Membrane Electrode Assembly (mea) Patents (Class 429/483)
  • Patent number: 8227136
    Abstract: A unitized electrode assembly for a fuel cell comprising an electrolyte membrane, a subgasket, and a sealing bead disposed therebetween is disclosed. The sealing bead adapted to fill a tenting region formed between the membrane and the subgasket to maximize an operating life of the electrolyte membrane by militating against wear of membrane expansion during use of the fuel cell.
    Type: Grant
    Filed: October 30, 2008
    Date of Patent: July 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Scott L. Peters, Craig S. Gittleman
  • Patent number: 8227135
    Abstract: Improved polymer-based materials are described, for example for use as an electrode binder in a fuel cell. A fuel cell according to an example of the present invention comprises a first electrode including a catalyst and an electrode binder, a second electrode, and an electrolyte located between the first electrode and the second electrode. The electrolyte may be a proton-exchange membrane (PEM). The electrode binder includes one or more polymers, such as a polyphosphazene.
    Type: Grant
    Filed: March 28, 2006
    Date of Patent: July 24, 2012
    Assignees: Toyota Motor Corporation, Toyota Motor Engineering & Manufacturing North America, Inc., Case Western Reserve University
    Inventors: Wen Li, John Muldoon, Hiroshi Hamaguchi, Akira Tsujiko, Toshiya Saito, Ryszard J. Wycisk, Jun Lin, Peter N. Pintauro
  • Patent number: 8227134
    Abstract: Disclosed are self-hydrating membrane electrode assemblies (MEAs), including MEAs that have been magnetically modified, which comprises (i) a cathode comprising an electrically conducting material having a catalytic material on at least a portion of a first surface thereof, the catalytic material comprising an effective amount of at least one catalyst component and at least one ion conducting material; (ii) a separator adjacent to and in substantial contact with the first surface of the cathode and comprising an ion conducting material; and (iii) an anode adjacent to and in substantial contact with the surface of the separator opposite the cathode and comprising an electrically conducting material having a catalytic material on at least a portion of a surface thereof adjacent to the separator, the catalytic material comprising an effective amount of at least one catalyst component and at least one ion conducting material; wherein the separator permits water to pass from the first surface of the cathode to the
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: July 24, 2012
    Assignee: University of Iowa Research Foundation
    Inventors: Johna Leddy, Wayne L. Gellett, Drew C. Dunwoody
  • Patent number: 8227147
    Abstract: A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.
    Type: Grant
    Filed: April 22, 2005
    Date of Patent: July 24, 2012
    Assignee: Los Alamos National Security, LLC
    Inventors: Yu Seung Kim, Bryan S. Pivovar
  • Patent number: 8227124
    Abstract: A fuel cell including a membrane electrode assembly composed of a ionically conductive member sandwiched between a pair of electrodes. At least one of the electrodes including a catalyst loading characterized by catalytic activity that varies in proportion to the catalyst loading. Moreover, the fuel cell includes a flow path for supplying gaseous reactants to the electrodes and the catalyst loading is varied according to the flow path geometry.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: July 24, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Robert L. Fuss, Bhaskar Sompalli
  • Patent number: 8221931
    Abstract: A fuel gas inlet, a fuel gas outlet, an oxygen-containing gas inlet, an oxygen-containing gas outlet, and other components, which are disposed at upper and lower portions at both ends in the lateral direction, are provided in a first fuel cell stack. A plurality of cooling medium inlets, a plurality of cooling medium outlets, and other components are provided at lower portions on the long side and at upper portions on the long side respectively. A cooling medium flows from the lower portions to the upper portions through cooling medium flow passages to cool the power generation surface smoothly and reliably.
    Type: Grant
    Filed: October 2, 2007
    Date of Patent: July 17, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Narutoshi Sugita, Noriaki Osao, Takeshi Ushio
  • Patent number: 8222571
    Abstract: An apparatus for curing an electrolyte membrane of a fuel cell is disclosed, by which curing can be performed by preventing a surface of an electrolyte layer from swelling. The present invention includes an oven body, a vacuum sucking plate entering the oven body while the electrolyte membrane having an electro-catalyst liquid sprayed thereon is attached to an upper surface of the vacuum sucking plate, a magazine provided within the oven body to sequentially load a plurality of vacuum sucking plates to enter the oven body in a horizontal state, and an air-sucking terminal provided to a rear side of the magazine to sustain a vacuum state of the vacuum sucking plate by being connected to the vacuum sucking plate loaded in the magazine.
    Type: Grant
    Filed: September 29, 2006
    Date of Patent: July 17, 2012
    Assignees: Nordson Sangsan Ltd.
