Means For Joining Components Together Patents (Class 429/507)
  • Patent number: 8318378
    Abstract: A fuel cell (10) includes a fuel cell stack (50) in which a plurality of fuel cell units are stacked on one another, a pair of end plates (61, 61b, 63, 63b) respectively contact both ends of the fuel cell stack in a direction (Ds) in which the plurality of fuel cell units are stacked, and a side member (62, 62b, 62g) that extends in the stacking direction and is disposed between the end plates. The fuel cell further includes a connecting bolt portion, having a bolt shank (644, 624g) that penetrates one of the end plates substantially along the stacking direction. The connecting bolt portion connects the one of the end plates and the side member. The fuel cell further includes a cushion joint (66, 66a, 66b, 66c, 66d, 66e, 66f) disposed between the side member and one of the end plates, and through which the bolt shank passes.
    Type: Grant
    Filed: May 21, 2008
    Date of Patent: November 27, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Norihiko Saito, Kimihide Horio
  • Patent number: 8304119
    Abstract: In order to inhibit a gasket (1) adhered to a plate body such as a separator (3) of a fuel battery or the like from being adversely affected by an elution component from an adhesion means, the gasket has a main lip (11), a back surface seal portion (12) formed in a back surface of the main lip and closely contacted with a separator (a plate body to be adhered) (3), an adhesion portion (14) arranged in a position in an opposite side to a space (S) to be sealed with respect to the back surface seal portion (12) and adhered to a bottom portion (31a) of a gasket installation groove (31) of the separator (3) via an adhesive agent (2), and an adhesive agent sump (15) formed between the back surface seal portion (12) and the adhesion portion (14) and holding an excess adhesive agent (2a).
    Type: Grant
    Filed: June 26, 2008
    Date of Patent: November 6, 2012
    Assignee: Nok Corporation
    Inventors: Yoshihiro Kurano, Takashi Mashimo
  • Patent number: 8304136
    Abstract: Disclosed is a solid oxide fuel cell bundle, including a plurality of fuel cells each having a polygonal tubular support an outer surface of which has a plurality of planes, an outer connector formed on one plane among the plurality of planes of the tubular support, a plurality of unit cells respectively formed on two or more remaining planes of the tubular support except for the one plane, and inner connectors for connecting the unit cells and the outer connector in series, wherein the fuel cells is connected in series in such a manner that the outer connector of a fuel cell is bonded to the unit cell of an additional fuel cell, and the unit cells are connected in series, thus exhibiting excellent cell performance and high power density per unit volume, and maintaining high voltage upon collection of current to thereby reduce power loss due to electrical resistance.
    Type: Grant
    Filed: November 3, 2009
    Date of Patent: November 6, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Eon Soo Lee, Jae Hyuk Jang, Jae Hyoung Gil, Kyong Bok Min, Sung Han Kim, Hong Ryul Lee
  • Patent number: 8298697
    Abstract: In an MEA member constituted by a polymer electrolyte membrane-electrode assembly (MEA) and a frame and in a polymer electrolyte fuel cell including this MEA member, the MEA and the frame can be easily separated from each other without using any special tool. An MEA member 7 includes an MEA 5 and a plate-shaped resin frame 6, and a separating portion for separating the MEA 5 from the frame 6 is formed in the MEA member 7. The MEA 5 includes a polymer electrolyte membrane 2 and a pair of electrodes 3 and 4 respectively disposed on both main surfaces of the polymer electrolyte membrane 2. The frame 6 sandwiches and holds a peripheral portion of main surfaces of the MEA 5 such that the MEA 5 is located inside the frame. The separating portion is a broken-line cutoff line 50 formed on the frame 6 to divide the frame 6 into two or more parts or a partial sandwiching portion 55 located at an inner peripheral portion of the frame 6 to partially sandwich the peripheral portion of the MEA 5.
    Type: Grant
    Filed: May 28, 2009
    Date of Patent: October 30, 2012
    Assignee: Panasonic Corporation
    Inventors: Shigeyuki Unoki, Takashi Nakagawa, Takashi Morimoto, Mitsuo Yoshimura
  • Patent number: 8298717
    Abstract: A fuel cell unit (1) according to the present invention comprises a fuel cell (6) having an inner electrode layer (16), an outer electrode layer (20) and a through passage (15); and inner and outer electrode terminals (24, 26) fixed at the opposite ends (6a, 6b) of the fuel cell (6). The fuel cell (6) has an inner electrode peripheral surface (21) electrically communicating with the inner electrode layer (16) and an outer electrode peripheral surface (22) electrically communicating with the outer electrode layer (20). The inner and outer electrode terminals are respectively disposed so that they cover over the inner and outer electrode peripheral surfaces (21, 22) and they are electrically connected thereto. The inner and outer electrode terminals have respective connecting passages which are communicated with the through passage (15).
