Membrane Electrode Assembly (mea) Patents (Class 429/483)
  • Patent number: 8338052
    Abstract: A method for manufacturing a composite electrolyte membrane including: a first folding process of folding a laminate (10A) obtained by laminating and integrating an electrolyte sheet (11) having an electrolyte as an electrolyte layer and a reinforcing sheet (12) having a porous polymer material as a reinforcing layer, so that a part of a surface of the laminate (10A) lies on another part of the surface; an impregnation process of impregnating the electrolyte of the folded laminate (10B) into the reinforcing layer; and a hydrolysis process of hydrolyzing the electrolyte impregnated in the laminate (10C).
    Type: Grant
    Filed: November 11, 2008
    Date of Patent: December 25, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Hiroshi Suzuki
  • Publication number: 20120315568
    Abstract: Provided is a process for producing a fuel cell electrode catalyst having high catalytic activity which uses a transition metal, e.g., titanium, which process comprises thermal treatment at relatively low temperature, i.e., not including thermal treatment at high temperature (calcining) step. The process for producing a fuel cell electrode catalyst comprises a step (1) of mixing at least a transition metal-containing compound, a nitrogen-containing organic compound and a solvent to provide a catalyst precursor solution; a step (2) of removing the solvent from the catalyst precursor solution; and a step (3) of thermally treating a solid residue obtained in the step (2) at a temperature of 500 to 1100° C. to provide an electrode catalyst; wherein the transition metal-containing compound is partly or wholly a compound comprising at least one transition metal element (M1) selected from the group 4 and 5 elements of the periodic table as a transition metal element.
    Type: Application
    Filed: February 9, 2011
    Publication date: December 13, 2012
    Applicant: SHOWA DENKO K.K.
    Inventors: Kunchan Lee, Ryoko Konta, Masaki Horikita, Chunfu Yu, Yasuaki Wakizaka, Kenichiro Ota, Ryuji Monden, Kazunori Ichioka, Takashi Sato, Takuya Imai
  • Patent number: 8329356
    Abstract: A fuel cell microporous layer including a plurality of porous particles wherein at least 90% of intruded volume by mercury porosimetry is introduced into pore size diameters ranging from about 0.43 ?m to about 0.03 ?m.
    Type: Grant
    Filed: September 7, 2006
    Date of Patent: December 11, 2012
    Assignee: GM Global Technology Operations LLC
    Inventor: Jeanette E. O'Hara
  • Publication number: 20120308914
    Abstract: A method of preparing advanced membrane electrode assemblies (MEA) for use in fuel cells. A base polymer is selected for a base membrane. An electrode composition is selected to optimize properties exhibited by the membrane electrode assembly based on the selection of the base polymer. A property-tuning coating layer composition is selected based on compatibility with the base polymer and the electrode composition. A solvent is selected based on the interaction of the solvent with the base polymer and the property-tuning coating layer composition. The MEA is assembled by preparing the base membrane and then applying the property-tuning coating layer to form a composite membrane. Finally, a catalyst is applied to the composite membrane.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 6, 2012
    Applicant: LOS ALAMOS NATIONAL SECURITY, LLOC
    Inventors: Yu Seung Kim, Byran S. Pivovar
  • Patent number: 8323846
    Abstract: A fuel cell comprising a membrane-electrode assembly having an anode electrode face; an anode plate adjacent said membrane-electrode assembly electrode face and coupled thereto by a sealing gasket. The sealing gasket, electrode face and anode plate together define a fluid containment volume for delivery of anode fluid to the electrode face. A sheet of porous diffuser material is situated in the fluid containment volume and having at least one plenum defined between at least one lateral edge of the sheet of diffuser material and the sealing gasket. Fluid for delivery to an active surface of the membrane-electrode assembly may be delivered by the plenum and by diffusion through the diffuser material to such an extent that fluid flow channels in the anode plate are not required.
    Type: Grant
    Filed: April 7, 2005
    Date of Patent: December 4, 2012
    Assignee: Intelligent Energy Limited
    Inventor: Paul Alan Benson
  • Patent number: 8323847
    Abstract: The cathode catalyst for a fuel cell of the present invention includes M-Co-Ch where M is at least one metal selected from the group consisting of Ru, Rh, Pd, Os, Ir, Pt, and combinations thereof, and Ch is at least one element selected from the group consisting of S, Se, Te, and combinations thereof. The cathode catalyst of the present invention has high activity and excellent selectivity for reduction of an oxidant, and is capable of improving performance of a membrane-electrode assembly for a fuel cell, a fuel cell system including the same, and a membrane-electrode assembly including the same.