    Inventor: Byung Kook Yoon
  • Patent number: 8216740
    Abstract: A fuel cell including an MEA sealed by a multi-block copolymer gasket is disclosed. The self-assembling, nanophase-separated polymer exhibits higher corrosion resistance relative to typical silicone gaskets while providing a better seal of the MEA to the fuel cell housing than PTFE.
    Type: Grant
    Filed: December 12, 2006
    Date of Patent: July 10, 2012
    Assignee: Bose Corporation
    Inventors: Shawn J. Prevoir, Agota F. Fehervari
  • Patent number: 8211592
    Abstract: A fluid distribution element is provided for a fuel cell having a major surface facing a membrane electrode assembly (MEA) and one or more flow channels for transporting gas and liquid to and from the MEA. One or more regions of the major surface are overlaid with a super-hydrophilic corrosion-resistant layer comprising a fluoropolymer. Methods of making such a fluid distribution element are also provided.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: July 3, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Gayatri Vyas, Youssef M. Mikhail, Thomas A. Trabold
  • Patent number: 8206870
    Abstract: A membrane electrode assembly comprising two electrode separated by a polymer electrolyte membrane wherein the surfaces of the membrane are in contact with the electrodes so that the first electrode partially or totally covers the front of the membrane and the second electrode partially or totally covers the back of the membrane; two gasket layers wherein the first gasket layer partially covers the front of the membrane and/or the first electrode and the second gasket layer partially covers the back of the membrane and/or the second electrode the assembly also comprises a second gasket material on the front of the first gasket layer and on the back of the second gasket layer; each of the gasket layers comprises at least one recess; the second gasket material on the front of the first gasket layer is in contact with the second gasket material on the back of the second gasket layer.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: June 26, 2012
    Assignee: BASF Fuel Cell GmbH
    Inventors: Glen Hoppes, Raymond Puffer
  • Patent number: 8206871
    Abstract: A fuel cell assembly is disclosed, the fuel cell assembly including a pair of terminal plates, one terminal plate disposed at each end of the fuel cell assembly, a fuel cell disposed between a pair of end fuel cells and the terminal plates, and a thermally insulating, electrically conductive layer formed between the fuel cell and one of the terminal plates adapted to mitigate thermal losses from the end plate, and fluid condensation and ice formation in an end fuel cell. The end fuel cells of the fuel cell assembly have a membrane and/or a cathode having a thickness greater than an average thickness of a membrane and/or a cathode disposed in the fuel cell that may be used in conjunction with, or instead of, the insulating layer to further mitigate thermal losses from the end plate, and fluid condensation and ice formation in the end fuel cells.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: June 26, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Eric J. Connor, Daniel P. Miller, Wenbin Gu, Jeanette E. Owejan, Mark Mathias
  • Patent number: 8206872
    Abstract: An MEA for a fuel cell that employs multiple catalyst layers to reduce the hydrogen and/or oxygen partial pressure at the membrane so as to reduce the fluoride release rate from the membrane and reduce membrane degradation. An anode side multi-layer catalyst configuration is positioned at the anode side of the MEA membrane. The anode side multi-layer catalyst configuration includes an anode side under layer positioned against the membrane and including a catalyst, an anode side middle layer positioned against the anode side under layer and not including a catalyst and an anode side catalyst layer positioned against the anode side middle layer and opposite to the anode side under layer and including a catalyst, where the amount of catalyst in the anode side catalyst layer is greater than the amount of catalyst in the anode side under layer.
    Type: Grant
    Filed: July 26, 2007
    Date of Patent: June 26, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Annette M. Brenner, Hubert A. Gasteiger, Wenbin Gu, James Leistra, Brian A. Litteer, Han Liu, Susan G. Yan, Jingxin Zhang
  • Patent number: 8202668
    Abstract: A fuel cell device includes a housing containing a fuel processor that generates fuel gas and a fuel cell having electrodes forming an anode and cathode, and an ion exchange electrolyte positioned between the electrodes. The housing can be formed as first and second cylindrically configured outer shell sections that form a battery cell that is configured similar to a commercially available battery cell. A thermal-capillary pump can be operative with the electrodes and an ion exchange electrolyte, and operatively connected to the fuel processor. The electrodes are configured such that heat generated between the electrodes forces water to any cooler edges of the electrodes and is pumped by capillary action back to the fuel processor to supply water for producing hydrogen gas. The electrodes can be formed on a silicon substrate that includes a flow divider with at least one fuel gas input channel that can be controlled by a MEMS valve.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 19, 2012
    Assignee: STMicroelectronics, Inc.
