diffusion layer and the anode.
    Type: Application
    Filed: December 27, 2011
    Publication date: June 28, 2012
    Inventors: Shuichi SUZUKI, Atsuhiko Onuma, Jun Kawaji, Yoshiyuki Takamori, Shinsuke Andoh, Takaaki Mizukami
  • Patent number: 8206870
    Abstract: A membrane electrode assembly comprising two electrode separated by a polymer electrolyte membrane wherein the surfaces of the membrane are in contact with the electrodes so that the first electrode partially or totally covers the front of the membrane and the second electrode partially or totally covers the back of the membrane; two gasket layers wherein the first gasket layer partially covers the front of the membrane and/or the first electrode and the second gasket layer partially covers the back of the membrane and/or the second electrode the assembly also comprises a second gasket material on the front of the first gasket layer and on the back of the second gasket layer; each of the gasket layers comprises at least one recess; the second gasket material on the front of the first gasket layer is in contact with the second gasket material on the back of the second gasket layer.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: June 26, 2012
    Assignee: BASF Fuel Cell GmbH
    Inventors: Glen Hoppes, Raymond Puffer
  • Publication number: 20120156584
    Abstract: Provided is a fuel cell capable of maintaining an interface pressure in good condition between a membrane electrode assembly and separators, and preventing an increase in contact resistance. A fuel cell is disclosed including: a membrane electrode assembly provided with a frame at a periphery thereof; two separators holding both the frame and the membrane electrode assembly therebetween; and a gas seal provided between an edge portion of the frame and an edge portion of each separator to have a configuration in which a reactant gas passes through the frame and the membrane electrode assembly and the separators, wherein the frame and the separators are not in contact with and separated from each other in a region between the membrane electrode assembly and the gas seal.
    Type: Application
    Filed: February 8, 2011
    Publication date: June 21, 2012
    Applicant: NISSAN MOTOR CO., LTD.
    Inventor: Shigetaka Uehara
  • Publication number: 20120156588
    Abstract: The present invention relates to a membrane electrode assembly comprising at least two electrochemically active electrodes which are separated by at least one polymer electrolyte membrane, the aforementioned polymer electrolyte membrane having at least one reinforcement, wherein the reinforcement comprises at least one film which has holes through which the polymer electrolyte membrane is in contact with both electrochemically active electrodes. The membrane electrode assembly is suitable for applications in fuel cells, especially in high-temperature polymer electrolyte fuel cells.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 21, 2012
    Applicant: BASF SE
    Inventors: Oliver Gronwald, Thomas Justus Schmidt, Detlef Ott, Seonghan Yu, Sigmar Bräuninger
  • Publication number: 20120156586
    Abstract: A fuel distribution structure including a first material layer, a second material layer, a flow channel layer and a filler is provided. The first material layer has a fuel inlet, the second material layer has a plurality of fuel outlets, the flow channel layer has a patterned flow channel, wherein the fuel inlet and the fuel outlets are covered by a distribution range of the patterned flow channel, and the filler is disposed in the patterned flow channel. In addition, a fuel cell having the above-mentioned fuel distribution structure is also provided.
    Type: Application
    Filed: February 18, 2011
    Publication date: June 21, 2012
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Ku-Yen Kang, Ching-Jung Liu, Chun-Ho Tai, Chiou-Chu Lai
  • Publication number: 20120156573
    Abstract: The invention relates to a fuel cell (1) comprising an anode (10) capable of oxidizing a first compound M1 into first ions M(m+) with m being a non-zero integer, a first electrolyte (20) which is capable of conducting these first ions M(m+), and which is in contact with said anode (10), a cathode (50) capable of reducing a second compound N2 into second ions N(n?) with n being a non-zero integer, a second electrolyte (40) which is capable of conducting the second ions N(n?), and which is in contact with said cathode (50), a porous central membrane (30), one of the faces of which is in contact with said first electrolyte (20) and the opposite face of which is in contact with said second electrolyte (40). The first electrolyte (20), the second electrolyte (40), and the central membrane (30) consist of the same material which is capable of both conducting M(m+) ions and N(n?) ions.