    Type: Grant
    Filed: June 27, 2007
    Date of Patent: December 4, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Alexey Alexandrovichserov, Chan Kwak, Si-Hyun Lee
  • Patent number: 8323463
    Abstract: A composite oxygen transport membrane having a dense layer, a porous support layer and an intermediate porous layer located between the dense layer and the porous support layer. Both the dense layer and the intermediate porous layer are formed from an ionic conductive material to conduct oxygen ions and an electrically conductive material to conduct electrons. The porous support layer has a high permeability, high porosity, and a high average pore diameter and the intermediate porous layer has a lower permeability and lower pore diameter than the porous support layer. Catalyst particles selected to promote oxidation of a combustible substance are located in the intermediate porous layer and in the porous support adjacent to the intermediate porous layer. The catalyst particles can be formed by wicking a solution of catalyst precursors through the porous support toward the intermediate porous layer.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: December 4, 2012
    Assignee: Praxair Technology, Inc.
    Inventors: Gervase Maxwell Christie, Jamie Robyn Wilson, Bart Antonie van Hassel
  • Publication number: 20120301811
    Abstract: A solid electrolyte film according to the present invention includes a resin having a repeating unit of the general formula (1) containing a bis(perfluoroalkanesulfonyl)methide moiety: where R represents a hydrogen atom or a methyl group; Y represents an oxygen atom or NH; Rf represents a C1-C4 perfluoroalkyl group; and W represents either a C2-C4 straight or C3-C4 branched alkylene group or a C5-C8 cyclic hydrocarbon group as a linking group, which may have a branched chain or a cross-linking structure. This solid electrolyte film combines high proton conductivity with low methanol permeability for prevention of methanol crossover and can suitably be used for a direct methanol fuel cell etc.
    Type: Application
    Filed: February 15, 2011
    Publication date: November 29, 2012
    Applicant: Central Glass Company, Limited
    Inventors: Katsutoshi Suzuki, Yoshihiko Obara, Toru Tanaka, Haruhiko Komoriya
  • Patent number: 8318373
    Abstract: An MEA comprising: (i) a central first conductive gas diffusion substrate having a first face and a second face; (ii) first and second catalyst layers each having a first and second face and wherein the first face of the first catalyst layer is in contact with the first face of the gas diffusion substrate and the first face of the second catalyst layer is in contact with the second face of the gas diffusion substrate; (iii) first and second electrolyte layers each having a first and second face and wherein the first face of the first electrolyte layer is in contact with the second face of the first catalyst layer and the first face of the second electrolyte layer is in contact with the second face of the second catalyst layer; (iv) third and fourth catalyst layers each having a first and second face and wherein the first face of the third catalyst layer is in contact with the second face of the first electrolyte layer and the first face of the fourth catalyst layer is in contact with the second face of the se
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: November 27, 2012
    Assignee: Johnson Matthey Fuel Cells Limited
    Inventors: Hanna Katariina Rajantie, Jonathan David Brereton Sharman, David Thompsett, David Emmerson Brown, Stephen Robert Tennison, Beverley Sowerby, Vlad Strelko
  • Patent number: 8318379
    Abstract: A membrane-electrode assembly for a mixed reactant fuel cell and a mixed reactant fuel cell system including the same. In one embodiment of the present invention, a membrane-electrode assembly for a mixed reactant fuel cell includes an anode catalyst layer, a cathode catalyst layer, a polymer electrolyte membrane disposed between the anode catalyst layer and the cathode catalyst layer, an electrode substrate disposed on at least one of the anode catalyst layer or the cathode catalyst layer, and an oxidant supply path penetrating the polymer electrolyte membrane, the anode catalyst layer, the cathode catalyst layer, and the electrode substrate and adapted to supply an oxidant.
    Type: Grant
    Filed: February 15, 2007
    Date of Patent: November 27, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Chan Kwak, Alexey AlexandrovichSerov, Myoung-Ki Min, Si-Hyun Lee
  • Publication number: 20120295181
    Abstract: A benzoxazine-based monomer, a polymer thereof, an electrode for a fuel cell including the same, an electrolyte membrane for a fuel cell including the same, and a fuel cell using the same. The aromatic ring may contain up to 2 nitrogens within the ring. Single ring and fused ring substituents are attached to the pendent nitrogen. The ring substituents may be heterocyclic.
    Type: Application
    Filed: July 27, 2012
    Publication date: November 22, 2012
    Applicant: SAMSUNG ELECTRONICS, CO., LTD.
