Having Sulfonic Acid Groups Patents (Class 429/493)
  • Publication number: 20140329162
    Abstract: A membrane electrode assembly for a fuel cell is provided that includes a membrane, electrodes on both sides of the membrane, respectively, and sub-gaskets bonded to the edges of the electrodes, respectively. In particular, the sub-gasket may be bonded to the membrane at a predetermined distance from the edge of the electrode.
    Type: Application
    Filed: December 10, 2013
    Publication date: November 6, 2014
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Young Taek Kim, Inchul Hwang, Nak Hyun Kwon, Ju Ho Lee, Sang-Uk Kim, Jin-Young Kim, Dong Il Kim, Chang-Hyeong Lee
  • Patent number: 8871406
    Abstract: A highly proton conductive polymer electrolyte composite membrane for a fuel cell is provided. The composite membrane includes crosslinked polyvinylsulfonic acid. The composite membrane is produced by impregnating a mixed solution of vinylsulfonic acid as a monomer, a hydroxyl group-containing bisacrylamide as a crosslinking agent and a photoinitiator or thermal initiator into a microporous polymer support, polymerizing the monomer, and simultaneously thermal-crosslinking or photo-crosslinking the polymer to form a chemically crosslinked polymer electrolyte membrane which is also physically crosslinked with the porous support. Further provided is a method for producing the composite membrane in a simple manner at low cost as well as a fuel cell using the composite membrane.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: October 28, 2014
    Assignee: Korea Institute of Energy Research
    Inventors: Young Woo Choi, Chang Soo Kim, Gu Gon Park, Seok Hee Park, Sung Dae Lim, Tae Hyun Yang, Young Gi Yoon, Min Jin Kim, Kyoung Youn Kim, Young Jun Sohn, Won Yong Lee, Mi-Soon Lee
  • Patent number: 8835076
    Abstract: In a fuel cell 1 including a membrane electrode assembly 2 which includes a reinforcing-membrane-type electrolyte membrane 10A, a dry-up on the anode side is suppressed by actively forming a water content gradient in the electrolyte membrane to enhance water back-diffusion effect from the cathode side to the anode side. For that purpose, two sheets of expanded porous membranes 12a and 12b having different porosities are buried, as reinforcing membranes, in electrolyte resin 11 to obtain the reinforcing-membrane-type electrolyte membrane 10A. The reinforcing-membrane-type electrolyte membrane 10A is used to form the membrane electrode assembly 2, which is sandwiched by separators 20 and 30 such that the side of a reinforcing membrane 12b with a larger porosity becomes the cathode side, thus obtaining the fuel cell 1. When one sheet of the reinforcing membrane is buried, the reinforcing membrane is offset to the anode side to be buried in the electrolyte resin.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: September 16, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kyojiro Inoue, Shinya Takeshita
  • Patent number: 8802320
    Abstract: An electrolytic membrane for a fuel cell including a crystalline organic and inorganic porous composite, an electrode for a fuel cell including a crystalline organic and inorganic porous composite, and a fuel cell including the electrolytic membrane and/or the electrode.
    Type: Grant
    Filed: October 12, 2011
    Date of Patent: August 12, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seong-woo Choi, Ki-hyun Kim, Kyo-sung Park, Seon-ah Jin
  • Patent number: 8802319
    Abstract: The present invention relates to block copolymer electrolyte composite membranes with improved ionic conductivity. The block copolymer electrolyte composite membrane in accordance with an aspect of the present invention can comprise a plate-like inorganic filler as surface-modified with a sulfonic group; and a block copolymer comprising at least one selected from the group consisting of a sulfonic group, a carbonic acid group, and a phosphoric acid group.
    Type: Grant
    Filed: November 7, 2011
    Date of Patent: August 12, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Chong-Min Koo, Soon-Man Hong, Seung-Sang Hwang, Kyung-Youl Baek, Jang-Woo Lee, Jin-Hong Lee, Youn-Duk Park, Kyung-ho Min, Ji-Young Jung
  • Publication number: 20140199611
    Abstract: The present invention relates to a novel proton-conducting polymer membrane based on polyazole polymers which, owing to their outstanding chemical and thermal properties, can be used widely and are suitable in particular as polymer electrolyte membrane (PEM) for producing membrane electrode assemblies or so-called PEM fuel cells.
    Type: Application
    Filed: February 18, 2013
    Publication date: July 17, 2014
    Applicant: BASF SE
    Inventors: Brian Benicewicz, Guoqing Qian, Max Molleo, Harry Joseph Pleohn, Xiaoming Chen, Jörg Belack, Gordon Calundann
  • Patent number: 8771897
    Abstract: Disclosed herein is an electrolyte membrane for a fuel cell. The electrolyte membrane includes a blend of polymers with different degrees of sulfonation. The electrolyte membrane can exhibit excellent effects such as improved long-term cell performance and good long-term dimensional stability while at the same time solving the problems of conventional hydrocarbon electrolyte membranes. Further disclosed are a membrane-electrode assembly and a fuel cell including the electrolyte membrane.