    Type: Grant
    Filed: December 9, 2011
    Date of Patent: October 30, 2012
    Assignee: Toto Ltd.
    Inventors: Naoki Watanabe, Akira Kawakami
  • Publication number: 20120264033
    Abstract: The manufacture and calibration of an interconnect for a fuel cell ensures contact in all contact points between the interconnect and the adjacent electrodes.
    Type: Application
    Filed: December 8, 2010
    Publication date: October 18, 2012
    Inventors: Casper Buchholtz Frederiksen, Cliver Klitholm
  • Patent number: 8288059
    Abstract: A method and apparatus for making fuel cell components via a roll to roll process are described. Spaced apart apertures are cut in first and second gasket webs that each include adhesives. The first and second gasket webs are transported to a bonding station on conveyers. A membrane web that includes at least an electrolyte membrane is also transported to the bonding station. At the bonding station, a gasketed membrane web is formed by attaching the first and second gasket webs to the membrane web. The first gasket web is attached to a first surface of the membrane web via the adhesive layer of the first gasket web. The second gasket web is attached to a second surface of the membrane web via the adhesive layer of the second gasket web.
    Type: Grant
    Filed: December 15, 2006
    Date of Patent: October 16, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Daniel M. Pierpont, Eric J. Hanson, Michael T. Hicks, Eric J. Iverson, David J. Miller, Scott A. Ripley
  • Patent number: 8278010
    Abstract: The present invention provides an electrode made of carbon nanotubes or carbon nanofibers and a process for preparing the same. The electrode comprising a current collector, sulfur or metal nanoparticles as a binder, and carbon nanotubes or carbon nanofibers is characterized in that the sulfur or metal nanoparticles are bonded, deposited, or fused on the surfaces of the carbon nanotubes or carbon nanofibers so that the carbon nanotubes or carbon nanofibers are bonded to each other and also bonded to the current collector. The electrode prepared according to the present invention exhibits low internal resistance, strong durability and low equivalent series resistance, and therefore the electrode can be effectively used for secondary batteries, supercapacitors or fuel cells.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: October 2, 2012
    Assignee: KH Chemicals Co., Ltd.
    Inventor: Young Nam Kim
  • Patent number: 8257879
    Abstract: A fuel cell system is provided including a fuel cell stack having a first end and second end. The fuel cell stack includes at least one fuel cell having a membrane-electrode assembly disposed between adjacent gas diffusion layers. The fuel cell system further includes a compression retention system having a plurality of compliant straps adapted to apply a compressive force to the fuel cell stack. The plurality of compliant straps are further adapted to accommodate an expansion of the fuel cell stack during an operation thereof and maintain the compressive force within a desired range.
    Type: Grant
    Filed: May 20, 2011
    Date of Patent: September 4, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Benno Andreas-Schott, Anthony Chinnici, Yeh-Hung Lai, Gerald W. Fly
  • Patent number: 8252480
    Abstract: Disclosed is a gasket for reducing stress concentration in a fuel cell stack, which prevents damage or deformation of a separator and further prevents a position shift of the gasket by reducing stress concentration formed at a specific region by deformation of the gasket due to a compression force. In particular, the gasket includes a T-shaped or cross-shaped gasket joint to form hydrogen, air and coolant manifolds, and the gasket joint has a structure in which two joint branches forming an angle of 180° in the opposite direction to each other are joined at one point with a particular angles which reduce stress concentration formed due to compression force by deformation of the gasket.
    Type: Grant
    Filed: December 31, 2007
    Date of Patent: August 28, 2012
    Assignees: Hyundai Motor Company, Kia Motors Corporation
    Inventors: Sae Hoon Kim, Yoo Chang Yang, Sang Mun Chin, Jong Hyun Lee
  • Patent number: 8247135
    Abstract: The invention is a flexible, micro-fabricated fuel cell and fuel cell stack that can be helically wound or bend into cylindrical shapes. The electrolyte is a proton exchange membrane (PEM) upon which can be printed, by ink jet means, the anode and cathode electrodes and the current collectors that convey current to or from the edges of the PEM which has a thickness on the order of 0.001 to 0.010 inch. Pluralities of the series connected fuel cell stacks can be arranged in electrical and physical parallel with one another to provide what are batteries of fuel cell stacks that can be connected by manifolds to sources of fuel and oxidizer. The invention is directed to a thin, light-weight, flexible fuel cell assembly that can be produced in ambient conditions using standard micro-fabrication techniques, such as thick film printing and ink jet deposition. Thick film printing techniques, screen printing or ink jet printing, are used to deposit porous current collectors on either side of the membrane.
    Type: Grant
    Filed: September 14, 2005
    Date of Patent: August 21, 2012
    Assignee: Case Western Reserve University
    Inventors: Jesse S. Wainright, Laurie A. Dudik, Chung-Chiun Liu
  • Patent number: 8236463
    Abstract: An electrode for use in a flow cell is presented. The electrode includes a metal plate for collecting current in the electrode that is bonded between a first and second plate.