    Type: Application
    Filed: December 15, 2011
    Publication date: June 21, 2012
    Applicant: ASSOCIATION POUR LA RECHERCHE ET LE DEVELOPPEMENT DES METHODES ET PROCESSUS INDUSTRIELS <<ARMINES>>
    Inventors: Alain THOREL, Zdravko STOYNOV, Daria VLADIKOVA, Anthony CHESNAUD, Massimo VIVIANI, Sabrina PRESTO
  • Patent number: 8202667
    Abstract: A fuel cell device includes a housing containing a fuel processor that generates fuel gas and a fuel cell having electrodes forming an anode and cathode, and an ion exchange electrolyte positioned between the electrodes. The housing can be formed as first and second cylindrically configured outer shell sections that form a battery cell that is configured similar to a commercially available battery cell. A thermal-capillary pump can be operative with the electrodes and an ion exchange electrolyte, and operatively connected to the fuel processor. The electrodes are configured such that heat generated between the electrodes forces water to any cooler edges of the electrodes and is pumped by capillary action back to the fuel processor to supply water for producing hydrogen gas. The electrodes can be formed on a silicon substrate that includes a flow divider with at least one fuel gas input channel that can be controlled by a MEMS valve.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 19, 2012
    Inventor: Anthony M. Chiu
  • Patent number: 8202668
    Abstract: A fuel cell device includes a housing containing a fuel processor that generates fuel gas and a fuel cell having electrodes forming an anode and cathode, and an ion exchange electrolyte positioned between the electrodes. The housing can be formed as first and second cylindrically configured outer shell sections that form a battery cell that is configured similar to a commercially available battery cell. A thermal-capillary pump can be operative with the electrodes and an ion exchange electrolyte, and operatively connected to the fuel processor. The electrodes are configured such that heat generated between the electrodes forces water to any cooler edges of the electrodes and is pumped by capillary action back to the fuel processor to supply water for producing hydrogen gas. The electrodes can be formed on a silicon substrate that includes a flow divider with at least one fuel gas input channel that can be controlled by a MEMS valve.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 19, 2012
    Assignee: STMicroelectronics, Inc.
    Inventor: Anthony M. Chiu
  • Publication number: 20120148937
    Abstract: A fuel cell membrane electrode assembly is provided comprising a polymer electrolyte membrane comprising a first polymer electrolyte and at least one manganese compound; and one or more electrode layers comprising a catalyst and at least one cerium compound. The membrane electrode assembly demonstrates an unexpected combination of durability and performance.
    Type: Application
    Filed: February 14, 2012
    Publication date: June 14, 2012
    Inventors: Daniel M. Pierpont, Steven J. Hamrock, Matthew H. Frey
  • Publication number: 20120148934
    Abstract: Provided is an SOFC, including a fuel electrode (20), a thin-plate-like interconnector (30) provided on the fuel electrode and formed of a conductive ceramics material, and a conductive film (70) formed on a surface of the interconnector (30) opposite to the fuel electrode (20). The conductive film (70) is formed of an N-type semiconductor (e.g., LaNiO3). The N-type semiconductor generally has the property of exhibiting a smaller conductivity (a current hardly flows) at higher temperature. Therefore, a portion with a higher current density (thus, a portion with higher temperature) in the conductive film (70) in the vicinity of the interconnector (30) has a smaller conductivity (a current hardly flows). By virtue of this action, even though a “fluctuation in current density of a current flowing through the interconnector (30) and an area in the vicinity thereof” occurs for some reasons, the fluctuation can be suppressed.
    Type: Application
    Filed: December 9, 2011
    Publication date: June 14, 2012
    Applicant: NGK Insulators, Ltd.