    Inventor: Anthony M. Chiu
  • Patent number: 8202667
    Abstract: A fuel cell device includes a housing containing a fuel processor that generates fuel gas and a fuel cell having electrodes forming an anode and cathode, and an ion exchange electrolyte positioned between the electrodes. The housing can be formed as first and second cylindrically configured outer shell sections that form a battery cell that is configured similar to a commercially available battery cell. A thermal-capillary pump can be operative with the electrodes and an ion exchange electrolyte, and operatively connected to the fuel processor. The electrodes are configured such that heat generated between the electrodes forces water to any cooler edges of the electrodes and is pumped by capillary action back to the fuel processor to supply water for producing hydrogen gas. The electrodes can be formed on a silicon substrate that includes a flow divider with at least one fuel gas input channel that can be controlled by a MEMS valve.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 19, 2012
    Inventor: Anthony M. Chiu
  • Patent number: 8202662
    Abstract: This invention provides a membrane electrode assembly having sufficient water retention ability and a high level of battery performance even under a low humidification condition. This invention discloses a manufacturing method of a membrane electrode assembly which has catalytic layers on both surfaces of a polymer electrolyte membrane. This manufacturing method includes following processes: A coating process that a catalyst ink which contains catalyst loading particles, a polymer electrolyte and a solvent is coated on a single surface of each of two base substrates. An arranging process in which a polymer electrolyte membrane is arranged between the two base substrates in a way that each of the base substrate's surfaces on which the catalyst ink is coated faces the polymer electrolyte membrane. A transferring process in which the catalyst ink coated on the two base substrates is transferred to both surfaces of the polymer electrolyte membrane to form the catalytic layers.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: June 19, 2012
    Assignee: Toppan Printing Co., Ltd.
    Inventor: Shinichiro Yamagata
  • Patent number: 8202664
    Abstract: A membrane electrode assembly (MEA) is structured such that an anode is joined, via a carbon layer, to one surface of a solid polymer electrolyte membrane containing PBI and phosphoric acid and a cathode is joined to the other surface. The carbon layer is constituted by carbon powder and a first binder. Carbon black, carbon nanotube and the like may be used as carbon powder. The thickness of the carbon layer is preferably greater than that of the solid polymer electrolyte membrane.
    Type: Grant
    Filed: July 18, 2005
    Date of Patent: June 19, 2012
    Assignees: Sanyo Electric Co., Ltd., Samsung SDI Co., Ltd., Samsung Electronics Co., Ltd.
    Inventors: Kunihiro Nakato, Atsuo Sonai
  • Patent number: 8202665
    Abstract: An aspect of the present invention provides a fuel cell apparatus that includes at least one fuel cell stack including a plurality of unit fuel cells, each unit fuel cell including a membrane electrode assembly including an electrolyte membrane and electrodes arranged on each side the electrode membrane, and a pair of separators sandwiching the membrane electrode assembly, a casing arranged and configured to accommodate the fuel cell stack, and at least one elastic member arranged part or whole of the circumference of the fuel cell stack in contact with an inner wall of the casing.
    Type: Grant
    Filed: July 27, 2005
    Date of Patent: June 19, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Keita Iritsuki, Yasuhiro Numao
  • Publication number: 20120148937
    Abstract: A fuel cell membrane electrode assembly is provided comprising a polymer electrolyte membrane comprising a first polymer electrolyte and at least one manganese compound; and one or more electrode layers comprising a catalyst and at least one cerium compound. The membrane electrode assembly demonstrates an unexpected combination of durability and performance.
    Type: Application
    Filed: February 14, 2012
    Publication date: June 14, 2012
    Inventors: Daniel M. Pierpont, Steven J. Hamrock, Matthew H. Frey
  • Publication number: 20120148936
    Abstract: Catalyst ink comprising one or more catalyst materials, a solvent component and at least one acid, an electrode comprising at least one catalyst ink according to the present invention, a membrane-electrode assembly comprising at least one electrode according to the invention or comprising at least one catalyst ink according to the present invention, a fuel cell comprising at least one membrane-electrode assembly according to the invention and also a process for producing a membrane-electrode assembly according to the present invention.