    Type: Grant
    Filed: July 20, 2011
    Date of Patent: July 8, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Hyoung-Juhn Kim, Soo-Kil Kim, Eun Ae Cho, Jong Hyun Jang, Sung Pil Yoon, In Hwan Oh, Jonghee Han, Seong Ahn Hong, Suk-Woo Nam, Tae Hoon Lim
  • Publication number: 20140154612
    Abstract: A polymer-electrolyte membrane is presented. The polymer-electrolyte membrane comprises an acid-functional polymer, and an additive incorporated in at least a portion of the membrane. The additive comprises a fluorinated cycloaliphatic additive, a hydrophobic cycloaliphatic additive, or combinations thereof, wherein the additive has a boiling point greater than about 120° C. An electrochemical fuel cell including the polymer-electrolyte membrane, and a related method, are also presented.
    Type: Application
    Filed: November 30, 2012
    Publication date: June 5, 2014
    Applicant: General Electric Company
    Inventors: Lakshmi Krishnan, Gary William Yeager, Grigorii Lev Soloveichik
  • Publication number: 20140154594
    Abstract: Disclosed are a polymer electrolyte membrane showing high ion conductivity even under the condition of low humidity and high temperature and a method for manufacturing the same. The polymer electrolyte membrane of the present invention comprises a porous substrate, a self proton conducting material dispersed in the porous substrate, and an ion conductor impregnated in the porous substrate. The self proton conducting material comprises an inorganic particle functionalized with an azole ring.
    Type: Application
    Filed: July 30, 2012
    Publication date: June 5, 2014
    Applicant: KOLON INDUSTRIES, INC.
    Inventors: Dong Hoon Lee, Moo-Seok Lee, Na Young Kim, Yong-Cheol Shin
  • Publication number: 20140134519
    Abstract: An electrolyte membrane for a fuel cell includes: an inorganic ionic conductor including a trivalent metal element, a pentavalent metal element, phosphorous, and oxygen; and a polymer.
    Type: Application
    Filed: May 1, 2013
    Publication date: May 15, 2014
    Applicants: National University Corporation Nagoya University, Samsung Electronics Co., Ltd.
    Inventors: Samsung Electronics Co., Ltd., National University Corporation Nagoya University
  • Patent number: 8691469
    Abstract: A proton exchange membrane for a fuel cell, comprising a graft (co)polymer comprising a main chain and grafts comprising at least one proton acceptor group and at least one proton donor group.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: April 8, 2014
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Thomas Berthelot, Marie-Claude Clochard
  • Publication number: 20140072900
    Abstract: A membrane electrode assembly for fuel cells includes a proton conducting membrane having a first side and a second side. The proton conducting membrane in turn includes a first polymer including cyclic polyether groups and a second polymer having sulfonic acid groups. The membrane electrode assembly further includes an anode disposed over the first side of the proton conducting layer and a cathode catalyst layer disposed over the second side of the proton conducting layer.
    Type: Application
    Filed: September 12, 2012
    Publication date: March 13, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Timothy J. Fuller, Ion C. Halalay, Lijun Zou, Michael R. Schoeneweiss
  • Patent number: 8652706
    Abstract: A polymer electrolyte membrane for a fuel cell includes a polymer matrix comprising a cross-linked curable oligomer with nano-sized proton conductive polymer particles in the polymer matrix. The curable oligomer may include unsaturated functional groups at each end of a chain, and may further include 3 to 14 ethylene oxides. The proton conductive polymer nano particles may include fluorine-based proton conductive polymer nano particles, non-fluorine-based proton conductive polymer nano particles, hydrocarbon-based proton conductive polymer nano particles, and combinations.
    Type: Grant
    Filed: November 29, 2006
    Date of Patent: February 18, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventor: Min-Kyu Song
  • Patent number: 8647793
    Abstract: A solid proton conductor for a fuel cell and a fuel cell employing the solid proton conductor, the solid proton conductor including a sulfonated polymer, and a hydrophilic polymer having an acid group, constituting a polymer solvent, providing a proton mobile path.
    Type: Grant
    Filed: December 17, 2009
    Date of Patent: February 11, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung-jin Lee, Suk-gi Hong
  • Patent number: 8632926
    Abstract: Provided are a solid proton conductor and a fuel cell including the solid proton conductor. The solid proton conductor includes a polymer providing a proton source, and a polymer solvent providing a proton path.