    Inventors: Makoto OHMORI, Takashi RYU
  • Publication number: 20120141909
    Abstract: The invention relates to a membrane electrode assembly which comprises two gas diffusion layers, each contacted with a catalyst layer, which are separated by a polymer-electrolyte membrane. Said polymer electrolyte membrane has an inner area which is contacted with a catalyst layer, and an outer area which is not provided on the surface of a gas diffusion layer. The inventive assembly is characterized in that the thickness of all components of the outer area is 50 to 100%, based on the thickness of all components of the inner area. The thickness of the outer area decreases over a period of 5 hours by not more than 5% at a temperature of 80° C. and a pressure of 5 N/mm2. The decrease in thickness is determined after a first compression step which takes place over a period of 1 minute at a pressure of 5 N/mm2.
    Type: Application
    Filed: January 13, 2012
    Publication date: June 7, 2012
    Inventors: Oemer Uensal, Thomas Schmidt, Jörg Belack
  • Publication number: 20120141904
    Abstract: According to one embodiment of the invention a fuel cell device array monolith comprises at least three planar electrolyte sheets having two sides. The electrolyte sheets are situated adjacent to one another. At least one of the electrolyte sheets is supporting a plurality of anodes situated on one side of the electrolyte sheet; and plurality of cathodes situated on the other side of the electrolyte sheet. The electrolyte sheets are arranged such that the electrolyte sheets with a plurality of cathodes and anodes is situated between the other electrolyte sheets. The at least three electrolyte sheets are joined together by sintered fit, with no metal frames or bipolar plates situated therebetween.
    Type: Application
    Filed: June 24, 2010
    Publication date: June 7, 2012
    Applicant: Corning Incorporated
    Inventors: Michael E. Badding, William Joseph Bouton, Jacqueline Leslie Brown, Lanrik Kester, Scott Christopher Pollard, Patrick David Tepesch
  • Publication number: 20120141911
    Abstract: The provision of a porous electrode substrate that has large sheet strength, low production costs, high handling properties, high thickness precision and surface smoothness, and sufficient gas permeability and electrical conductivity. A porous electrode substrate including a three-dimensional entangled structure including short carbon fibers (A) dispersed in a three-dimensional structure, joined together via three-dimensional mesh-like carbon fibers (B). A method for producing a porous electrode substrate, including a step (1) of producing a precursor sheet including short carbon fibers (A), and short carbon fiber precursors (b) and/or fibrillar carbon fiber precursors (b?) dispersed in a two-dimensional plane; a step (2) of subjecting the precursor sheet to entanglement treatment; and a step (3) of subjecting this sheet to carbonization treatment at 1000° C. or higher. It is preferable to include a step (4) of subjecting the sheet to hot press forming at lower than 200° C.
    Type: Application
    Filed: November 22, 2010
    Publication date: June 7, 2012
    Applicant: MITSUBISHI RAYON CO., LTD
    Inventors: Kazuhiro Sumioka, Yoshihiro Sako
  • Publication number: 20120141908
    Abstract: The present invention relates to a membrane electrode assembly comprising at least two electrochemically active electrodes separated by at least one polymer electrolyte membrane, the aforementioned polymer electrolyte membrane having fibrous reinforcing elements which at least partly penetrate the polymer electrolyte membrane, wherein at least some of the fibrous reinforcing elements have functional groups which have a covalent chemical bond between the fibers and the polymer of the polymer electrolyte membrane. The membrane electrode assembly is suitable for applications in fuel cells, especially in high-temperature polymer electrolyte fuel cells.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 7, 2012
    Applicant: BASF SE
    Inventors: Thomas Justus Schmidt, Oliver Gronwald, Detlef Ott, Christoph Hartnig
  • Publication number: 20120141910
    Abstract: Embodiments are disclosed herein that relate to PEM fuel cells comprising membrane-electrode assemblies having plural membrane layers. For example, one disclosed embodiment provides a fuel cell including an anode, a cathode, and a multi-layer membrane disposed between the anode and the cathode, the multi-layer membrane comprising two or more polymer membranes layers. The fuel cell further comprises an electrolyte within the multi-layer membrane.
    Type: Application
    Filed: February 10, 2012
    Publication date: June 7, 2012
    Applicant: CLEAREDGE POWER, INC.