    Type: Application
    Filed: August 18, 2010
    Publication date: June 14, 2012
    Applicant: BASF SE
    Inventors: Oemer Uensal, Sigmar Braeuninger
  • Patent number: 8197632
    Abstract: According to the present invention, an electrolyte membrane having recesses and projections on the surface thereof is obtained. In addition, a membrane-electrode assembly comprising the electrolyte membrane, in which the effective contact area between the electrolyte membrane surface and an electrode catalyst layer is increased, is obtained. An electrolyte membrane 1 which comprises a fluorine-based electrolyte is heated and pressed with the use of plates 10a and 10b each having recesses and projections 11 on the surface thereof such that recesses and projections 2a and 2b are formed on the surface of the electrolyte membrane 1. Thereafter, the electrolyte membrane 1 is subjected to a treatment for imparting ion exchange properties to an electrolyte polymer, such as hydrolysis, such that an electrolyte membrane 3 having recesses and projections on the surface thereof is obtained.
    Type: Grant
    Filed: June 18, 2007
    Date of Patent: June 12, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroshi Suzuki
  • Patent number: 8192891
    Abstract: A monopolar membrane electrode assembly (MEA) for a fuel cell, for example, includes: an electrolyte membrane; anode and cathode electrodes formed on opposite surfaces of the electrolyte membrane, respectively; current collecting bodies that form electrical paths of electricity generated from an electricity generation reaction between the anode and cathode electrodes and the electrolyte membrane; and sensing elements to measure changes in operation state conditions during electricity generation and electrical connection. Since temperature and fuel concentration in the monopolar MEA having the above structure are detected on a real time basis, appropriate action can be taken whenever an abnormal operation thereof is detected.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: June 5, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-kyun Kang, Jae-yong Lee, Chan-ho Pak
  • Patent number: 8187764
    Abstract: A fuel cell includes a cathode, an anode, an electrolyte membrane interposed between the cathode and the anode, and a porous layer containing a moisture retentive material. The anode includes an anode catalyst layer adjacent to the electrolyte membrane and an anode diffusion layer adjacent to the anode catalyst layer, and the porous layer is disposed between the anode catalyst layer and the electrolyte membrane. The performance of the fuel cell can be stably maintained even when a fuel supply is temporarily interrupted due to a malfunction of a pump or clogging of a fuel channel.
    Type: Grant
    Filed: February 6, 2006
    Date of Patent: May 29, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Ji-rae Kim, Hae-kyoung Kim, Seung-jae Lee, Hyuk Chang
  • Patent number: 8187765
    Abstract: A membrane electrode assembly according to the invention includes a solid polymer electrolyte membrane and an electrode joined to each of two sides of the solid polymer electrolyte membrane. The solid polymer electrolyte membrane is such that some or all of the protons included in the entire solid polymer electrolyte membrane, a band region, or a non-power generating region are ion exchanged with one or more cations selected from among complex cations, class four alkylammonium cations, and high valence cations. In addition or alternatively, the solid polymer electrolyte membrane includes an organo-metalloxane polymer obtained by impregnating the entire solid polymer electrolyte membrane, the non-power generating region, or the band region with an organo-metalloxane monomer that includes an ammonium cation or a class four ammonium cation at its terminus and then hydrolyzing and polycondensing the organo-metalloxane monomer.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: May 29, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kensaku Kodama, Fusayoshi Miura, Yu Morimoto, Manabu Kato, Kazutaka Kimura, Hiroo Yoshikawa, Toshiyuki Suzuki, Tsutomu Ochi
  • Patent number: 8187767
    Abstract: A polymer electrolyte membrane or gas diffusion electrode includes an ion-conducting polymeric material which includes moieties of formula (A) which are substituted on average with more than 1 and 3 or fewer groups (e.g. sulphonate groups) which provide ion-exchange sites and hydrogen atoms of said moieties are optionally substituted, wherein each X in said moieties of formula A independently represent an oxygen or sulphur atom. The ion conducting polymeric material is suitably prepared by controllably sulphonating a polymeric material using about 100% sulphuric acid at 34° C. to 36° C.
    Type: Grant
    Filed: April 1, 2004
    Date of Patent: May 29, 2012
    Assignee: Victrex Manufacturing Limited
    Inventors: Peter Charnock, John N. Devine, Brian Wilson
  • Patent number: 8182950
    Abstract: A metal oxide electrode catalyst which includes a metal oxide (Y) obtained by heat treating a metal compound (X) under an oxygen-containing atmosphere. The valence of the metal in the metal compound (X) is smaller than the valence of the metal in the metal oxide (Y). Further, the metal oxide electrocatalyst has an ionization potential in the range of 4.9 to 5.5 eV.
    Type: Grant
    Filed: July 23, 2008
    Date of Patent: May 22, 2012
    Assignee: Showa Denko K.K.