    Type: Grant
    Filed: July 8, 2008
    Date of Patent: January 21, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Myung-jin Lee, Moon-sung Kang
  • Publication number: 20140004445
    Abstract: A bilayer complex proton exchange membrane and a membrane electrode assembly are provided. The bilayer complex proton exchange membrane includes a first complex structure and a second complex structure. The first complex structure includes 0.001-10 wt % of a graphene derivative with two dimension configuration, and 99.999-90 wt % of organic material. The organic material includes polymer material having sulfonic acid group or phosphate group. The second complex structure includes 0.5-30 wt % of inorganic material and 99.5-70 wt % of organic material, wherein a surface area of the inorganic material is 50-3000 m2/g, and the organic material includes polymer material with sulfonic acid group or phosphate group.
    Type: Application
    Filed: November 13, 2012
    Publication date: January 2, 2014
    Applicant: INDUSTRIAL TECHNOLOGY RESEARCH INSTITUTE
    Inventors: Li-Duan Tsai, Chiu-Ping Huang, Li-Fu Huang, Shih-Wen Chen
  • Patent number: 8617764
    Abstract: Provided are an ion conductive resin fiber, an ion conductive hybrid membrane, a membrane electrode assembly and a fuel cell. The ion conductive resin fiber comprises an inner layer including an ion conductive resin; and an outer layer including an ion conductive resin having larger EW than the ion conductive resin of the inner layer, and surrounding the inner layer. The ion conductive resin fiber and the ion conductive hybrid membrane are excellent in ion conductivity, polar solvent stability and dimensional stability under low humidity conditions. The fuel cell manufactured using the same has advantages of stable operation and management of a system at ease, removal or reduction of components related to water management, and even in case of low relative humidity, operation at high temperature of 80° C. or higher.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: December 31, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Go-Young Moon, Won-Ho Lee, Sang-Hyun Lee, Young-Il Choi, Hyuk Kim
  • Patent number: 8603698
    Abstract: Disclosed is an electrolyte for fuel cells, which is mainly composed of a copolycondensate of a polyimide having an alkoxysilyl group at an end and an alkoxysilane having an ion-conducting group. Also disclosed are an electrolyte membrane for fuel cells, a binder for fuel cells and a membrane electrode assembly for fuel cells, each using the electrolyte, and a fuel cell using such a membrane electrode assembly for fuel cells. The electrolyte enables to obtain an electrolyte membrane, a binder and a membrane electrode assembly, each having high ion conductivity, high strength, high toughness, low swelling and low fuel permeability suitable for fuel cells. By using such an electrolyte, there can be obtained a low-cost fuel cell having high output power and high durability.
    Type: Grant
    Filed: April 1, 2008
    Date of Patent: December 10, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Nobuo Kawada
  • Patent number: 8597855
    Abstract: An electrolyte material, which comprises a polymer (H) having ion exchange groups converted from precursor groups in a polymer (F) having repeating units (A) having a precursor group represented by the formula (g1) and repeating units (B) based on a perfluoromonomer having a 5-membered ring, and having a density of at most 2.03 g/cm3, the polymer (H) having an ion exchange capacity of from 1.3 to 2.3 meq/g dry resin: wherein Q1 and Q2 are a perfluoroalkylene group having an etheric oxygen atom, or the like, and Y is F or the like; the electrolyte material being suitable for a catalyst layer of the membrane/electrode assembly; the membrane/electrode assembly being excellent in power generation characteristics under low or no humidity conditions and under high humidity conditions.
    Type: Grant
    Filed: July 26, 2010
    Date of Patent: December 3, 2013
    Assignee: Asahi Glass Company, Limited
    Inventors: Satoru Hommura, Susumu Saito, Tetsuji Shimohira, Atsushi Watakabe
  • Publication number: 20130316268
    Abstract: A composition for filling an ion exchange membrane including a first aromatic vinyl monomer having a halogenated alkyl group or a quaternary ammonium salt group, a method of preparing the ion exchange membrane, an ion exchange membrane prepared using the method, and a redox flow battery including the ion exchange membrane.
    Type: Application
    Filed: December 19, 2012
    Publication date: November 28, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Myung-jin LEE, Joung-won PARK, Duk-jin OH, Doo-yeon LEE, Moon-sung KANG, Ji-su KIM, Hyeon-jung CHA
  • Publication number: 20130309596
    Abstract: An electrolyte membrane is prepared from a liquid composition comprising at least one member selected from the group consisting of trivalent cerium, tetravalent cerium, bivalent manganese and trivalent manganese; and a polymer with a cation-exchange group. The liquid composition is preferably one containing water, a carbonate of cerium or manganese, and a polymer with a cation-exchange group, and a cast film thereof is used as an electrolyte membrane to prepare a membrane-electrode assembly. The present invention successfully provides a membrane-electrode assembly for polymer electrolyte fuel cells being capable of generating the electric power in high energy efficiency, having high power generation performance regardless of the dew point of the feed gas, and being capable of stably generating the electric power over a long period of time.