    Inventors: Nengyou Jia, Jason M. Tang, Yang Song
  • Patent number: 8192888
    Abstract: Self-supporting thin film membranes of ceramic materials and related electrochemical cells and cell stacks. The membrane structure is divided into a plurality of self-supporting thin membrane regions by a network of thicker integrated support ribs. The membrane structure may be prepared by laminating a thin electrolyte layer with a thicker ceramic layer that forms a network of support ribs.
    Type: Grant
    Filed: April 19, 2005
    Date of Patent: June 5, 2012
    Assignee: NexTech Materials, Ltd.
    Inventors: Michael J. Day, Katarzyna Sabolsky, Todd G. Lesousky, Matthew M. Seabaugh
  • Publication number: 20120135331
    Abstract: The present invention relates to a cathode composed of a perovskite-type or fluorite-type mixed metal oxide containing molybdenum, to a composite comprising the mixed metal oxide and to a solid oxide fuel cell comprising the cathode. The cathode mixed metal oxide has an empirical formula unit: EaTbMocOn wherein: T is one or more transition metal elements other than Mo; E is one or more metal elements selected from the group consisting of lanthanide metal elements, alkali metal elements, alkaline earth metal elements, Pb and Bi; and a, b, c, and n are non-zero numerals which may be the same or different for each element.
    Type: Application
    Filed: May 28, 2010
    Publication date: May 31, 2012
    Applicant: The University of Liverpool
    Inventors: Matthew Rosseinsky, Hongjun Niu, John Claridge, Jared Smit, Zengqiang Deng
  • Publication number: 20120122015
    Abstract: A micro fuel cell system comprises at least an anode region and a cathode region being realized in a substrate as well as at least an active area for chemical reactions and an ionic exchange membrane for separating the active area. The anode and cathode regions, the active area and the ionic exchange membrane are realized on a same planar surface being made by the substrate in order to form a single multifunctional bipolar plate.
    Type: Application
    Filed: July 15, 2010
    Publication date: May 17, 2012
    Applicant: CONSIGLIO NAZIONALE DELLE RICERCHE
    Inventors: Giuseppe D'Arrigo, Stefania Specchia, Ugo Icardi, Corrado Rosario Spinella, Emanuele Rimini, Guido Saracco
  • Publication number: 20120122014
    Abstract: Disclosed are solid fuel cells, including solid oxide fuel cells and PEM fuel cells that include nanocrystalline cerium oxide materials as a component of the fuel cells. A solid oxide fuel cell can include nanocrystalline cerium oxide as a cathode component and microcrystalline cerium oxide as an electrolyte component, which can prevent mechanical failure and interdiffusion common in other fuel cells. A solid oxide fuel cell can also include nanocrystalline cerium oxide in the anode. A PEM fuel cell can include cerium oxide as a catalyst support in the cathode and optionally also in the anode.
    Type: Application
    Filed: November 16, 2011
    Publication date: May 17, 2012
    Applicant: SAVANNAH RIVER NUCLEAR SOLUTIONS, LLC
    Inventor: Kyle S. Brinkman
  • Publication number: 20120107719
    Abstract: This invention discloses an electrocatalyst for membrane electrode assembly, and its preparation method, as well as a fuel cell membrane electrode assembly. An electrocatalyst for fuel cell application, it is featured that the electrocatalyst is prepared by supporting precious metal (10-60 wt %) on a composite carrier which is prepared by depositing water-containing substance (0.3-10 wt %) on carbon material; Using the catalyst invented by this invention as anode catalyst, an fuel cell membrane electrode assembly with excellent non-humidification performance can be prepared by normal procedures. No need to construct a water retention layer, no need to add water retention material in proton exchange membrane, it avoids the possible problems caused by adding water attention material into proton exchange membrane or inserting a water retention layer. The approach suggested by this invention is a simple and effective approach to realize non-humidification membrane electrode assembly.