    Inventors: Tadatoshi Kurozumi, Toshikazu Shishikura, Hiroshi Konuma
  • Patent number: 8182951
    Abstract: To provide a fuel cell system provided with a polymer electrolyte fuel cell which is excellent in the power generation characteristics under high temperature and low or no humidity conditions. A fuel cell system 20 comprising a polymer electrolyte fuel cell 22 having a membrane/electrode assembly 10 having a catalyst layer containing a polymer (H) which has repeating units based on a perfluoromonomer having an alicyclic structure and has ion exchange groups, a temperature controlling means for controlling temperature of the polymer electrolyte fuel cell 22, a temperature sensor 38 for detecting temperature of the polymer electrolyte fuel cell 22, and a controlling device 40 for controlling the temperature controlling means based on temperature information from the temperature sensor 38 so that the maximum temperature of the polymer electrolyte fuel cell 22 becomes within the range of from 90 to 140° C.
    Type: Grant
    Filed: July 1, 2010
    Date of Patent: May 22, 2012
    Assignee: Asahi Glass Company, Limited
    Inventors: Satoru Hommura, Susumu Saito, Tetsuji Shimohira, Atsushi Watakabe, Junichi Tayanagi
  • Patent number: 8182659
    Abstract: Electrochemical cell comprises, in one embodiment, a proton exchange membrane (PEM), an anode positioned along one face of the PEM, and a cathode positioned along the other face of the PEM. An electrically-conductive, compressible, spring-like, porous pad for defining a fluid cavity is placed in contact with the outer face of the cathode or the outer face of the anode. The porous pad comprises a particulate or mat of one or more doped- or reduced-valve metal oxides, which are bound together with one or more thermoplastic resins.
    Type: Grant
    Filed: April 26, 2010
    Date of Patent: May 22, 2012
    Assignee: Giner Electrochemical Systems, LLC
    Inventors: Anthony B. LaConti, Larry L. Swette
  • Patent number: 8178250
    Abstract: A fuel cell device includes a housing containing a fuel processor that generates fuel gas and a fuel cell having electrodes forming an anode and cathode, and an ion exchange electrolyte positioned between the electrodes. The housing can be formed as first and second cylindrically configured outer shell sections that form a battery cell that is configured similar to a commercially available battery cell. A thermal-capillary pump can be operative with the electrodes and an ion exchange electrolyte, and operatively connected to the fuel processor. The electrodes are configured such that heat generated between the electrodes forces water to any cooler edges of the electrodes and is pumped by capillary action back to the fuel processor to supply water for producing hydrogen gas. The electrodes can be formed on a silicon substrate that includes a flow divider with at least one fuel gas input channel that can be controlled by a MEMS valve.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: May 15, 2012
    Assignee: STMicroelectronics, Inc.
    Inventor: Anthony M. Chiu
  • Patent number: 8178259
    Abstract: A gas diffusion media is described. The gas diffusion media comprises a conductive porous substrate; and a microporous layer; wherein a cathode effective transport length is in a range of about 700 to about 1900 ?m; wherein an overall thermal resistance is in a range of about 1.8 to about 3.8 cm2-K/W; and wherein a ratio of the cathode effective transport length to an anode effective transport length is greater than about 2.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: May 15, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Po-Ya Abel Chuang, Wenbin Gu
  • Publication number: 20120115064
    Abstract: It is an object of the present invention to provide a production process which can produce a fuel cell catalyst having excellent durability and high oxygen reducing activity. The process for producing a fuel cell catalyst including a metal-containing oxycarbonitride of the present invention includes a grinding step for grinding the oxycarbonitride using a ball mill, wherein the metal-containing oxycarbonitride is represented by a specific compositional formula; balls in the ball mill have a diameter of 0.1 to 1.0 mm; the grinding time using the ball mill is 1 to 45 minutes; the rotating centrifugal acceleration in grinding using the ball mill is 2 to 20 G; the grinding using the ball mill is carried out in such a state that the metal-containing oxycarbonitride is mixed with a solvent containing no oxygen atom in the molecule; and when the ball mill is a planetary ball mill, the orbital centrifugal acceleration mill is 5 to 50 G.
    Type: Application
    Filed: July 14, 2010
    Publication date: May 10, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Yasuaki Wakizaka, Ryuji Monden, Toshikazu Shishikura, Takuya Imai, Kenichiro Ota
  • Publication number: 20120115065
    Abstract: Provided are an ion-conductive composite electrolyte that improves ionic conductivity, a membrane-electrode assembly and an electrochemical device using the same, and a method for producing an ion-conductive composite electrolyte membrane. A proton-conductive composite electrolyte contains an electrolyte having a proton-dissociative group (—SO3H) and a compound having a Lewis acid group MXn-1, wherein the Lewis acid group and the proton-dissociative group interact with each other. The compound having the Lewis acid group is a Lewis acid compound MXn or a polymer having a Lewis acid group MXn-1. The electrolyte having a proton-dissociative group is, for example, a fullerene derivative. A proton-conductive composite electrolyte membrane is formed using a solvent having a donor number of 25 or less, and a membrane-electrode assembly using the same is suitable for use in a fuel cell.