    Type: Application
    Filed: July 23, 2013
    Publication date: November 21, 2013
    Applicant: ASAHI GLASS COMPANY, LIMITED
    Inventors: Hisao KAWAZOE, Eiji Endoh, Hideki Nakagawa, Shinji Terazono
  • Patent number: 8586266
    Abstract: First, second and third dopes each of which contains a solid electrolyte and an organic solvent are cast from a casting die provided with a feed block to a moving belt. A three-layer casting membrane is peeled off from the belt as a three-layer membrane containing the organic solvent. After being dried in a tenter device, the membrane still containing the organic solvent is contacted with a liquid which is a poor solvent of the solid electrolyte and having lower boiling point than the organic solvent. Thereafter, the membrane is transported to a drying chamber and dried while being supported by the plural rollers.
    Type: Grant
    Filed: July 5, 2006
    Date of Patent: November 19, 2013
    Assignee: FUJIFILM Corporation
    Inventors: Hiroshi Miyachi, Ryo Takeda
  • Patent number: 8580455
    Abstract: Crosslinked polybenzoxazines obtained by crosslinking a monofunctional first benzoxazine monomer and a multifunctional second benzoxazine monomer with a crosslinkable compound, an electrolyte membrane including the same, a method of preparing the electrolyte membrane, a fuel cell including the electrolyte membrane having the crosslinked polybenzoxazines using the method. The crosslinked polybenzoxazines have strong acid trapping capability, improved mechanical properties, and excellent chemical stability as it does not melt in polyphosphoric acid. Even as the amount of impregnated proton carrier and the temperature are increased, mechanical and chemical stability is highly maintained, and thus the electrolyte membrane can be effectively used for fuel cells at a high temperature.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: November 12, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seong-woo Choi, Hee-young Sun, Woo-sung Jeon
  • Publication number: 20130295488
    Abstract: Provided are a polymer electrolyte membrane exhibiting a relatively high ion conductivity, and a method for producing the polymer electrolyte membrane. The polymer electrolyte membrane of the present invention is an ion-conducting polymer electrolyte membrane including a polymer. The polymer includes a hydrophobic main chain and side chains bonded to the main chain. Each of the side chains includes a hydrophobic main chain portion and a plurality of side chain portions bonded to the main chain portion. Each of the side chain portions includes a hydrophobic first portion bonded to the main chain portion, and a second portion bonded to the first portion. The second portion includes an ion-conducting group.
    Type: Application
    Filed: May 2, 2013
    Publication date: November 7, 2013
    Applicants: JAPAN ATOMIC ENERGY AGENCY, NITTO DENKO CORPORATION
    Inventors: Yutaka KISHII, Hideyuki EMORI, Hiroyuki NISHII, Shin HASEGAWA, Shin-ichi SAWADA, Yasunari MAEKAWA
  • Patent number: 8574462
    Abstract: The invention relates to polyelectrolytes having backbone aromatic groups, and in particular to aromatic backbone group polyelectrolytes having high levels of sulfonation as well as cross-linking functionality. Preferably the polyelectrolyte backbone is free of linear alkyl groups.
    Type: Grant
    Filed: December 5, 2007
    Date of Patent: November 5, 2013
    Assignee: Arkema Inc.
    Inventors: James T. Goldbach, James E. Copenhafer, David A. Mountz, Scott R. Gaboury
  • Publication number: 20130280636
    Abstract: Disclosed are an electrode for a fuel cell, a method of preparing the fuel cell electrode, a membrane-electrode assembly including the fuel cell electrode, and a fuel cell system including the fuel cell electrode. The electrode includes an electrode substrate having a conductive substrate and a layer-by-layer assembled multi-layer disposed on a side of the conductive substrate and a bilayer including a polymer electrolyte or a conductive nanoparticle, and a catalyst layer disposed on the electrode substrate.
    Type: Application
    Filed: August 3, 2012
    Publication date: October 24, 2013
    Applicant: SAMSUNG SDI CO., LTD.
    Inventors: Jun-Young KIM, Myoung-Ki MIN, Kah-Young SONG, Hee-Tak KIM
  • Patent number: 8563194
    Abstract: An electrolyte membrane (1) includes a base material layer (1) containing a hydrocarbon-based electrolyte as a main component, and a surface layer (5) laminated with the base material layer (1). The surface layer (5) is a layer containing, as a main component, a polymeric material having a hydroxyl group and a proton conductive group. The polymeric material that constitutes the surface layer (5) contains, for example, a first polymer having a hydroxyl group, and a second polymer having a proton conductive group. A matrix is formed by cross-linking the first polymer, and the second polymer can be held in the matrix.