    Type: Grant
    Filed: October 8, 2009
    Date of Patent: August 7, 2012
    Assignee: Deeya Energy, Inc.
    Inventors: Saroj Kumar Sahu, Suresh Kumar Surapalan Nair, Ali Firouzi
  • Patent number: 8231997
    Abstract: An object of the present invention is to provide an electrolyte membrane-electrode membrane assembly for a solid polymer fuel cell having superior characteristics, wherein a gas diffusion electrode membrane and a solid electrolyte membrane are well bonded, and electrode catalysts are uniformly-dispersed to obtain high electrode activity, a production method thereof and a fuel cell equipped therewith.
    Type: Grant
    Filed: December 20, 2006
    Date of Patent: July 31, 2012
    Assignee: Tokuyama Corporation
    Inventors: Hitoshi Matsuoka, Kenji Fukuta
  • Patent number: 8227141
    Abstract: The method of manufacturing a fuel cell including stacked unit cell constituent members sandwiched by separators includes the steps of arranging the unit cell constituent member in a first area on a first face of the separator; and forming a seal member made of elastic material such that the seal member is adhered or intimately attached to a second area including the first area on the first face of the separator, and that the seal member is unified with an edge portion of the unit cell constituent member.
    Type: Grant
    Filed: November 12, 2007
    Date of Patent: July 24, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Hiroo Yoshikawa, Fumishige Shizuku, Kenji Sato
  • Patent number: 8226858
    Abstract: An interconnect composite material having a coefficient of thermal expansion close to that of zirconia electrolyte, high electrical conductivity, high stability in both oxidizing and reducing atmosphere at temperatures from 600 to 900° C. and having the following general composition (1?z)[xNi+(1?x?y)TiO2+yNb2O5]+zCuO where x, y and z are corresponding parties of weight. An interconnect plate of this material is manufactured by sintering an intermediate TiO2—Nb2O5 composition, grinding it to a powder, combining the powder with NiO, CuO and an organic binder, tape casting the mixture, stacking the fabricated film into multiple layers, repeated rolling of the multiple layers into sheets and two-step sintering of the sheets in an air atmosphere at the first step and in a hydrogen atmosphere at the final step.
    Type: Grant
    Filed: July 3, 2008
    Date of Patent: July 24, 2012
    Assignee: Solid Cell, Inc.
    Inventors: Anatoly Demin, Fyodor Gulbis
  • Patent number: 8221935
    Abstract: A coolant inlet manifold for coolant supply passages is attached to an end plate of a fuel cell stack. Pillars are provided on at least one end of the coolant inlet manifold in a longitudinal direction thereof. The pillars are fitted into through holes formed in the end plate, and are connected to a manifold body and to a connector.
    Type: Grant
    Filed: March 17, 2009
    Date of Patent: July 17, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaharu Suzuki, Go Morimoto, Katsuhiko Kohyama, Ayumu Ishizuka
  • Patent number: 8221936
    Abstract: A fuel cell system is provided which includes a mounting system for a manifold having a mounting plate. The fuel cell system also includes a fuel cell stack with a first end and a second end. The first end of the fuel cell stack includes at least one port in communication with the manifold. A clamping system is disposed on the second end of the fuel cell stack and is operable to engage the mounting plate of the manifold to couple the manifold to the fuel cell stack.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: July 17, 2012
    Inventors: Michael Duffield, Donald H. Keskula
  • Patent number: 8216743
    Abstract: A fuel cell system including, among other things, one or more of a fuel cell, a fuel reservoir, a current collecting circuit, a plenum, or a system cover. The fuel reservoir is configured to store fuel, and may include a regulator for controlling an output fuel pressure and a refueling port. A surface of the fuel reservoir may be positioned adjacent a first fuel cell portion. The current collecting circuit is configured to receive and distribute fuel cell power and may be positioned adjacent a second fuel cell portion. The plenum may be formed when the fuel reservoir and the first fuel cell portion are coupled or by one or more flexible fuel cell walls. The system cover allows air into the system and when combined when a fuel pressure in the plenum, may urge contact between the fuel cell and the current collecting circuit.