    Type: Application
    Filed: July 16, 2010
    Publication date: May 10, 2012
    Applicant: SONY CORPORATION
    Inventors: Takuro Hirakimoto, Kazuaki Fukushima, Kenji Kishimoto
  • Patent number: 8173324
    Abstract: A platinum alloy catalyst PtX, wherein the atomic percent of platinum in the bulk alloy is from 5 to 50 at %, the remaining being X, characterised in that the atomic percent of platinum at the surface of the alloy is from 10 to 80 at %, the remainder being X, provided that the at % of platinum at the surface of the alloy is at least 25% greater than the at % of platinum in the bulk alloy is disclosed.
    Type: Grant
    Filed: July 22, 2008
    Date of Patent: May 8, 2012
    Assignee: Johnson Matthey Public Limited Company
    Inventors: Janet Mary Fisher, David Thompsett
  • Patent number: 8173321
    Abstract: The invention relates to a fuel cell having a membrane electrode arrangement (16) arranged between two separator plate units (44), a first fluid area (12) for distribution of a first fluid which is adjacent to one side of the membrane-electrode arrangement (16), a second fluid area (14) for distribution of a second fluid which is adjacent to a side of the membrane-electrode arrangement (16) opposite this side, with a separating wall (36) being arranged in at least one fluid area (12) and subdividing the fluid area (12) into at least one metering area (32) and one fluid subarea (34), with the at least one metering area (32) having a fluid connection to the adjacent fluid subarea (34) at at least one metering point (38), such that the first fluid can be metered from the metering area (32) through the metering point (38) into the adjacent fluid subarea (34).
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: May 8, 2012
    Assignee: Daimler AG
    Inventor: Felix Blank
  • Patent number: 8168348
    Abstract: The present invention relates to a process for the preparation of electrochemical catalysts of the polymer electrolytes-based fuel cells. With the process of the present invention, high catalyst activity while uniformly supporting a large amount of metal particles on a surface of a support can be achieved. Also, the present invention provides a process for the preparation of electrochemical catalysts of the polymer electrolytes-based fuel cells capable of using a small amount of toxic solvent without an additional high-temperature hydrogen annealing.
    Type: Grant
    Filed: December 4, 2007
    Date of Patent: May 1, 2012
    Assignee: Hanwha Chemical Corporation
    Inventors: Byungchul Jang, Youngsu Jiong, Youngtaek Kim
  • Publication number: 20120100455
    Abstract: A catalyst material comprising an electrically conducting support material, a proton-conducting, acid-doped polymer based on a polyazole salt, and a catalytically active material. A process for preparing the catalyst material. A catalyst material prepared by the process of the invention. A catalyst ink comprising the catalyst material of the invention and a solvent. A catalyst-coated membrane (CCM) comprising a polymer electrolyte membrane and also catalytically active layers comprising a catalyst material of the present invention. A gas diffusion electrode (GDE) comprising a gas diffusion layer and a catalytically active layer comprising a catalyst material of the invention. A membrane-electrode assembly (MEA) comprising a polymer electrolyte membrane, catalytically active layers comprising a catalyst material of the invention, and gas diffusion layers. And a fuel cell comprising a membrane-electrode assembly of the present invention.
    Type: Application
    Filed: October 21, 2011
    Publication date: April 26, 2012
    Applicant: BASF SE
    Inventors: Oemer UENSAL, Sigmar Bräuninger, Claudia Querner, Ekkehard Schwab
  • Publication number: 20120100454
    Abstract: A subassembly for a fuel cell includes a fuel cell plate having a first side and a second side. Each of the first side and the second side has a flow field disposed between a pair of headers. An insulating spacer abuts the first side of the fuel cell plate and is disposed adjacent a perimeter of the fuel cell plate. A unitized electrode assembly includes a subgasket, a membrane electrode assembly, and a pair of diffusion medium layers. The membrane electrode assembly has an electrolyte membrane sandwiched between a pair of electrodes. The membrane electrode assembly is sandwiched between the pair of diffusion medium layers. The subgasket surrounds, and is coupled to, the membrane electrode assembly. The subgasket abuts the insulating spacer. An elastomeric seal abuts the second side of the fuel cell plate.