    Type: Application
    Filed: March 30, 2010
    Publication date: May 3, 2012
    Applicant: SOUTH CHINA UNIVERSITY OF TECHNOLOGY
    Inventors: Shijun Liao, Huaping Zhu, Leimin Xu, Huaneng Su, Lijun Yang, Yanni Wu, Zhenxing Liang
  • Publication number: 20120107718
    Abstract: A fuel cell sealing structure has a power generating body, and first and second separators arranged in both sides in a thickness direction of the power generating body. On a surface in one side in a thickness direction of the first separator, formed integrally first and second sealing protrusions respectively brought into close contact with an outer peripheral portion of the power generating body and the second separator in an outer peripheral side of the first sealing protrusion, and a short circuit prevention rib protruding in line with the first and second sealing protrusions by an electrically insulating rubber-like elastic material. On a surface in another side thereof, formed integrally a third sealing protrusion brought into close contact with a surface in an opposite side to the power generating body in the second separator, by the electrically insulating rubber-like elastic material.
    Type: Application
    Filed: May 27, 2010
    Publication date: May 3, 2012
    Applicant: NOK CORPORATION
    Inventors: Takeshi Masaka, Yoshihiro Kurano, Shinichiro Taguchi, Kenichi Kikuchi, Tetsuya Urakawa
  • Publication number: 20120100457
    Abstract: A process for preparing a catalyst material comprising an electrically conducting support material, a proton-conducting, polyazole-based polymer and a catalytically active material. A catalyst material prepared by the process of the invention. A catalyst ink comprising a catalyst material of the invention and a solvent. A catalyst-coated membrane (CCM) comprising a polymer electrolyte membrane and also catalytically active layers comprising a catalyst material of the present invention. A gas diffusion electrode (GDE) comprising a gas diffusion layer and a catalytically active layer comprising a catalyst material of the invention. A membrane-electrode assembly (MEA) comprising a polymer electrolyte membrane, catalytically active layers comprising a catalyst material of the invention, and gas diffusion layers. And a fuel cell comprising a membrane-electrode assembly of the present invention.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 26, 2012
    Applicant: BASF SE
    Inventors: Ömer Ünsal, Sigmar Bräuninger, Claudia Querner, Ekkehard Schwab
  • Publication number: 20120094209
    Abstract: Provided are an ion-conductive composite containing ion-conductive fine particles and a vinylidene fluoride homopolymer or copolymer and having excellent ion conductivity, a membrane electrode assembly (MEA) including the ion-conductive composite as an electrolyte, and an electrochemical device, such as a fuel cell. An ion-conductive composite is formed of ion-conductive fine particles having an ion-dissociative group and a vinylidene fluoride homopolymer or copolymer. Here, a vinylidene fluoride homopolymer or copolymer having a ?-type crystal structure is used. Since polyvinylidene fluoride having the ?-type crystal structure has a large dipole moment in a direction that is orthogonal to the direction of the molecular chain, permittivity in the vicinity of ion-conductive fine particles can be kept high, thus facilitating ionic conduction. As a result, the decrease in ion conductivity can be minimized when the composite is formed.
    Type: Application
    Filed: June 24, 2010
    Publication date: April 19, 2012
    Applicant: SONY CORPORATION
    Inventors: Kenji Kishimoto, Kazuaki Fukushima, Takuro Hirakimoto
  • Publication number: 20120094208
    Abstract: An oxidant gas conduit communicating with both an oxidant gas inlet communication hole and an oxidant gas outlet communication hole is formed in a surface of a cathode-side metallic separator which forms a fuel cell. Continuous linear guide ridges which protrude from intermediate height sections to the oxidant gas conduit side and form continuous guide conduits are provided on the cathode-side metallic separator. The linear guide ridges are continuously connected to ends of rectilinear conduit ridges which form rectilinear conduits, are provided with bend portions, and are set to lengths which are different from each other in a step-like manner.
    Type: Application
    Filed: June 2, 2010
    Publication date: April 19, 2012
    Applicant: Honda Motor Co., Ltd.