    Type: Grant
    Filed: January 9, 2007
    Date of Patent: July 10, 2012
    Assignee: Société BIC
    Inventors: Gerard F McLean, Jeremy Schrooten, Joerg Zimmermann, Mark Petersen, Paul Sobejko
  • Patent number: 8211591
    Abstract: A unitized electrode assembly for a fuel cell comprising an electrolyte membrane and a subgasket. The subgasket maximizing an operating life of the electrolyte membrane, militating against adverse effects of membrane expansion during use of the fuel cell and membrane shearing under unitized electrode assembly compression.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: July 3, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Chad A. Dammar, Saurabh Vyas, Ronald L. James, Matthew J. Beutel
  • Patent number: 8202637
    Abstract: A fuel cell sealing plate taking-out method that may include forming an air layer between adjacent sealing plates and taking out a sealing plate from a stack of sealing plates one by one. A protrusion may be formed beforehand at one or more surfaces of each sealing plate. Also, a sealing plate taking-out apparatus having a suction pad and a projection that protrudes more than the suction pad toward the sealing plate. Due to the air layer formed between adjacent sealing plates, it may be possible to take out the sealing plate one by one from the stack of sealing plates.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: June 19, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shiro Akiyama, Shigemitsu Nomoto
  • Publication number: 20120148940
    Abstract: The present invention relates to high-temperature solid oxide fuel cells, in particular to rotationally symmetrical high-temperature solid oxide fuel cells. The inventive oxide-ceramic high-temperature fuel cell having one or more gas channel(s) open at at least one end. The fuel cell has a substrate surrounding the gas channel(s) at least sectionally, preferably completely. The gas channel(s) and/or the substrate surrounding the gas channel(s) has/have (a) changing cross-sections(s), preferably (a) conically tapering cross-section(s), seen in the direction of the longitudinal axis/axes of the gas channel(s).
    Type: Application
    Filed: May 28, 2010
    Publication date: June 14, 2012
    Inventors: Sascha Kuehn, Katrin Klenln, Gerhard Buchinger
  • Patent number: 8197985
    Abstract: A fuel cell system includes a fuel cell stack, a fluid unit, a load applying mechanism, and a casing. The casing contains the fuel cell stack, the fluid unit, and the load applying mechanism. A heat insulating member is provided between the fuel cell stack and the load applying mechanism. The heat insulating member limits heat transmission from the fuel cell stack to the load applying mechanism. The load applying mechanism includes metal springs for applying a load to the fuel cell stack in a stacking direction of the fuel cell stack.
    Type: Grant
    Filed: December 22, 2005
    Date of Patent: June 12, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Hiroki Homma
  • Patent number: 8197983
    Abstract: A fuel cell and a method of manufacturing the fuel cell are disclosed. A method of manufacturing a fuel cell by electrically connecting a first cell and a second cell that are coupled over both sides of a membrane with a predetermined gap between the first cell and the second cell, where the first cell and the second cell each has an anode on one side and a cathode on the other side, may include perforating a hole in the membrane between the first cell and the second cell, and electrically connecting the anode of the first cell with the cathode of the second cell through the hole using a conductive member. This method does not entail unnecessary increases in volume or complicated flow paths, and the method can reduce electrical resistance while simplifying the peripheral equipment.
    Type: Grant
    Filed: April 3, 2008
    Date of Patent: June 12, 2012
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Hye-Yeon Cha, Young-Soo Oh, Jae-Hyuk Jang, Sung-Han Kim, Miesse Craig
  • Patent number: 8197981
    Abstract: An interconnect element for electrically connecting an anode and a cathode in adjacent fuel cells in a fuel cell stack, wherein said interconnect element has at least one featured surface including dimples, bosses, and/or pins arranged in a two-dimensional pattern. Preferably, both surfaces are featured, as by mechanical dimpling, embossing, or chemical etching, so that protrusions of the interconnect surface extend into either or both of the adjacent gas flow spaces to make electrical contact with the surfaces of the anode and cathode. This permits conduction of heat from the anode. The protrusions create turbulence in gas flowing through the flow spaces, which increases hydrogen consumption at the anode and hence electric output of the cell.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: June 12, 2012
    Assignee: Delphi Technologies, Inc.
    Inventors: Sean M. Kelly, Diane M. England, Subhasish Mukerjee, John Weber
  • Patent number: 8197984
    Abstract: A fuel cell stack includes a box-shaped casing and a stack body in the box-shaped casing. The stack body is formed by stacking a plurality of unit cells. The casing includes end plates, a plurality of side plates, angle members, and coupling pins. The angle members couple adjacent ends of the side plates. The coupling pins couple the end plates and the side plates.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: June 12, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Narutoshi Sugita, Takashi Kosaka, Ayumu Ishizuka, Ken Takahashi, Hiroshi Morikawa, Teruyuki Ohtani
  • Publication number: 20120141918
    Abstract: A fuel supply apparatus for supplying a liquid fuel to a device having a fuel cell which uses the liquid fuel is provided. The fuel supply apparatus includes: a container containing the liquid fuel and being configured to be detachably attached to the device; and a joint for connecting the container and the device. The joint has a double tube structure including an outer tube and an inner tube. One of the outer tube and the inner tube forms a flow path through which the liquid fuel in the container flows into the device by gravity, while the other tube forms a flow path through which a replacement fluid spontaneously flows into the container to replace the liquid fuel.