    Type: Application
    Filed: October 21, 2010
    Publication date: April 26, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Matthew J. Beutel, Ronald L. James, Daniel P. Miller, Steven J. Spencer
  • Patent number: 8163406
    Abstract: A membrane-electrode assembly for solid polymer electrolyte fuel cell that exhibits superior dimensional stability to high temperature of hot water generated on power generation, and that has both excellent power generation performance and durability in a low temperature environment is provided. According to the membrane-electrode assembly for solid polymer electrolyte fuel cell in which a polyarylene-based copolymer having a specific repeating constitutional unit is used as a proton conductive membrane, the membrane-electrode assembly for solid polymer electrolyte fuel cell that exhibits superior dimensional stability to high temperature of hot water generated on power generation, and that has both excellent power generation performance and durability in a low temperature environment can be provided.
    Type: Grant
    Filed: December 26, 2007
    Date of Patent: April 24, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Nagayuki Kanaoka, Hiroshi Sohma, Ryohei Ishimaru
  • Publication number: 20120094210
    Abstract: Catalyst ink comprising one or more catalyst materials, a liquid medium and polymer particles comprising one or more proton-conducting polymers, an electrode comprising at least one catalyst ink according to the present invention, a membrane-electrode assembly comprising at least one electrode according to the invention or comprising at least one catalyst ink according to the present invention, a fuel cell comprising at least one membrane-electrode assembly according to the invention and also a process for producing a membrane-electrode assembly according to the present invention.
    Type: Application
    Filed: July 6, 2010
    Publication date: April 19, 2012
    Applicant: BASF SE
    Inventors: Oemer Uensal, Sigmar Braeuninger
  • Publication number: 20120088181
    Abstract: A fuel cell includes an ion conducting membrane having a first side and a second side. Characteristically, the ion conducting membrane has a sufficient amount of a stabilization agent and platinum to inhibit the loss of fluoride from the ion conducting membrane when compared to an ion conducting membrane having the same construction except for the presence of cerium ions.
    Type: Application
    Filed: October 7, 2010
    Publication date: April 12, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Frank Coms, Craig Gittleman, Annette Brenner, Ruichun Jiang
  • Patent number: 8148027
    Abstract: The present invention refers to a self-humidifying electrically conducting composite material for the manufacture of a fuel cell.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: April 3, 2012
    Assignees: Nanyang Technological University, Gashub Technology Pte Ltd
    Inventors: Ming Han, Siew Hwa Chan
  • Patent number: 8148026
    Abstract: Disclosed are a multi-layered electrode for fuel cell and a method for producing the same, wherein the electrode can be operated under non-humidification and normal temperature, the flooding of the electrode catalyst layer can be prevented, and the long-term operation characteristic can be increased due to the prevention of the loss of the electrode catalyst layer.
    Type: Grant
    Filed: October 31, 2005
    Date of Patent: April 3, 2012
    Assignee: Korea Institute of Science and Technology
    Inventors: In Hwan Oh, Eun Ae Cho, Hyoung-juhn Kim, Heung Yong Ha, Seong Ahn Hong, Tae Hoon Lim, Suk-Woo Nam, Sung Pil Yoon, Jonghee Han, Jaeyoung Lee, Hyung Chul Hahm
  • Publication number: 20120070765
    Abstract: A method of preparing an electrolyte membrane comprising a crosslinked object of a polybenzoxazine-based compound formed of a polymerized resultant product of a first monofunctional benzoxazine-based monomer or a second benzoxazine-based monomer multifunctional benzoxazine-based monomer with a crosslinkable compound.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 22, 2012
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Seong-woo CHOI, Hee-young Sun, Myung-jin Lee, Woo-sung Jeon
  • Patent number: 8137865
    Abstract: A plate member for a fuel cell is provided. The plate member for the fuel cell may be laminated together with a membrane-electrode assembly to constitute a fuel cell having cells and may be provided with a channel forming portion which forms a fluid channel to supply and discharge a fluid to/from the membrane-electrode assembly and/or the cells. The plate member for the fuel cell includes a first covering portion which covers the channel forming portion, and a second covering portion which covers an edge of the first covering portion together with a portion around the edge of the first covering portion.