    Inventors: Seongwoo Choi, Jungock Park, Wonmok Lee
  • Patent number: 8309218
    Abstract: Components for the manufacture of polymer electrolyte membrane fuel cells are provided, as well as apparatus and automatable methods for their manufacture by rotary die cutting and by lamination of various layers to form membrane electrode assemblies. A method and apparatus for performing the method are provided comprising die-cutting webs of catalyst decal materials or electrode materials to make first and second workpieces at first and second rotary die stations; holding the die-cut workpieces by action of sub-ambient air pressure to an endless perforated belt of first and second vacuum conveyors, typically before they are fully cut from the first and second webs; transporting first and second workpieces to opposing sides of a membrane in a laminating station; concurrently feeding the first and second workpieces into the laminating nip adjacent to the membrane, and laminating the first and second workpieces to the membrane.
    Type: Grant
    Filed: August 27, 2008
    Date of Patent: November 13, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Scott Alan Ripley, Donald Ivan Hirsch, William Frederic Bader
  • Patent number: 8309268
    Abstract: A sealed and/or reinforced membrane electrode assembly is disclosed. Encapsulation films, each comprising a backing layer and an adhesive layer, are positioned on the edges of at least one face of each gas diffusion substrate such that the adhesive layers impregnate into each gas diffusion substrate. Methods of forming sealed and/or reinforced membrane electrode assemblies are also disclosed.
    Type: Grant
    Filed: August 2, 2004
    Date of Patent: November 13, 2012
    Assignee: Johnson Matthey Fuel Cells Limited
    Inventors: Silvain Buche, Adam John Hodgkinson, Catherine Helen de Rouffignac, Jonathan David Brereton Sharman
  • Patent number: 8309269
    Abstract: A fuel cell of the present invention includes a membrane-electrode assembly (10), an anode separator (20), and a cathode separator (30). The membrane-electrode assembly (10) includes: a polymer electrolyte membrane (1); a first anode catalyst layer (2A) and an anode gas diffusion layer (4) sequentially stacked on one of main surfaces of the polymer electrolyte membrane (1); a second anode catalyst layer (2B) disposed between the polymer electrolyte membrane (1) and the first anode catalyst layer (2A); and a cathode catalyst layer (3) and a cathode gas diffusion layer (5) sequentially stacked on the other main surface of the polymer electrolyte membrane (1). The second anode catalyst layer (2B) contains a catalyst which adsorbs a sulfur compound.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: November 13, 2012
    Assignee: Panasonic Corporation
    Inventors: Haruhiko Shintani, Atsushi Nogi, Miho Gemba, Takashi Nakagawa, Yoichiro Tsuji
  • Patent number: 8308989
    Abstract: The invention relates to platinum-metal oxide composite particles and their use as electrocatalysts in oxygen-reducing cathodes and fuel cells. The invention particularly relates to methods for preventing the oxidation of the platinum electrocatalyst in the cathodes of fuel cells by use of these platinum-metal oxide composite particles. The invention additionally relates to methods for producing electrical energy by supplying such a fuel cell with an oxidant, such as oxygen, and a fuel source, such as hydrogen.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: November 13, 2012
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Radoslav Adzic, Junliang Zhang, Miomir Vukmirovic
  • Patent number: 8309267
    Abstract: A polymer electrolyte fuel cell (10) includes: a polymer electrolyte membrane (20); an electrode catalyst layer (90c) provided on one surface of the polymer electrolyte membrane (20); a separator (80c) having electrical conductivity, and shielding gas; and an electrode member (50c) interposed between the electrode catalyst layer (90c) and the separator (80c) and constituting an electrode together with the electrode catalyst layer (90c). The electrode member (50c) includes: first contact portions (111) in direct contact with the electrode catalyst layer (90c); second contact portions (112) in direct contact with the separator (80c); and gas diffusion paths (121) through which the gas flows. The electrode member (50c) is provided with a large number of pores (131) formed therein, and constituted by a plate member (100) having electrical conductivity and bent into a wave shape.
    Type: Grant
    Filed: October 23, 2009
    Date of Patent: November 13, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Shiro Tanaka
  • Publication number: 20120282540
    Abstract: The present invention discloses nanowires for use in a fuel cell comprising a metal catalyst deposited on a surface of the nanowires. A membrane electrode assembly for a fuel cell is disclosed which generally comprises a proton exchange membrane, an anode electrode, and a cathode electrode, wherein at least one or more of the anode electrode and cathode electrode comprise an interconnected network of the catalyst supported nanowires. Methods are also disclosed for preparing a membrane electrode assembly and fuel cell based upon an interconnected network of nanowires.
    Type: Application
    Filed: July 17, 2012
    Publication date: November 8, 2012
    Applicant: NANOSYS, INC.