    Type: Application
    Filed: November 30, 2011
    Publication date: June 7, 2012
    Inventors: Isamu KAWATA, Masaki MITSUI, Junya KUSUMOTO
  • Patent number: 8192894
    Abstract: A fuel cell is formed by stacking an electrolyte electrode assembly and a pair of separators alternately. Each of the separators includes first to third plates. A first cylindrical portion provided at a first small diameter end portion of one separator is inserted into a fuel gas supply passage of the other separator. The first cylindrical portion is subjected to a crimping process such that a joint portion as a predetermined overlapping portion is formed integrally with the one separator and the other separator.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: June 5, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Tadashi Tsunoda
  • Patent number: 8173326
    Abstract: A polymer electrolyte electrochemical device includes an anode current collector (1), a membrane electrode assembly (2) with anode and cathode gas backings (3, 4), and a cathode current collector (5), wherein the membrane electrode assembly is sealed and attached at least to the anode current collector by adhesive elements, thereby creating an anode gas chamber, and optionally attached to the cathode current collector by adhesive elements, the adhesive elements being electrically conducting or electrically non-conducting. The invention also relates to polymer electrolyte electrochemical device components adapted for use in a single cell electrochemical device and a series arrangement electrochemical device.
    Type: Grant
    Filed: October 12, 2005
    Date of Patent: May 8, 2012
    Assignee: my FC AB
    Inventors: Anders Lundblad, Frederic Jaouen, Sjoerd Haasl, Wouter Van Der Wijngaart
  • Patent number: 8148032
    Abstract: A fuel cell includes a membrane electrode assembly and first and second metal plates sandwiching the membrane electrode assembly. The first metal plate has positioning ribs for positioning the outer region of the membrane electrode assembly. The first and second metal plates are positioned in alignment with each other by the first and second insulating bushings attached to first and second positioning holes of the first and second metal plates. Further, the first and second metal plates sandwiching the membrane electrode assembly are fastened together by a plurality of metal clip members.
    Type: Grant
    Filed: March 29, 2005
    Date of Patent: April 3, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Seiji Sugiura, Shuhei Goto, Ryugo Suzuki, Narutoshi Sugita, Yoshihiro Nakanishi
  • Patent number: 8142940
    Abstract: A flat fuel cell including: at least two unit cells, a casing provided with supports for each of said unit cells, said supports offering a bearing surface to a periphery of the unit cells, a sealing member interposed between the periphery of each unit cell and the surface of an associated support, and a cover forming a compression element coming into abutment on the periphery of each unit cell opposite the sealing member and cooperating directly with the associated support in order to provide compression of the sealing member.
    Type: Grant
    Filed: December 10, 2008
    Date of Patent: March 27, 2012
    Assignee: Commissariat a l'Energie Atomique
    Inventors: Jean-Philippe Poirot-Crouvezier, Philippe Manicardi, Audrey Montaut, Jean Oriol
  • Patent number: 8137827
    Abstract: Provided is a visualization apparatus for a transparent PEMFC using a transparent window having conditions approximating a real PEMFC. More specifically, the present invention improves a fixing frame in consideration of the distribution of pressure applied by the fixing frame, such that the visualization apparatus for a transparent PEMFC has operating conditions approximating the real PEMFC.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: March 20, 2012
    Assignee: Korea Advanced Institute of Science and Technology
    Inventors: Joongmyeon Bae, Dong-ryul Lee
  • Patent number: 8137862
    Abstract: A fuel cell includes a joint portion A in which a first conductive separator, an electrolyte-strengthening substrate and a second conductive separator are jointed in order with a brazing material. The electrolyte-strengthening substrate is formed so as to be larger than a joint area of the first conductive separator and a joint area of the second conductive separator in the joint portion. The electrolyte-strengthening substrate has an insulating property at least at an area where the electrolyte-strengthening substrate contacts with the brazing material.
    Type: Grant
    Filed: June 6, 2006
    Date of Patent: March 20, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yasuhiro Izawa, Satoshi Aoyama, Maiko Ikuno
  • Patent number: 8137863
    Abstract: Even if reaction gas flows into a substantially rectangular anode-side and cathode-side gaps formed between an annular main body portion and a membrane electrode assembly in an anode side and a cathode side of a fuel cell, the reaction gas is prevented from flowing out from an outlet without passing through an electrode to cause degradation of power generation efficiency. At least one of anode-side gasket and cathode-side gasket in the fuel cell is provided with an extra sealing portion connected to an annular main body portion in such a manner that, among two pairs of gap portions opposing to each other in the anode-side gap and the cathode-side gap, the extra sealing portion intersects with one pair of gap portions having a larger pressure gradient of fuel gas and oxidant gas in a direction from an upstream side to a downstream side of a fuel gas flow channel and an oxidant gas flow channel.