    Inventors: Seiji Sugiura, Shuji Sato, Takahiro Takai, Yasuhiro Watanabe
  • Publication number: 20120094207
    Abstract: The invention provides catalysts that are not corroded in acidic electrolytes or at high potential and have excellent durability and high oxygen reducing ability. The catalyst includes a metal element M, carbon, nitrogen and oxygen, wherein the catalyst shows peaks at 1340 cm?1 to 1365 cm?1 and at 1580 cm?1 to 1610 cm?1 as analyzed by Raman spectroscopy and the metal element M is one selected from titanium, iron, niobium, zirconium and tantalum. The catalysts of the invention are stable and are not corroded in acidic electrolytes or at high potential, have high oxygen reducing ability and are inexpensive compared to platinum. Fuel cells having the catalysts are therefore relatively inexpensive and have high performance.
    Type: Application
    Filed: April 27, 2010
    Publication date: April 19, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Yasuaki Wakizaka, Takuya Imai, Toshikazu Shishikura, Ryuji Monden, Kenichiro Ota
  • Publication number: 20120088176
    Abstract: The present invention relates to the direct oxidation and/or internal reforming of ethanol and/or mixtures of ethanol and water, in a solid oxide fuel cell, with multifunctional electrocatalytic anodes having specific features, on the basis of mixed oxides and metal oxides and catalysts, preferably with a perovskite-like crystalline structure.
    Type: Application
    Filed: June 11, 2010
    Publication date: April 12, 2012
    Inventors: Paulo Emilio Valadao De Miranda, Selma Aparecida Venancio, Hugo Vilela De Miranda
  • Patent number: 8153285
    Abstract: A fuel cell, fuel cell array and methods of forming the same are disclosed. The fuel cell can be made by forming a first aperture defined by a first aperture surface through a first electrode layer and forming a second aperture defined by a second aperture surface through a second electrode layer. A proton exchange membrane is laminated between the first electrode layer and the second electrode layer. At least a portion of the first aperture is at least partially aligned with the second aperture.
    Type: Grant
    Filed: December 29, 2003
    Date of Patent: April 10, 2012
    Assignee: Honeywell International Inc.
    Inventors: Robert E. Higashi, Khanh Q. Nguyen, Karen M. Newstrom-Peitso, Tom M. Rezachek, Roland A. Wood
  • Publication number: 20120082919
    Abstract: There is used a polymer electrolyte membrane containing a polymer segment (A) having an ion-conducting component, and a polymer segment (B) having a composition ratio of the ion-conducting component lower than that in the polymer segment (A), wherein the polymer segment (A) and the polymer segment (B) form a micro phase-separated structure, and inorganic particles 8 (a metal oxide, the metal oxide supporting a sulfuric acid ion, a metal hydroxide, the metal hydroxide supporting a sulfuric acid ion, a metal salt of phosphoric acid, and a metal fluoride or carbon) are present in a hydrophilic domain 9 composed of the polymer segment (A), in higher concentration than that in a hydrophobic domain 10 composed of the polymer segment (B).
    Type: Application
    Filed: August 31, 2011
    Publication date: April 5, 2012
    Inventors: Atsuhiko ONUMA, Makoto Morishima
  • Patent number: 8148026
    Abstract: Disclosed are a multi-layered electrode for fuel cell and a method for producing the same, wherein the electrode can be operated under non-humidification and normal temperature, the flooding of the electrode catalyst layer can be prevented, and the long-term operation characteristic can be increased due to the prevention of the loss of the electrode catalyst layer.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: April 3, 2012
    Assignee: Korea Institute of Science and Technology
    Inventors: In Hwan Oh, Eun Ae Cho, Hyoung-juhn Kim, Heung Yong Ha, Seong Ahn Hong, Tae Hoon Lim, Suk-Woo Nam, Sung Pil Yoon, Jonghee Han, Jaeyoung Lee, Hyung Chul Hahm
  • Publication number: 20120070764
    Abstract: Catalyst comprising graphitic carbon and methods of making thereof; said graphitic carbon comprising a metal species, a nitrogen-containing species and a sulfur containing species. A catalyst for oxygen reduction reaction for an alkaline fuel cell was prepared by heating a mixture of cyanamide, carbon black, and a salt selected from an iron sulfate salt and an iron acetate salt at a temperature of from about 700° C. to about 1100° C. under an inert atmosphere. Afterward, the mixture was treated with sulfuric acid at elevated temperature to remove acid soluble components, and the resultant mixture was heated again under an inert atmosphere at the same temperature as the first heat treatment step.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 22, 2012
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLC
    Inventors: Hoon Taek Chung, Piotr Zelenay
  • Publication number: 20120064430
    Abstract: The membrane electrode assembly 100 has an electrolyte layer 10, a catalyst layer 20, and a member 15 impregnated with electrolyte which is arranged between the electrolyte layer 10 and the catalyst layer 20. At least part of the peripheral edge portion of the member 15 extends the outside the peripheral edge portions of the electrolyte layer and the catalyst layer 20. With this kind of constitution, it is possible to easily separate the electrolyte layer 10 or the catalyst layer 20 from the member 15 from the extended portion of the member 15. Consequently, it is possible to easily replace the electrolyte layer 10 and the catalyst layer 20.