    Type: Grant
    Filed: April 22, 2009
    Date of Patent: October 22, 2013
    Assignee: Nitto Denko Corporation
    Inventors: Hiroyuki Nishii, Tooru Sugitani, Otoo Yamada, Sakura Toshikawa
  • Patent number: 8562728
    Abstract: The invention relates to a process for preparing proton-conducting clay particles, successively comprising the following steps: a) a step of activating a clay powder, comprising a step in which the said powder is subjected to a gas plasma; b) a grafting step comprising a step of placing the activated powder obtained from step a) in contact with a solution comprising at least one compound comprising at least one group chosen from —PO3H2, —CO2H and —SO3H and salts thereof and comprising at least one group capable of grafting onto the surface of the said powder. Use of these particles for the manufacture of fuel cell membranes.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: October 22, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Hervé Galiano, Magaly Caravanier-Caillon, Philippe Bebin, Patrick Hourquebie, Faïza Bergaya, Fabienne Poncin Epaillard, Fabrice Lafleche
  • Publication number: 20130273450
    Abstract: Provided are a tri-block copolymer and an electrolyte membrane prepared therefrom. The tri-block copolymer has a structure of polar moiety-containing copolymer block/non-polar moiety-containing copolymer block/polar moiety-containing copolymer block, or non-polar moiety-containing copolymer block/polar moiety-containing copolymer block/non-polar moiety-containing copolymer block, and is useful for an electrolyte membrane for fuel cells. The electrolyte membrane for fuel cells prepared from the tri-block copolymer exhibits superior dimensional stability and excellent fuel cell performance.
    Type: Application
    Filed: November 24, 2010
    Publication date: October 17, 2013
    Applicant: LG Chem, Ltd.
    Inventors: Seong Ho Choi, Hyuk Kim, Sang Woo Lee, Tae Geun Noh, Ji Soo Kim
  • Patent number: 8557472
    Abstract: There are provided a novel proton-conducting polymer membrane that shows good workability in a fuel cell assembling process and good proton conductivity and durability even under high-temperature, non-humidified conditions, a method for production thereof, and a fuel cell therewith. The proton-conducting polymer membrane includes: a polymer membrane containing a polybenzimidazole compound having a sulfonic acid group and/or a phosphonic acid group; and vinylphosphonic acid contained in the polymer membrane. The fuel cell uses the proton-conducting polymer membrane. The polybenzimidazole compound preferably includes a sulfonic and/or phosphonic acid group-containing component represented by Structural Formula (1): wherein n represents an integer of 1 to 4, R1 represents a tetravalent aromatic linking unit capable of forming an imidazole ring, R2 represents a bivalent aromatic linking unit, and Z represents a sulfonic acid group and/or a phosphonic acid group.
    Type: Grant
    Filed: May 31, 2006
    Date of Patent: October 15, 2013
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Fusaki Fujibayashi, Yoshimitsu Sakaguchi, Satoshi Takase
  • Patent number: 8557473
    Abstract: Crosslinked sulfonated triblock copolymers exhibit lower methanol permeability and good physical strength relative to the perfluorinated proton conductive membranes typically used in Direct Methanol Fuel Cells. Examples of triblock copolymers that can be used as fuel cell membranes include SEBS, SIBS, and SEPS. The chemically cross-linked and sulfonated SIBS, SEBS, and SEPS exhibit lower swelling and tolerate higher sulfonation levels than the un-cross-linked counterparts. These copolymers are easily sulfonated using known procedures and can be manufactured at a fraction of the cost of the typical perfluorinated proton conductive membranes.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: October 15, 2013
    Assignee: Bose Corporation
    Inventor: Agota F. Fehervari
  • Patent number: 8546044
    Abstract: The present invention easily provides a polymer electrolyte that exhibits high proton conductivity under low humidity conditions and has a high level of durability and mechanical strength. The polymer electrolyte is produced by mixing proton-conducting sulfonated polyethersulfone C1, sulfonated polyphenylene sulfide C2 or sulfonated poly(4-phenoxybenzoyl-1,4-phenylene) C3 having a sulfonic acid group A as a protic acid group with 1,4-benzenedimethanol B as a crosslinking agent having a methylol group and heat-treating the mixture so that a reaction can be carried out. The polymer electrolyte includes a plurality of proton-conducting sulfonated polyethersulfone moieties C chemically bonded at their aromatic ring moieties other than the sulfonic acid group A to one another through a residue B? of 1,4-benzenedimethanol.
    Type: Grant
    Filed: September 23, 2009
    Date of Patent: October 1, 2013
    Assignee: Toppan Printing Co., Ltd.