    Type: Grant
    Filed: January 25, 2008
    Date of Patent: March 20, 2012
    Assignee: Panasonic Corporation
    Inventors: Shinsuke Takeguchi, Kazuhito Hatoh, Hiroki Kusakabe, Toshihiro Matsumoto
  • Patent number: 8119303
    Abstract: The number of assembling steps of a fuel cell module is reduced. Moreover, permeating of moisture from the outside is suppressed. To realize this, a fuel cell module of the present invention includes a fuel cell having a structure in which both ends of a cell laminate in a laminating direction of cells are held by end plates, a fuel cell case in which the fuel cell is received, and a plurality of holding portions which hold the fuel cell via the end plates. Each holding portion includes a first fastening member having a part thereof bonded to the end plate, a mount member interposed between the first fastening member and the fuel cell case, and a second fastening member which fastens the mount member and the fuel cell case, and the fuel cell case is provided with a protrusion part having such a shape as to cover the part of the first fastening member while avoiding interference with the part.
    Type: Grant
    Filed: August 16, 2007
    Date of Patent: February 21, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventor: Haruhisa Niimi
  • Patent number: 8114553
    Abstract: A fuel cell, which employs power generation units that have an electrolyte membrane and electrodes respectively disposed to either side of the electrolyte membrane, comprises a stack that includes a stacked plurality of the power generation units, a clamping member, and a shear elastic member. The clamping member is used for clamping the stack in the stacking direction. The shear elastic member is interposed between the clamping member and an end face of the stack in the stacking direction, and elastically deform in a shearing direction which lies orthogonal to the stacking direction.
    Type: Grant
    Filed: December 25, 2007
    Date of Patent: February 14, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yutaka Hotta, Kimihide Horio
  • Patent number: 8105731
    Abstract: A fuel cell system includes first and second fuel cell stacks which are juxtaposed to each other. An assembly manifold is attached to the first and second fuel cell stacks. A connection block is provided at a central position of the assembly manifold. A fuel gas supply port and a fuel gas discharge port are provided on a front surface of the connection block, and an oxygen-containing gas supply port and an oxygen-containing gas discharge port are provided on a back surface of the connection block. A fuel gas and an oxygen-containing gas are equally supplied to each of the first and second fuel cell stacks.
    Type: Grant
    Filed: November 19, 2009
    Date of Patent: January 31, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masahiko Sato, Tadashi Nishiyama
  • Patent number: 8101318
    Abstract: A spring loaded direct oxidation fuel cell assembly reduces the effects of precompression relaxation. A near flat spring and a distribution plate form a spring assembly that is disposed between a membrane electrode assembly and one of the current collectors in the fuel cell. The components are assembled into a fuel cell assembly and are precompressed, and a spring yielding process is performed. While precompression is being applied, a set of pins and a plastic frame are insert molded around the fuel cell assembly to hold the components in place. Subsequently, as the precompression relaxes, the spring assembly forces act to maintain an evenly distributed compression on the MEA, thereby compensating for the loss of precompression. A related method of manufacturing a fuel cell assembly is provided.
    Type: Grant
    Filed: November 30, 2006
    Date of Patent: January 24, 2012
    Assignee: MTI MicroFuel Cells Inc.
    Inventors: Constantinos Minas, Megan A. Fannon, Russ Marvin, Charles M. Carlstrom, Jr., Robert S. Hirsch, Sampath Venkataswamy
  • Patent number: 8097380
    Abstract: A fuel cell unit (1) according to the present invention comprises a fuel cell (6) having an inner electrode layer (16), an outer electrode layer (20) and a through passage (15); and inner and outer electrode terminals (24, 26) fixed at the opposite ends (6a, 6b) of the fuel cell (6). The fuel cell (6) has an inner electrode peripheral surface (21) electrically communicating with the inner electrode layer (16) and an outer electrode peripheral surface (22) electrically communicating with the outer electrode layer (20). The inner and outer electrode terminals are respectively disposed so that they cover over the inner and outer electrode peripheral surfaces (21, 22) and they are electrically connected thereto. The inner and outer electrode terminals have respective connecting passages which are communicated with the through passage (15).
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: January 17, 2012
    Assignee: Toto Ltd.
    Inventors: Naoki Watanabe, Akira Kawakami
  • Patent number: 8076042
    Abstract: A polymer electrolyte membrane fuel cell stack comprising micro-fuel cell units having a circular cross section. Each includes an electric conductive tube that comprises a porous wall section and a non-permeable wall section, an inner electrode disposed around the peripheral surface of the porous wall section, a solid electrolyte member disposed around the inner electrode, and an outer electrode disposed around the electrolyte. The fuel cell stack comprises at least one fuel cell module, which includes an electric conductive planar sheet, and micro-fuel cell units laid side-by-side on the electric conductive planar sheet, the non-permeable sections of the micro fuel cell units being electrically interconnected. The fuel cell modules are stacked with an electrical insulating material between the outer electrodes of the fuel cell units in a first module and a second module's conductive planar sheet overlying or underlying the outer electrodes of the first module.