    Type: Application
    Filed: September 15, 2010
    Publication date: March 15, 2012
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Junji Nakanishi, Kenji Tsubosaka, Hiroo Yoshikawa
  • Publication number: 20120064433
    Abstract: A material for a solid oxide fuel cell, the material including a lanthanum metal oxide having a perovskite-type crystal structure; and a ceria metal oxide, wherein the ceria metal oxide includes at least one material selected from the group consisting of metal oxides represented by Formula 1 below and metal oxides represented by Formula 2: (1-a-b)Ce1-xAxO2-?+aB2O5+bBO3 ??Formula 1 Ce1-x-yAxByO2-???Formula 2 wherein 0?a?0.01, 0?b?0.02, 0<2a+?0.02, 0<x<0.3, 0<y?0.02, ? and ? are selected so that the metal oxides of Formulas 1 and 2, respectively, are both electrically neutral, A is a rare earth metal, and B is a 5-valent metal or a 6-valent metal.
    Type: Application
    Filed: January 20, 2011
    Publication date: March 15, 2012
    Applicants: SAMSUNG ELECTRO-MECHANICS CO., LTD., SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Hee-jung PARK, Chan KWAK
  • Publication number: 20120058413
    Abstract: The invention relates to a method for producing an anion-exchange polymer material having an IPN or semi-IPN structure, said method consisting in: (A) preparing a homogeneous reaction solution containing, in a suitable organic solvent, (a) at least one organic polymer bearing reactive halogen groups, (b) at least one tertiary diamine, (c) at least one monomer comprising an ethylenic unsaturation polymerizable by free radical polymerization, (d) optionally at least one cross-linking agent including at least two ethylenic unsaturations polymerizable by free radical polymerization, and e) at least one free radical polymerization initiator; and (B) heating the prepared solution to a temperature and for a duration that are sufficient to allow both a nucleophilic substitution reaction between components (a) and (b) and a free radical copolymerization reaction of components (c) and optionally (d) initiated by component (e).
    Type: Application
    Filed: May 4, 2010
    Publication date: March 8, 2012
    Applicants: UNIVERSITE DE CERGY PONTOISE, ELECTRICITE DE FRANCE
    Inventors: Philippe Stevens, Fouad Ghamous, Odile Fichet, Christian Sarrazin
  • Patent number: 8129070
    Abstract: The present invention provides a fuel cell having obstructed passages, which is capable of inhibiting the occurrence of flooding. The fuel cell comprises: a stacked body comprising at least a membrane electrode assembly; and a pair of separators sandwiching the stacked body. A face of the stacked body side of the separator is provided with inlet passage(s) through which reaction gas to be supplied to the stacked body passes and outlet passage(s) through which reaction gas having passed the stacked body passes. The inlet passage is obstructed at a downstream end of the reaction gas to be supplied to the stacked body and the outlet passage is obstructed at an upstream end of the reaction gas having passed through the stacked body. The inlet passage and the outlet passage is arranged separately from each other, and the inlet passage is arranged on both ends of the face of the stacked body side of the separator in the passage width direction of the inlet passage and the outlet passage.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: March 6, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinji Jomori, Naoki Takehiro, Tatsuya Arai, Keiichi Kaneko, Takumi Taniguchi