Including Flow Field Means (e.g., Separator Plate, Etc.) Patents (Class 429/514)
  • Patent number: 8252483
    Abstract: A lightweight, compact high-performance fuel cell separator is provided with enhanced output density and capable of being stacked without a gas seal member. Embodiments include a separator having a corrugated electrically conducting flow path. A recess and projection are formed on front and rear surfaces, each constituting a gas flow path alternately arrayed abreast in a plane.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: August 28, 2012
    Assignees: Showa Denko K.K., Honda Motor Co., Ltd.
    Inventors: Tadashi Iino, Zenichiro Izumi, Yukihito Tanaka, Toshiki Kawamura
  • Patent number: 8252484
    Abstract: A high-performance separator for a fuel cell is provided that includes an electrically conducting flow path part and an integrated insulating outer circumferential part surrounding the flow path part. The flow path part includes an electrically conducting resin composition including a carbonaceous material (A) and a thermoplastic resin composition (B) at a mass ratio (A)/(B) of 1 to 20 with the total mass of (A) and (B) accounting for 80 to 100 mass % in the composition. The flow path part has a corrugated shape having a recess and a projection on each of front and back surfaces thereof, where the recess constitutes a groove for a flow path, and a thickness of 0.05 to 0.5 mm and a maximum thickness/minimum thickness ratio of 1 to 3. The insulating outer circumferential part includes an insulating thermoplastic resin composition having a volume resistivity of 1010 ?cm or more.
    Type: Grant
    Filed: September 27, 2007
    Date of Patent: August 28, 2012
    Assignees: Showa Denko K.K., Honda Motor Co., Ltd.
    Inventors: Tadashi Iino, Zenichiro Izumi, Yukihito Tanaka, Toshiki Kawamura
  • Patent number: 8247137
    Abstract: Separators (5A, 5B, 6) and membrane-electrode assemblies (2) of a fuel cell stack (1) are alternately stacked in a guide box (40). The separators (5A, 5B, 6) each have groove-like gas paths (10A, 10B). Powder of an adhesive agent (7) is adhered in advance to the surfaces of the separators (5A, 5B, 6), except the gas paths (10A, 10B), through photosensitive drums (31A, 31B) to which the powder is adsorbed in a given pattern. The separators (5A, 5B, 6) and the membrane-electrode assemblies (2), stacked in the guide box (40), are heated and compressed by a press (43) and heaters (40C) to obtain a unitized fuel cell stack (1).
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: August 21, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Akira Fujiki, Yukihiro Maekawa, Takeharu Kuramochi, Masahiko Katsu, Takayuki Hirao, Takeshi Shimizu, Masanori Iwamoto, Sadao Miki, Haruhiko Suzuki, Yoshiki Muto, Kaoru Eguchi, Masahiro Omata, Hiroshi Saitou
  • Patent number: 8247138
    Abstract: In at least one embodiment, the present invention provides an electrically conductive fluid distribution plate and a method of making, and system for using, the electrically conductive fluid distribution plate. In at least one embodiment, the plate comprises an electrically conductive fluid distribution plate comprising a metallic plate body defining a set of fluid flow channels configured to distribute flow of a fluid across at least one side of the plate, a metal-containing adhesion promoting layer having a thickness less than 100 nm disposed on the plate body, and a composite polymeric conductive layer disposed on the metal-containing adhesion promoting layer.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: August 21, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Mahmoud H. Abd Elhamid, Feng Zhong, Richard H. Blunk
  • Patent number: 8247134
    Abstract: A fuel cell is provided. The fuel cell includes a medium member. Unit areas are formed at both sides of the medium member. The unit areas include outlets and inlets which allow a fuel to flow. First path members which have first flowpaths for circulating the fuel are disposed at the unit areas. Membrane-electrode assemblies are connected to the respective first path members. Second path members which have second flowpaths for circulating air are connected to the respective membrane-electrode assemblies.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: August 21, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Seong-Jin An, Hee-Tak Kim, Seung-Shik Shin, Yeong-Chan Eun, Ho-Jin Kweon
  • Patent number: 8241811
    Abstract: A flow channel plate adapted to a fuel cell apparatus is provided. The flow channel plate includes a separating film and a plurality of bar supporting members. The separating film is disposed between two components of the fuel cell apparatus, and the bar supporting members lean against the separating film and the two components to maintain a distance between the two components. The flow channel plate has low flow resistance.
    Type: Grant
    Filed: October 28, 2007
    Date of Patent: August 14, 2012
    Assignee: Young Green Energy Co.
    Inventors: Cheng Wang, Nien-Hui Hsu, Jin-Shu Huang, Ching-Po Lee
  • Patent number: 8241816
    Abstract: A separator of a fuel cell stack, which has flat surfaces that face MEAs, includes a cathode-side plate, an anode-side plate and an intermediate plate. The intermediate plate has a plurality of oxidant gas supply channel openings that communicate with an oxidant gas supply manifold and oxidant gas supply holes of the cathode-side plate, and a plurality of oxidant gas exhaust channel openings that communicate with an oxidant gas exhaust manifold and oxidant gas exhaust holes of the anode-side plate. The width and spacing of the oxidant gas exhaust channel openings are set to be larger than those of the oxidant gas supply channel openings.