    Inventors: Chunming Niu, Calvin Y.H. Chow, Stephen A. Empedocles, J. Wallace Parce
  • Patent number: 8304132
    Abstract: According to one embodiment, a fuel cell includes a membrane electrode assembly including a plurality of unit cells which are composed of an electrolyte membrane, an anode including anode catalyst layers arranged at intervals on one of surfaces of the electrolyte membrane, and anode gas diffusion layers stacked on the anode catalyst layers, and a cathode including cathode catalyst layers arranged at intervals on the other surface of the electrolyte membrane and opposed to the anode catalyst layers, respectively, and cathode gas diffusion layers stacked on the cathode catalyst layers, wherein a thickness of at least one of the anode catalyst layer and the cathode catalyst layer of one of the unit cells, which neighbor each other, gradually decreases toward the other of the unit cells.
    Type: Grant
    Filed: June 21, 2011
    Date of Patent: November 6, 2012
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Hisashi Chigusa, Katsumi Ichikawa, Hitoshi Koda, Akiko Fujisawa, Shinichi Onodera, Hiroaki Wakamatsu, Shinichi Kanbayashi, Naoyuki Takazawa
  • Patent number: 8304131
    Abstract: The invention provides a direct methanol fuel cell. The direct methanol fuel cell includes a membrane having a first surface and an opposite second surface. The membrane is sandwiched between a pair of electrodes. Two terminals of the membrane and a portion of the first and second surfaces adjacent to the two terminals are exposed from a pair of the electrodes. A pair of gas diffusion layers is respectively disposed on the pair of electrodes. A plurality of first border material layers having a plurality of holes is respectively physically embedded on the exposed first and second surfaces. A plurality of adhesion materials is respectively mounted on the border material layers, passing through the holes to contact the first and second surfaces of the membrane.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: November 6, 2012
    Assignee: Nan Ya PCB Corp.
    Inventors: Jiun-Ming Chen, Jyun-Yi Lai, Yu-Chih Lin
  • Patent number: 8304130
    Abstract: The present invention relates to a manufacturing method a membrane electrode assembly which has a low proton conduction resistance at a boundary of an electrolyte membrane and a catalyst layer. Catalyst ink including solvent, electrolyte 23 having proton permeability, and a carbon 26 supporting platinum is applied on both sides of an electrolyte membrane 4 having proton permeability. The solvent is evaporated for forming catalyst layers 10, 14. Voltage is applied between the catalyst layers 10, 14 under hydrogen atmosphere for forming proton conduction paths at boundaries between the catalyst layers 10, 14 and the electrolyte membrane 4.
    Type: Grant
    Filed: August 1, 2008
    Date of Patent: November 6, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Tohru Morita
  • Patent number: 8304119
    Abstract: In order to inhibit a gasket (1) adhered to a plate body such as a separator (3) of a fuel battery or the like from being adversely affected by an elution component from an adhesion means, the gasket has a main lip (11), a back surface seal portion (12) formed in a back surface of the main lip and closely contacted with a separator (a plate body to be adhered) (3), an adhesion portion (14) arranged in a position in an opposite side to a space (S) to be sealed with respect to the back surface seal portion (12) and adhered to a bottom portion (31a) of a gasket installation groove (31) of the separator (3) via an adhesive agent (2), and an adhesive agent sump (15) formed between the back surface seal portion (12) and the adhesion portion (14) and holding an excess adhesive agent (2a).
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: November 6, 2012
    Assignee: Nok Corporation
    Inventors: Yoshihiro Kurano, Takashi Mashimo
  • Patent number: 8304135
    Abstract: A method of manufacturing a proton-conductive polymer electrolyte membrane using polyvinyl alcohol (PVA) as a base material and having excellent proton conductivity and methanol blocking properties is provided. The method includes: heat-treating a precursor membrane including PVA and a water-soluble polymer electrolyte having a proton conductive group to proceed crystallization of the PVA; and chemically crosslinking the heat-treated precursor membrane with a crosslinking agent reactive with the PVA, to form a polymer electrolyte membrane in which a crosslinked PVA is a base material and protons are conducted through the electrolyte retained in the base material. The content of a water-soluble polymer except the PVA and the water-soluble polymer electrolyte in the precursor membrane is in a weight ratio of less than 0.1 with respect to the PVA.
    Type: Grant
    Filed: March 3, 2009
    Date of Patent: November 6, 2012
    Assignee: Nitto Denko Corporation
    Inventors: Tooru Sugitani, Hiroyuki Nishii, Otoo Yamada, Sakura Toshikawa
  • Patent number: 8304145
    Abstract: A diffusion medium for use in a PEM fuel cell including a porous spacer layer disposed between a plurality of perforated layers having variable size and frequency of perforation patterns, each perforated layer having a microporous layer formed thereon, wherein the diffusion medium is adapted to optimize water management in and performance of the fuel cell.