    Type: Grant
    Filed: June 22, 2006
    Date of Patent: December 13, 2011
    Inventor: Yiding Cao
  • Patent number: 8062808
    Abstract: Disclosed is a fuel cell device comprising: a fuel cartridge to accumulate a fuel therein; and a fuel cell device main body to generate electric power by using the fuel accumulated in the fuel cartridge, wherein the fuel cell device main body is provided with a cartridge conveying body, the fuel cartridge being attached to and detached from the cartridge conveying body, and the cartridge conveying body is provided so as to be rotatable with respect to the fuel cell device main body.
    Type: Grant
    Filed: June 25, 2008
    Date of Patent: November 22, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventor: Yasunari Kabasawa
  • Patent number: 8062797
    Abstract: An article of clothing with an on-demand power supply for electrical devices is provided. The power supply includes stiff planar fuel cell devices that are distributed in a plane. The number of fuel cells is dependent on the power requirements for the electrical devices. The planar stiff fuel cells are flexibly interconnected in the plane by a flexible interconnection, which allows the fuel cells to move with respect to each other out of the plane. This further allows the power supply to be nicely integrated in an article of clothing and minimizes negative impact to a body region or to the article of clothing. The electrical and fuel connections between the fuel cells are integrated with the flexible interconnection. To further integrate and increase ease of operation a control system is included to control the on-demand power supply or control power levels for the electrical device.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: November 22, 2011
    Assignee: Ardica Technologies, Inc.
    Inventors: Tobin J. Fisher, Thomas C. Covington, Jonathan L. Glassman, Jesse M. Thomas, Daniel Braithwaite
  • Patent number: 8057953
    Abstract: The coupling structure of fuel cells according to the present invention comprises a body and a plurality of channels. A first fuel cell is adapted on a first side of the body; a second fuel cell is adapted on a second side of the body. The plurality of channels penetrates through the first and the second sides. Each of the channels connects to a fuel-guiding inlet, a fuel-guiding outlet, an oxidant-gas-guiding inlet, and an oxidant-gas-guiding outlet of the first and the second fuel cells, respectively. The coupling structure has an insulation property with a conductive module embedded used for conducting a negative terminal of the first fuel cell and a positive terminal of the second fuel cell on the first and the second sides. By means of a coupling module, the internal wires can be used for cascading or isolating the positive and the negative terminals of the two fuel cells.
    Type: Grant
    Filed: October 30, 2007
    Date of Patent: November 15, 2011
    Assignee: Wistron Corporation
    Inventors: Shung-Huei Chang, Shu-Hao Liang
  • Patent number: 8039168
    Abstract: A separator for flat-type polymer electrolyte fuel cells comprises a fuel-feed-side separator and an oxygen-feed-side separator, each comprising a collector portion in which n unit conductive substrates (n is an integer of 2 or more), each having a plurality of through-holes, are arrayed in flat configuration via gaps, and a pair of insulating frames which have n openings in alignment with an array position of the unit conductive substrates and are integrated in such a way as to hold the collector portion between them. The back-to-back (n?1) unit conductive substrates of the n unit conductive substrates in one of both separators, as counted from the end of its array direction, and the 2nd to nth unit conductive substrates of the n unit conductive substrates in another separator, as counted from the end of its array direction are successively joined together by means of (n?1) connecting hinges.
    Type: Grant
    Filed: October 4, 2005
    Date of Patent: October 18, 2011
    Assignee: Dai Nippon Printing Co., Ltd.
    Inventors: Tooru Serizawa, Yasuhiro Uchida, Takanori Maeda, Hiroshi Yagi
  • Patent number: 8025919
    Abstract: A catalyst filling method in a micro channel and a reformer manufactured by the method. The catalyst is filled in the micro channel using water, and unidirectional pressure is applied to the catalyst in the micro channel to fill the micro channel with high density. The catalyst in the micro channel is dried. The method according to the present invention allows uniformly filling the catalyst particles in the micro channel of the reformer with high density, increasing the reactive surface area of the catalyst particles with the fuel, thereby allowing highly efficient reforming effect.
    Type: Grant
    Filed: April 11, 2007
    Date of Patent: September 27, 2011
    Assignee: Samsung Electro-Mechanics Co., Ltd.
    Inventors: Ji Won Ha, Young Soo Oh, Jae Hyuk Jang, Hong Ryul Lee, Jae Hyoung Gil, Sung Han Kim
  • Publication number: 20110229798
    Abstract: A fuel cell system includes a fuel cell system connector and a fuel cartridge connector. The fuel cell system connector includes an external structure configured to accommodate a connector of a fuel cartridge and an internal structure mounted in the external structure. A contacting surface between the external structure and the internal structure of the fuel cell system connector includes a first nano-processed surface on a fuel supply path. The fuel cartridge connector includes an external structure having a retention key and an internal structure mounted in the external structure. A contacting surface between the external structure and the internal structure of the fuel cartridge connector includes a second nano-processed surface on a fuel supply path.