    Inventor: Katsuyuki Kishi
  • Patent number: 8540806
    Abstract: There is provided herein a dryer polymer substance including a hetero-phase polymer composition including two or more polymers wherein at least one of the two or more polymers include sulfonic groups, wherein the substance is adapted to pervaporate a fluid. The fluid may include water, water vapor or both. There is also provided herein a process for the preparation of a dryer polymer substance adapted to pervaporate a fluid (such as water, water vapor or both) the process includes mixing two or more polymers, wherein at least one of the two or more polymers may include groups which are adapted to be sulfonated, to produce a hetero-phase polymer composition and processing the polymer blend into a desired form.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: September 24, 2013
    Assignee: Oridion Medical (1987) Ltd.
    Inventors: Amos Ophir, Eyal Cohen, David Dishon, Joshua Lewis Colman
  • Publication number: 20130240438
    Abstract: Blends comprising a sulfonated block copolymer and particulate carbon are useful materials for membranes, films and coatings in applications which require high dimensional stability, high water vapor transport, high conductivity, and low flammability. The sulfonated block copolymer comprises at least two polymer end blocks A and at least one polymer interior block B wherein each A block contains essentially no sulfonic acid or sulfonate functional groups and each B block is a polymer block containing from about 10 to about 100 mol percent sulfonic acid or sulfonate functional groups based on the number of monomer units of the B block.
    Type: Application
    Filed: March 7, 2013
    Publication date: September 19, 2013
    Applicant: KRATON POLYMERS U.S. LLC
    Inventors: Carl Lesley Willis, Kuitian Tan
  • Publication number: 20130224624
    Abstract: The present invention is directed to proton exchange membranes such as for use in fuel cells. In one embodiment, a polyetherquinoxaline is obtained by reaction between a haloquinoxaline and at least one diol, which forms a repeating unit including an ether linkage. The polyetherquinoxaline is suitable for use in a proton exchange membrane, which can be used in a fuel cell.
    Type: Application
    Filed: March 20, 2013
    Publication date: August 29, 2013
    Applicants: Reno
    Inventor: Board of Regents of the Nevada System of Higher Education, on behalf of the University of Nevada, Reno
  • Patent number: 8519081
    Abstract: Polysulfone based polymer comprising a repeat unit represented by the following Chemical Formula 1 is provided: wherein, X, M1, M2, a, b, c, d, e, f, R1, R2, R3, R4 and n are as defined in the detailed description.
    Type: Grant
    Filed: April 9, 2010
    Date of Patent: August 27, 2013
    Assignees: Hyundai Motor Company, Dongjin Semichem Co., Ltd.
    Inventors: Ju Ho Lee, Dong II Kim, Jang-Bae Son, Hyung-Su Park, Inchul Hwang, Ki Yun Cho
  • Patent number: 8518597
    Abstract: The present invention provides a catalytic layer-electrolytic membrane laminate for an unhumidified-type fuel cell, comprising an electrolytic membrane containing a strong acid; a conductive layer formed on one surface or both surfaces of the electrolytic membrane; and a catalytic layer formed on the conductive layer; wherein the conductive layer is formed of a fluorine-containing resin and carbon powder, and the conductive layer is thinner than the electrolytic membrane. The present invention provides a catalytic layer-electrolytic membrane laminate for an unhumidified-type fuel cell that can be practically used.
    Type: Grant
    Filed: January 14, 2008
    Date of Patent: August 27, 2013
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventor: Masashi Hiromitsu
  • Publication number: 20130216936
    Abstract: A method of producing an alkaline single ion conductor with high conductivity includes: a) providing a hydrocarbon oligomer or polymer having immobilized acidic substituent groups selected from the group consisting of a sulfonic acid group, sulfamide group, a phosphonic acid group, or a carboxy group, in its alkaline ion form wherein at least a part of the acidic protons of the substituent groups have been exchanged against alkali cations, and b) solvating the hydro-carbon oligomer or polymer of step a) in an aprotic polar solvent for a sufficient time to effect a solvent uptake of at least 5% by weight and to obtain a solvated product, wherein the molar ratio of solvent/alkaline cation is 1:1 to 10,000:1, and which solvated product has a conductivity of at least 10?5 S/cm at room temperature (24° C.).
    Type: Application
    Filed: November 2, 2011
    Publication date: August 22, 2013
    Applicant: Max-Planck-Gesellschaft zur Foerderung der Wissenschaften e.V.
    Inventors: Annette Fuchs, Klaus-Dieter Kreuer, Joachim Maier, Andreas Wohlfarth
  • Patent number: 8501369
    Abstract: The invention relates to proton-conducting composites comprising a polymer matrix within which inorganic particles are dispersed, grafted to the surface of which particles are polymers comprising repeat units that comprise at least one acid proton-exchange group, optionally in the form of salts, or a precursor group of said acid group, said particles being chosen from particles of zeolites, of zirconium phosphates or phosphonates, or of oxides. Application to the field of fuel cells.