    Type: Grant
    Filed: February 19, 2010
    Date of Patent: November 6, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Christian Wieser, Paul D. Nicotera
  • Patent number: 8304140
    Abstract: A fuel cell is formed by stacking first cell units and second cell units alternately. An inlet buffer and an outlet buffer are formed on a surface of a first metal separator of the first cell unit. Bosses are provided in the inlet buffer and the outlet buffer of the first metal separator. An inlet buffer and an outlet buffer are formed on a surface of the second metal separator of the first cell unit. Continuous guide ridges are formed in the inlet buffer and the outlet buffer of the second metal separator. The bosses and the continuous guide ridges are provided at positions overlapped with each other in the stacking direction.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: November 6, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Seiji Sugiura, Yasuhiro Watanabe, Shuji Sato, Takahiro Takai, Masaaki Sakano
  • Patent number: 8283084
    Abstract: There is provided a hollow-shaped membrane electrode assembly for a fuel cell capable of improving power density per unit volume, wherein the hollow-shaped membrane electrode assembly for a fuel cell comprises a hollow solid electrolyte membrane, an outer electrode layer formed on the outer circumferential surface of the solid electrolyte membrane and an inner electrode layer formed on the inner circumferential surface of the solid electrolyte membrane, and wherein the hollow-shaped membrane electrode assembly for a fuel cell is formed in the shape of a spiral.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: October 9, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shigeaki Murata, Haruyuki Nakanishi, Masahiro Imanishi, Yoshihisa Tamura
  • Patent number: 8283081
    Abstract: The invention relates to a membrane-electrode assembly for a fuel cell with a proton-conducting membrane two catalyst layers adjoining both sides of the membrane, wherein the catalyst layers have an electrically conductive base material and at least one catalytic material deposited on the base material, and two gas diffusion layers adjoining the catalyst layers. The membrane and/or at least one of the catalyst layers and/or at least one of the gas diffusion layers includes at least one hydrogenatable material capable of binding hydrogen in a reversible exothermic hydrogenation operation by forming a hydride, depending on the temperature and/or pressure. The hydrogenatable material can be distributed in the gas diffusion layer and/or in the catalyst layer or can be present as a separate layer on at least one side of the gas diffusion electrode or the membrane.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: October 9, 2012
    Assignee: Volkswagen Aktiengesellschaft
    Inventors: Andreas Huth, Christiane Jacksch, Martin Thomas
  • Patent number: 8283086
    Abstract: A separator includes a plurality of first and second sandwiching sections, a plurality of first bridges connected thereto, and first and second fuel gas supply units integrally connected to the first bridges. Electrolyte electrode assemblies are sandwiched between the first and second sandwiching sections. A fuel gas supply channel is formed in each of the first bridges. A fuel gas supply passage extends through the first and second fuel gas supply units in a stacking direction. A pressure loss generator mechanism is provided in the fuel gas supply channel. The pressure loss generator mechanism generates a pressure loss over the entire fuel gas supply channel for distributing a fuel gas equally to each of the electrolyte electrode assemblies.
    Type: Grant
    Filed: October 17, 2007
    Date of Patent: October 9, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Tetsuya Ogawa, Koji Dan
  • Publication number: 20120251920
    Abstract: A benzoxazine-based monomer includes a halogen atom-containing functional group and a nitrogen-containing heterocyclic group. A polymer formed from the benzoxazine-based monomer may be used in an electrode for a fuel cell and electrolyte membrane for a fuel cell.
    Type: Application
    Filed: May 4, 2012
    Publication date: October 4, 2012
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Seongwoo Choi, Jungock Park
  • Publication number: 20120251921
    Abstract: A phosphorus containing monomer, a polymer thereof, an electrode for a fuel cell including the polymer, an electrolyte membrane for a fuel cell including the polymer, and a fuel cell including the electrode.