    Type: Application
    Filed: February 14, 2011
    Publication date: September 22, 2011
    Inventors: Hye-jung Cho, Young-seung Na, Suk-woong Kwon, Dae-yeon Soh, Yong-ki Kim
  • Patent number: 8021796
    Abstract: The present invention relates to the field of electrochemical cells and fuel cells, and more specifically to polymer-electrolyte-membrane fuel cells (PEMFC) and direct methanol fuel cells (DMFC). It is directed to catalyst-coated ionomer membranes (“CCMs”) and membrane-electrode-assemblies (“MEAs”) that contain one or more protective film layers for protection, sealing and better handling purposes. The one or more protective film layers are attached to the surface of said catalyst-coated membranes in such a way that they overlap with a region of the passive non-coated ionomer area, and with a region of the active area that is coated with a catalyst layer. Furthermore, the present invention discloses a process for manufacture of CCMs and MEAs that contain protective film layers. The materials may be used as components for the manufacture of low temperature fuel cell stacks.
    Type: Grant
    Filed: September 22, 2003
    Date of Patent: September 20, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Ralf Zuber, Klaus Schaack, Sandra Wittpahl, Alexander Kabza, Markus Maier
  • Patent number: 8012649
    Abstract: A fuel cell system having a fuel pressurizing system. The fuel cell system includes: a cartridge comprising a fuel storage pack; a main body; and a pressurizing unit disposed in the main body to pressurize the fuel storage pack when the cartridge is mated to the main body. The cartridge further includes a pressurizing plate to transmit pressure received from the pressurizing unit to the fuel storage pack when the cartridge is mated to the main body and to preventing the fuel storage pack from being pressurized when the cartridge is separated from the main body. The main body can include a case on which the fuel storage pack and the pressurizing plate are received.
    Type: Grant
    Filed: September 13, 2007
    Date of Patent: September 6, 2011
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Young-soo Joung, Hye-Jung Cho, Jae-yong Lee, Young-Jae Kim
  • Patent number: 7993499
    Abstract: The invention relates to membrane-electrode assemblies for the electrolysis of water (electrolysis MEAs), which contain an ion-conducting membrane having a front and rear side; a first catalyst layer on the front side; a first gas diffusion layer on the front side; a second catalyst layer on the rear side, and a second gas diffusion layer on the rear side. The first gas diffusion layer has smaller planar dimensions than the ion-conducting membrane, whereas the second gas diffusion layer has essentially the same planar dimensions as the ion-conducting membrane (“semi-coextensive design”). The MEAs also comprise an unsupported free membrane surface that yields improved adhesion properties of the sealing material. The invention also relates to a method for producing the MEA products. Pressure-resistant, gastight and cost-effective membrane-electrode assemblies are obtained, that are used in PEM water electrolyzers, regenerative fuel cells or in other electrochemical devices.
    Type: Grant
    Filed: July 14, 2004
    Date of Patent: August 9, 2011
    Assignee: Umicore AG & Co. KG
    Inventors: Ralf Zuber, Klaus Schaack, Sandra Wittpahl, Holger Dziallas, Peter Seipel, Pia Braun, Lutz Rohland
  • Patent number: 7993795
    Abstract: An electronic device including a fuel container to accumulate fuel inside thereof, a fuel cell device body unit engaged with the fuel container and comprising a power generating cell to generate electricity by using the fuel which is supplied from the fuel container and an electronic device body unit in which the electricity is supplied from the fuel cell device body unit, and the electronic device body unit comprises a case having a concave portion in which the fuel cell device body unit and the fuel container are housed, an opening part which forms an open end of the concave portion, and the fuel cell device body unit and the fuel container are engageable with and separable from each other and detachable from the concave portion in a state where the fuel cell device body unit and the fuel container are engaged to one another and only the fuel container is detachable from the concave portion.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: August 9, 2011
    Assignee: Casio Computer Co., Ltd.
    Inventor: Tetsushi Ishikawa
  • Patent number: 7977003
    Abstract: A power generation cell includes an anode side seal member and a cathode side seal member. The anode side seal member is provided outside an anode of a membrane electrode assembly, and directly contacts a solid polymer electrolyte membrane. The cathode side seal member is provided outside the membrane electrode assembly. A space is formed between the anode side seal member and the cathode side seal member. First ribs are formed integrally with the anode side seal member. The first ribs protrude toward the space. Further, second ribs are formed integrally with the cathode side seal member. The second ribs protrude toward the space. The first ribs and the second ribs are arranged alternately.
    Type: Grant
    Filed: October 20, 2005
    Date of Patent: July 12, 2011
    Assignee: Honda Motor Co., Ltd.
    Inventors: Kentaro Nagoshi, Daisuke Okonogi, Masaru Oda, Narutoshi Sugita