    Type: Grant
    Filed: June 20, 2008
    Date of Patent: August 6, 2013
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Frédérick Niepceron, Hervé Galiano, Jean-François Tassin
  • Patent number: 8501368
    Abstract: The disclosed forms a proton exchange membrane. First, multi-maleimide and barbituric acid are copolymerized to form a hyper-branched polymer. Next, the solvent of the sulfonated tetrafluoroethylene copolymer (Nafion) aqueous solution is replaced from water with dimethyl acetamide (DMAc). 10 to 20 parts by weight of the hyper-branched polymer is added to the 90 to 80 parts by weight of the Nafion in a DMAc solution, stood and heated to 50° C. to inter-penetrate the hyper-branched polymer and the Nafion. The heated solution is coated on a substrate, baked, and pre-treated to remove residue solvent for completing an inter-penetrated proton exchange membrane.
    Type: Grant
    Filed: September 25, 2009
    Date of Patent: August 6, 2013
    Assignee: Industrial Technology Research Institute
    Inventors: Jing-Pin Pan, Yueh-Wei Lin, Chung-Liang Chang, Li-Duan Tsai, Ya-Tin Hsu
  • Patent number: 8486579
    Abstract: The present invention relates to a polymer blend proton exchange membrane comprising a soluble polymer and a sulfonated polymer, wherein the soluble polymer is at least one polymer selected from the group consisting of polysulfone, polyethersulfone and polyvinylidene fluoride, the sulfonated polymer is at least one polymer selected from the group consisting of sulfonated poly(ether-ether-ketone), sulfonated poly(ether-ketone-ether-ketone-ketone), sulfonated poly(phthalazinone ether ketone), sulfonated phenolphthalein poly (ether sulfone), sulfonated polyimides, sulfonated polyphosphazene and sulfonated polybenzimidazole, and wherein the degree of sulfonation of the sulfonated polymer is in the range of 96% to 118%. The present invention further relates to a method for manufacturing the polymer blend proton exchange membrane.
    Type: Grant
    Filed: June 23, 2010
    Date of Patent: July 16, 2013
    Assignee: Prudent Energy Inc.
    Inventors: Mianyan Huang, Yanling Zhao, Linlin Li
  • Patent number: 8487070
    Abstract: A sulfonated poly(arylene ether) copolymer that has a crosslinking structure in a chain of a polymer, a sulfonated poly(arylene ether) copolymer that has a crosslinking structure in and at an end of a chain of a polymer, and a polymer electrolyte film that is formed by using them are disclosed. According to the polycondensation reaction of the sulfonated dihydroxy monomer (HO—SAr1-OH), the none sulfonated dihydroxy monomer (HO—Ar—OH), the crosslinkable dihalide monomer (X—CM-X) and the none sulfonated dihalide monomer (X—Ar—X), the poly(arylene ether) copolymer in which the sulfonic acid is included is synthesized. The formed poly(arylene ether) copolymer has the crosslinkable structure in the chain of the polymer. In addition, by carrying out the polycondensation reaction in respects to the crosslinkable monohydroxy monomer or the crosslinkable monohalide monomer, the crosslinking can be formed at the end of the polymer.
    Type: Grant
    Filed: October 6, 2008
    Date of Patent: July 16, 2013
    Assignee: Gwangju Institute of Science and Technology
    Inventors: Jae-Suk Lee, Myung-Hwan Jeong, Kwan-Soo Lee, Eun-Seon Park, Young-Mu Joe
  • Publication number: 20130177834
    Abstract: Provided are a polymer electrolyte membrane used in fuel cells, and a method for producing the same, the method including a step of filling a crosslinkable ion conductor in the pores of a porous nanoweb support; and a step of crosslinking the ion conductor filled in the pores of the porous nanoweb support. The method for producing a polymer electrolyte membrane uses a relatively smaller amount of an organic solvent, can ameliorate defects of the support caused by solvent evaporation, and can enhance the impregnability of the ion conductor to the support and the convenience of the process.
    Type: Application
    Filed: April 2, 2012
    Publication date: July 11, 2013
    Applicant: KOLON INDUSTRIES, INC.
    Inventors: Dong Hoon Lee, Na Young Kim, Moo Seok Lee, Yong Cheol Shin
  • Patent number: 8481227
    Abstract: Materials are provided that may be useful as ionomers or polymer ionomers, including compounds including bis sulfonyl imide groups which may be highly fluorinated and may be polymers.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: July 9, 2013
    Assignee: 3M Innovative Properties Company
    Inventors: Steven J. Hamrock, Mark S. Schaberg, Neeraj Sharma, John E. Abulu
  • Patent number: 8470955
    Abstract: The present invention relates to a poly(arylene ether) copolymer having a cation exchange group, a method for manufacturing the same, and use thereof. The poly(arylene ether) copolymer having the cation exchange group according to the present invention has excellent physical characteristics, ion exchanging capacity, metal ion adsorption capacity and a processability, and thus can be molded in various shapes and can be extensively applied to various fields such as recovering of organic metal, air purification, catalysts, water treatment, medical fields and separating of proteins.