    Type: Application
    Filed: June 14, 2012
    Publication date: October 4, 2012
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Seongwoo Choi, Jungock Park
  • Patent number: 8277995
    Abstract: A fuel cell power generation system is disclosed. The fuel cell power generation system in accordance with an embodiment of the present invention includes: a stack, which produces electrical energy by reacting hydrogen with oxygen and in which the hydrogen is supplied as fuel and the oxygen is in the air; a hydrogen tank, which supplies fuel comprising hydrogen to the stack; and a heat transfer tape, which transfers heat generated from the stack to the hydrogen tank. The fuel cell power generation system can improve the efficiency of supplying hydrogen by supplying waste heat generated from the stack to the hydrogen tank through the use of the heat transfer tape without a heat supplying device and be applied to a mobile device due to the reduced volume of the fuel cell power generation system.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: October 2, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Sung-Han Kim, Jae-Hyuk Jang, Bo-Sung Ku, Craig Matthew Miesse, Hye-Yeon Cha, Eon-Soo Lee, Jae-Hyoung Gil
  • Patent number: 8277996
    Abstract: A fuel cell according to the present invention comprises a membrane electrode assembly, a bipolar plate for guiding a reaction gas to the membrane electrode assembly, two layers of coolant flow fields formed on the bipolar plane opposite to another plane on which a reaction gas flow field is formed, and an interlayer separation plate; wherein the interlayer separation plate separates the two layers of coolant flow fields and has permeability or jet orifices so as to allow a coolant to pass through.
    Type: Grant
    Filed: August 28, 2007
    Date of Patent: October 2, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Tsutomu Okusawa, Masaya Kozakai, Hidekazu Fujimura, Ko Takahashi
  • Patent number: 8278012
    Abstract: A membrane-electrode assembly for a fuel cell, which includes an anode and a cathode facing each other; and a polymer electrolyte membrane disposed between the anode and cathode. The cathode includes a first catalyst layer that includes catalyst particles, and a second catalyst layer that includes the catalyst particles and a pore-forming agent. The membrane-electrode assembly efficiently performs mass transfer and release, due to pores in the second catalyst layer.
    Type: Grant
    Filed: May 22, 2008
    Date of Patent: October 2, 2012
    Assignee: Samsung SDI Co, Ltd.
    Inventors: Tatyana Reshetenko, Hee-Tak Kim, Ho-Jin Kweon
  • Publication number: 20120244452
    Abstract: Methods of making reinforced membrane electrode assemblies are described. Catalyst coated free standing microporous layers and reinforced membrane electrode assemblies are also described.
    Type: Application
    Filed: March 25, 2011
    Publication date: September 27, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Ruichun Jiang, Matthew Dioguardi, Michael T. Flanagan, Craig S. Gittleman
  • Patent number: 8273498
    Abstract: In an electrolyte membrane (10) for a solid polymer fuel cell, sealing ribs (12) of a predetermined height made of an electrolyte resin is formed integrally with the electrolyte membrane (10). Using the electrolyte membrane, a membrane-electrode assembly (20) is formed, which is further processed into a fuel cell (30). Thus, an electrolyte membrane and a membrane-electrode assembly which are capable of improving the sealing characteristic when incorporated into a fuel cell are obtained. Besides, a fuel cell improved in the sealing characteristic is obtained.
    Type: Grant
    Filed: August 29, 2007
    Date of Patent: September 25, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroshi Suzuki, Yoshitaka Kino
  • Patent number: 8273499
    Abstract: A membrane-electrode assembly for a solid polymer electrolyte fuel cell is provided that uses a proton conductive membrane having high proton conductivity and also superior heat resistance and chemical durability. A membrane-electrode assembly for a solid polymer electrolyte fuel cell is provided with an anode on one side of a proton conductive membrane and a cathode on another side thereof, and the proton conductive membrane is a sulfonated polyarylene containing a structure expressed by the general formula (1) below: —Rs—Z—Rh??(1) In the formula (1), Z represents at least one structure selected from the group consisting of —CO—, —SO2—, and —SO—; Rs represents a direct bond or any divalent organic group; and Rh represents a nitrogen-containing heterocyclic group.
    Type: Grant
    Filed: May 29, 2009
    Date of Patent: September 25, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Takaki Nakagawa, Ryohei Ishimaru
  • Patent number: 8268512
    Abstract: In a manufacturing method for an electrode-membrane-frame assembly in a fuel cell, a first frame member and an electrolyte membrane member are arranged in a first mold for injection molding such that the edge of the electrolyte membrane member is arranged on the first frame member, a second mold is arranged to form a resin flow passage for forming a second frame member which is in contact with the first frame member by interposing the electrolyte membrane member, and a part of the edge of the electrolyte membrane member is pressed and fixed to the first frame member by a presser member mounted on the second mold and a molding resin material is injected into the resin flow passage to form a second frame member.
    Type: Grant
    Filed: March 18, 2011
    Date of Patent: September 18, 2012
    Assignee: Panasonic Corporation
    Inventors: Takashi Morimoto, Hiroki Kusakabe, Toshihiro Matsumoto, Norihiko Kawabata, Mitsuo Yoshimura
  • Publication number: 20120231367
    Abstract: A small molecule or polymer additive can be used in preparation of a membrane electrode assembly to improve its durability and performance under low relative humidity in a fuel cell. Specifically, a method of forming a membrane electrode assembly comprising a proton exchange membrane, comprises providing an additive comprising at least two nitrogen atoms to the membrane electrode assembly.