    Type: Grant
    Filed: August 30, 2007
    Date of Patent: March 20, 2012
    Assignee: Toyota Jidosha Kabshiki Kaisha
    Inventor: Kazutaka Iizuka
  • Patent number: 8137858
    Abstract: A membrane electrode assembly (MEA) of the invention comprises an anode and a cathode and a proton conductive membrane therebetween, the anode and the cathode each comprising a patterned sheet of longitudinally aligned transition metal-containing carbon nanotubes, wherein the carbon nanotubes are in contact with and are aligned generally perpendicular to the membrane, wherein a catalytically active transition metal is incorporated throughout the nanotubes.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: March 20, 2012
    Assignee: UChicago Argonne, LLC
    Inventors: Di-Jia Liu, Junbing Yang
  • Patent number: 8137859
    Abstract: A membrane-electrode assembly for a fuel cell including an anode and a cathode disposed to face each other and a polymer electrolyte membrane disposed therebetween. The anode and the cathode include a conductive electrode substrate and a catalyst layer formed thereon. The catalyst layer includes ion conductive polymer particles and a catalytic metal. The resulting membrane-electrode assembly has an increased driving voltage.
    Type: Grant
    Filed: April 27, 2007
    Date of Patent: March 20, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chan-Gyun Shin, Sang-Il Han, In-Hyuk Son
  • Patent number: 8137857
    Abstract: A fuel cell (8a) having a matrix (11) for containing phosphoric acid (or other liquid) electrolyte with an anode catalyst (12) on one side and a cathode catalyst (13) on the other side includes an anode substrate (16a) in contact with the anode catalyst and a cathode substrate (17a) in contact with the cathode catalyst, the anode substrate being thicker than the cathode substrate by a ratio of between 1.75 to 1.0 and 3.0 to 1.0. Non-porous, hydrophobic separator plate assemblies (19) provide fuel flow channels (20) and oxidant flow channels (21) as well as demarcating the fuel cells.
    Type: Grant
    Filed: October 27, 2006
    Date of Patent: March 20, 2012
    Assignee: UTC Power Corporation
    Inventor: Richard D. Breault
  • Publication number: 20120064431
    Abstract: Polymer electrolyte-catalyst particles that are effective in preventing agglomeration of catalyst particles and polymer electrolyte particles, effective in the formation of ion pathways by polymer electrolyte particles and electron pathways by catalyst particles, and that are able to realize strong catalytic performance by improving the use efficiency of the catalyst particles and a manufacturing method thereof, electrodes formed using such composite structure particles, a membrane electrode assembly (MEA), and an electrochemical device are provided. First, the dispersion liquid in which an ion conducting polymer electrolyte material is dispersed and microparticles 1 are mixed, and the surfaces of the microparticles 1 are coated by an ion conducting polymer electrolyte layer 2 that does not contain a catalyst material.
    Type: Application
    Filed: June 4, 2010
    Publication date: March 15, 2012
    Applicant: SONY CORPORATION
    Inventors: Atsushi Sato, Kenji Kishimoto, Azumi Nakamura
  • Publication number: 20120064435
    Abstract: To provide a technique capable of improving the deterioration of a fuel cell due to a non-stationary operation (start/stop, fuel shortage) and ensuing a low cost. An anode-side catalyst composition for fuel cells, comprising a catalyst obtained by supporting a catalyst particle on an electrically conductive material and an ion exchange resin, wherein the catalyst particle is composed of a metal, a metal oxide, a partial metal oxide or a mixture thereof each being lower in both the oxygen reduction ability and the water electrolysis overvoltage than platinum and having a hydrogen oxidation ability.
    Type: Application
    Filed: April 22, 2010
    Publication date: March 15, 2012
    Inventors: Masashi Maruyama, Atsushi Sakamoto, Takuya Kosaka, Tomoyuki Kawaguchi
  • Publication number: 20120064434
    Abstract: A substantially crack-free electrode layer is described. The substantially crack-free electrode layer includes a substrate; and a substantially crack-free electrode layer on the substrate, the electrode layer comprising a catalyst, an ionomer, and a layered silicate reinforcement. Methods of making the electrode layer, electrode ink compositions, and membrane electrode assemblies incorporating the electrode layer are also described.
    Type: Application
    Filed: September 15, 2010
    Publication date: March 15, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Bradley M. Houghtaling, Jeanette E. Owejan
  • Patent number: 8133637
    Abstract: The fuel cells include electrode membrane assemblies having a nanoparticle catalyst supported on carbon nanorings. The carbon nanorings are formed from one or more carbon layers that form a wall that defines a generally annular nanostructure having a hole. The length of the nanoring is less than or about equal to the outer diameter thereof. The nanorings exhibit high surface area, high porosity, high graphitization, and/or facilitate mass transfer and electron transfer in fuel cell reactions.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: March 13, 2012
    Assignee: Headwaters Technology Innovation, LLC
    Inventors: Gongquan Sun, Shuihua Tang, Shiguo Sun, Qin Xin, Changkun Liu, Bing Zhou