    Type: Grant
    Filed: November 30, 2011
    Date of Patent: June 25, 2013
    Assignee: Hyundai Motor Company
    Inventors: Inchul Hwang, Nak Hyun Kwon, Young Taek Kim, Dong Il Kim, Ju Ho Lee
  • Patent number: 8465883
    Abstract: Polymers having an improved ability to entrain water are characterized, in some embodiments, by unusual humidity-induced phase transitions. The described polymers (e.g., hydrophilically functionalized block copolymers) have a disordered state and one or more ordered states (e.g., a lamellar state, a gyroid state, etc.). In one aspect, the polymers are capable of undergoing a disorder-to-order transition while the polymer is exposed to an increasing temperature at a constant relative humidity. In some aspects the polymer includes a plurality of portions, wherein a first portion forms proton-conductive channels within the membrane and wherein the channels have a width of less than about 6 nm. The described polymers are capable of entraining and preserving water at high temperature and low humidity. Surprisingly, in some embodiments, the polymers are capable of entraining greater amounts of water with the increase of temperature. The polymers can be used in Polymer Electrolyte Membranes in fuel cells.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: June 18, 2013
    Assignee: The Regents of the University of California
    Inventors: Nitash Pervez Balsara, Moon Jeong Park
  • Patent number: 8455141
    Abstract: The present invention relates to a polymer electrolyte that provides high proton conductivity and low fuel crossover at the same time, as well as a member using the same. The embodiments of the invention can achieve high output and high energy density in the form of a polymer electrolyte fuel cell. A polymer electrolyte comprising a proton conductive polymer (A) and a polymer (B) which is different from (A) wherein a ratio of the amount of unfreezable water, represented by formula (S1), in said polymer electrolyte is no less than 40 wt % and no greater than 100 wt % is disclosed. The ratio of amount of unfreezable water (S1)=(amount of unfreezable water)/(amount of low melting point water+amount of unfreezable water)×100 (%).
    Type: Grant
    Filed: June 25, 2003
    Date of Patent: June 4, 2013
    Assignee: TORAY Industries, Inc.
    Inventors: Masataka Nakamura, Naoki Shimoyama, Daisuke Izuhara, Shunji Kono, Masayuki Kidai
  • Publication number: 20130130150
    Abstract: An electrolyte membrane for fuel cells, the electrolyte membrane including a polymer film and a polymerization product of a composition comprising i) a plurality of inorganic particles surface-treated with a surface treatment agent including the polymerizable double bonds and ii) a polymerizable acid monomer, wherein the inorganic particles and the polymerizable acid monomer are impregnated within the polymer film.
    Type: Application
    Filed: October 29, 2012
    Publication date: May 23, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Patent number: 8445141
    Abstract: The present invention relates to a sulfonic acid group-containing polymer excellent in ion conductivity and durability, a method for producing the same, a resin composition containing the sulfonic acid group-containing polymer, a polymer electrolyte membrane, a polymer electrolyte membrane/electrode assembly, and a fuel cell. The sulfonic acid group-containing polymer of the present invention, in a first embodiment, includes a constituent represented by the following chemical formula 1: wherein X represents hydrogen or a monovalent cation species; Y represents a sulfone group or a ketone group; and n represents an arbitrary integer not less than 2.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: May 21, 2013
    Assignee: Toyo Boseki Kabushiki Kaisha
    Inventors: Kota Kitamura, Yoshimitsu Sakaguchi, Hiroki Yamaguchi, Masahiro Yamashita, Kousuke Sasai
  • Publication number: 20130122399
    Abstract: The present invention relates to a polymer electrolyte membrane for fuel cells, comprising a polymer matrix of at least one basic polymer and one or more doping agents, wherein particles containing ionogenic groups and having a mean particle diameter in the nanometer range are embedded in the polymer matrix and the particles containing ionogenic groups are distributed homogeneously in the polymer matrix in a concentration of less than 50% relative to the weight of the polymer matrix, as well as to the production and use of same, especially in high-temperature fuel cells.
    Type: Application
    Filed: January 6, 2013
    Publication date: May 16, 2013
    Applicants: Elcomax Membranes GmbH
    Inventors: Elcomax Membranes GmbH, Lanxess Deutschland GmbH, Rhein Chemie Rheinau GmbH