    Type: Application
    Filed: November 10, 2010
    Publication date: September 13, 2012
    Applicants: FORD MOTOR COMPANY, DAIMLER AG
    Inventors: Yunsong Yang, Jing Li, Keping Wang
  • Patent number: 8263286
    Abstract: A membrane-electrode assembly for polymer electrolyte fuel cells comprising a polymer electrolyte membrane and two gas diffusion electrodes being bonded to the membrane so that the membrane can be between them, in which assembly each gas diffusion electrode is comprised of an electrode catalyst layer and a gas diffusion layer, intermediate layer(s) being an ion conductor is/are arranged between the electrode catalyst layer(s) and the membrane, the ion conductor mainly comprises a block copolymer comprising a polymer block (A) having ion-conductive groups and a polymer block (B) having no ion-conductive group, both blocks phase-separate from each other, (A) forms a continuous phase, and the contact part(s) of the intermediate layer(s) with the polymer electrolyte membrane and the contact part(s) of the intermediate layer(s) with the electrode catalyst layer(s) are comprised of polymer block (A) having ion-conductive groups; and a polymer electrolyte fuel cell wherein the assembly is used.
    Type: Grant
    Filed: January 28, 2009
    Date of Patent: September 11, 2012
    Assignee: Kuraray Co., Ltd.
    Inventors: Shinji Nakai, Keiji Kubo, Tomohiro Ono, Hiroyuki Ohgi
  • Patent number: 8263285
    Abstract: A membrane-electrode assembly (10) is characterized by including an electrolytic membrane (11) having proton conductivity and a first electrode (12) jointed on the electrolytic membrane. The first electrode has a catalyst (121, 122) and a first ionomer (123) covering the catalyst and acting as a proton exchange group. A ratio of water-generation amount (mol/min) at rated output point of the membrane-electrode assembly/volume (cm3) of the first ionomer in the first electrode is 1350 or larger.
    Type: Grant
    Filed: February 5, 2008
    Date of Patent: September 11, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasushi Araki, Kimihide Horio
  • Patent number: 8257872
    Abstract: A device to produce electricity by a chemical reaction without the addition of liquid electrolyte comprises an anode electrode, a polymer membrane electrolyte fabricated to conduct hydroxyl (OH—) ions, the membrane being in physical contact with the anode electrode on a first side of the membrane, and a cathode electrode in physical contact with a second side of the membrane. The anode electrode and cathode electrode contain catalysts, and the catalysts are constructed substantially entirely from non-precious metal catalysts. Water may be transferred to the cathode side of the membrane from an external source of water.
    Type: Grant
    Filed: February 3, 2011
    Date of Patent: September 4, 2012
    Assignee: CellEra, Inc.
    Inventors: Shimshon Gottesfeld, Dario Dekel, Ziv Gottesfeld, Stanislav David Simakov
  • Publication number: 20120219873
    Abstract: This invention relates to fuel cells, particularly proton exchange membrane fuel cells, more particularly to proton exchange membrane fuel cells employing nanocomposite sulphonated polystyrene-butadiene rubber-carbon nanoball (SPSBR-CNB) membranes as an electrolyte.
    Type: Application
    Filed: June 22, 2010
    Publication date: August 30, 2012
    Inventors: Sunny Esayegbemu Iyuke, Hendrik Christoffel Van Zyl Pienaar, Ambali Saka Abdulkareem, Ayo Samuel Afolabi, Christopher Avwoghokoghene Idibie
  • Patent number: 8252481
    Abstract: According to the invention, a fuel cell system features a fuel cell (14) having a solid polymer electrolyte membrane (4), and an antioxidant residing in or contacting the solid polymer electrolyte membrane (4), for inactivating active oxygen.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: August 28, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Masashi Ito
  • Patent number: 8252476
    Abstract: The present invention prevents a flooding phenomenon by a simple method and receives a relatively small influence by a proton transfer in the catalyst layer so as to provide an MEA having an excellent power generation performance. An MEA of the present invention has an anode catalyst layer and a cathode catalyst layer on surfaces of the polymer electrolyte membrane and catalyst loaded particles are included in the anode catalyst layer and the cathode catalyst layer. It is a feature of the present invention that the cathode catalyst layer has more catalysts in a surface region than in a boundary region with the polymer electrolyte membrane in the thickness direction, whereas the anode catalyst layer has more catalysts in a boundary region than in a surface region in the thickness direction.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: August 28, 2012
    Assignee: Toppan Printing Co., Ltd.
    Inventor: Naoko Uehara
  • Patent number: 8252712
    Abstract: An ink composition for forming a fuel cell electrode includes a catalyst composition, a polymeric binder, a polymeric dispersant, and a solvent. The polymeric dispersant includes a perfluorocyclobutyl-containing polymer.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: August 28, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Roland J. Koestner, Sean M Mackinnon, Timothy J. Fuller, Jeanette E. Owejan
  • Patent number: 8247134
    Abstract: A fuel cell is provided. The fuel cell includes a medium member. Unit areas are formed at both sides of the medium member. The unit areas include outlets and inlets which allow a fuel to flow. First path members which have first flowpaths for circulating the fuel are disposed at the unit areas. Membrane-electrode assemblies are connected to the respective first path members. Second path members which have second flowpaths for circulating air are connected to the respective membrane-electrode assemblies.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: August 21, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seong-Jin An, Hee-Tak Kim, Seung-Shik Shin, Yeong-Chan Eun, Ho-Jin Kweon
  • Patent number: 8247137
    Abstract: Separators (5A, 5B, 6) and membrane-electrode assemblies (2) of a fuel cell stack (1) are alternately stacked in a guide box (40). The separators (5A, 5B, 6) each have groove-like gas paths (10A, 10B). Powder of an adhesive agent (7) is adhered in advance to the surfaces of the separators (5A, 5B, 6), except the gas paths (10A, 10B), through photosensitive drums (31A, 31B) to which the powder is adsorbed in a given pattern. The separators (5A, 5B, 6) and the membrane-electrode assemblies (2), stacked in the guide box (40), are heated and compressed by a press (43) and heaters (40C) to obtain a unitized fuel cell stack (1).
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: August 21, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akira Fujiki, Yukihiro Maekawa, Takeharu Kuramochi, Masahiko Katsu, Takayuki Hirao, Takeshi Shimizu, Masanori Iwamoto, Sadao Miki, Haruhiko Suzuki, Yoshiki Muto, Kaoru Eguchi, Masahiro Omata, Hiroshi Saitou
  • Patent number: 8247521
    Abstract: New multifunctional aromatic copolymers bearing pyridine or pyrimidine units either in the main chain or side chain and single wall carbon nanotubes or multi wall carbon nanotubes as side chain pendants have been prepared. These multifunctional materials will combine both high proton and electrical conductivity due to the existence of polar pyridine or pyrimidine groups and carbon nanotubes within the same chemical structure. The prepared multifunctional materials can be used in the catalyst ink of the electrodes in high temperature PEM fuel cells.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: August 21, 2012
    Assignee: Advent Technologies
    Inventors: Christos Chochos, Nora Gourdoupi, Nikolas Triantafyllopoulos, Joannis Kallitsis
  • Patent number: 8241815
    Abstract: A solid oxide fuel cell (SOFC) device having a gradient interconnect is provided, including a first gradient interconnect having opposing first and second surfaces, a first trench formed over the first surface of the first gradient interconnect, a second trench formed over the second surface of the first gradient interconnect, and an interconnecting tunnel formed in the first gradient interconnect for connecting the first and second trenches. A first porous conducting disc is placed in the first trench and partially protrudes over the first surface of the first gradient interconnect. A first sealing layer is placed over the first surface of the first gradient interconnect and surrounds the first trench. A membrane electrode assembly (MEA) is placed over the first surface of the first gradient interconnect and contacted with the first porous conducting disc and the first sealing layer.
    Type: Grant
    Filed: April 2, 2010
    Date of Patent: August 14, 2012
    Assignee: National Taiwan University of Science and Technology
    Inventors: Dong-Hau Kuo, Ren-Kae Shiue, Hung-Li Hsu, Ming-Hsiung Wei
  • Patent number: 8241814
    Abstract: A solid polymer electrolyte membrane having (a) an ion exchange material and (b) dispersed in said ion exchange material, a hydrogen peroxide decomposition catalyst bound to a carbon particle support, wherein the hydrogen peroxide decomposition catalyst comprises (i) polyvinylphosphonic acid and (ii) transition metal with multiple oxidation states or a lanthanide metal with multiple oxidation states.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: August 14, 2012
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Vincent A. Durante, William E. Delaney
  • Patent number: 8232024
    Abstract: A gasket formed of compressible material and having a first sealing surface and a second sealing surface for providing a fluid seal between a first component and a second component, a plurality of cavities provided within the gasket proximate the first and/or second sealing surfaces and extending over at least a first portion of the gasket to provide increased compressibility of the gasket in the first portion.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: July 31, 2012
    Assignee: Intelligent Energy Limited
    Inventors: Peter D. Hood, Simon E. Foster