    Type: Grant
    Filed: January 24, 2006
    Date of Patent: August 14, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Seiji Sano, Yuichi Yagami, Takashi Kajiwara, Hiromichi Sato, Fumihiko Inui, Yoshifumi Ota, Syo Usami, Shinichi Matsumoto
  • Patent number: 8236461
    Abstract: A type of fuel cell bipolar plates is constructed with multiple splitting and deflecting flow channels through which reactant flows are constantly contracted, expanded, split into more than one flow streams, and deflected in flow directions for improving reactant flow distribution, diffusion and water management.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: August 7, 2012
    Inventor: Yong Gao
  • Patent number: 8232016
    Abstract: To mitigate bubble blockage in water passageways (78, 85), in or near reactant gas flow field plates (74, 81) of fuel cells (38), passageways are configured with (a) intersecting polygons, obtuse angles including triangles, trapezoids, or (b) hydrophobic surfaces (111), or (c) differing adjacent channels (127, 128), or (d) water permeable layers (93, 115, 116, 119) adjacent to water channels or hydrophobic/hydrophilic layers (114, 120).
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: July 31, 2012
    Assignee: UTC Power Corporation
    Inventors: Robert M. Darling, Evan C. Rege, Ryan J. Balliet, Jeremy P. Meyers, Craig E. Evans, Thomas D. Jarvi
  • Patent number: 8232024
    Abstract: A gasket formed of compressible material and having a first sealing surface and a second sealing surface for providing a fluid seal between a first component and a second component, a plurality of cavities provided within the gasket proximate the first and/or second sealing surfaces and extending over at least a first portion of the gasket to provide increased compressibility of the gasket in the first portion.
    Type: Grant
    Filed: February 1, 2007
    Date of Patent: July 31, 2012
    Assignee: Intelligent Energy Limited
    Inventors: Peter D. Hood, Simon E. Foster
  • Patent number: 8232021
    Abstract: A fuel cell stack including an electricity generating unit for generating electrical energy by electrochemically reacting a fuel and an oxidizing agent, the electricity generating unit including: a first separator; a second separator; a membrane electrode assembly (MEA) between the first separator and the second separator, each of the first and second separators including a channel on a surface facing the MEA and a manifold in the surface facing the MEA, the manifold communicating with the channel; and a gasket, positioned at an outer circumference portion of an area where the MEA is positioned, for sealing a space between the first and second separators and for covering an open area of a channel extension area of at least one of the first and second separators where the manifold communicates with the channel.
    Type: Grant
    Filed: March 24, 2008
    Date of Patent: July 31, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jun-Won Suh, Young-Seung Na, Keun-Yong Lee, Sung-Won Jeong, Chan-Gyun Shin, Kyoung-Hwan Choi, Sang-Kyun Kang
  • Patent number: 8227143
    Abstract: A fuel cell system has shutoff valves installed between an air flow channel in a fuel cell and the atmosphere. The shutoff valves have valve seats and also have valve discs for sealing in air by coming into contact with the valve seats. The valve discs are adapted to be sucked toward the valve seats by negative pressure in the air flow channel in the fuel cell. The fuel cell system further has an atmosphere release valve installed between the air flow channel in the fuel cell and the shutoff valve and releasing negative pressure in the air flow channel in the fuel cell to the atmosphere. When the fuel cell is started, the shutoff valves are opened after the negative pressure in the air flow channel of the fuel cell is released. Consequently, sealing ability of the shutoff valves when the fuel cell is stopped is improved, and easiness of opening of the shutoff valves when the fuel cell is started is also improved.
    Type: Grant
    Filed: March 27, 2008
    Date of Patent: July 24, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masahiro Takeshita, Hiroyuki Yumiya, Katsuki Ishigaki
  • Patent number: 8227142
    Abstract: The invention concerns a plate for fuel cell, in particular of the ion-exchange membrane type, comprising supply channels (2 to 5) connected to an intake orifice (2a) arranged in the center of one of the surfaces of the plate, and discharge channels (6 to 9) wherein circulate respectively a reactive fluid stream with relatively high concentration and a reactive fluid stream with relatively low concentration. The supply and/or discharge channels are symmetrically arranged on the plate, the supply and discharge channels having similar fractal configurations arranged complementarily to obtain a network of interweaving channels.
    Type: Grant
    Filed: January 12, 2009
    Date of Patent: July 24, 2012
    Assignee: Renault S.A.S.
    Inventor: Pierre Gaudillat
  • Patent number: 8221932
    Abstract: A fuel cell 10 includes an MEA 200, an anode separator 100 and a cathode separator 300. The anode separator 100 forms alternate first and second flow channels 110 and 120. The first flow channel 110 is blocked in the middle. The second flow channel 120 is blocked in the both ends. The anode separator 300 forms alternate first and second flow channels 310 and 320. The first flow channel 310 is blocked in the middle. The second flow channel 320 is blocked in the both ends.
    Type: Grant
    Filed: January 20, 2010
    Date of Patent: July 17, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Naoki Takehiro, Shinji Jomori, Takumi Taniguchi, Keiichi Kaneko, Tatsuya Arai
  • Patent number: 8221926
    Abstract: A fuel cell, a method for operating a fuel cell and a fuel cell system, which ensure no dew condensation for a wet reaction gas in the inlet area of gas channels in plates in a fuel cell stack. Gas channels and heat medium channels are disposed on one surface and the other surface of one plate, respectively. Gas channels are disposed on the other plate such that they face the gas channels in the plate. A gas inlet header is disposed at the upper part of the gas channel in the plate and a heat medium inlet header is disposed at the upper part of the heat medium channels such that they face the gas inlet header on the other side. Cooling water such as heat medium is supplied from the heat medium supply manifold hole to the heat medium inlet header, thereby warming up the same.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: July 17, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Takaaki Matsubayashi, Mitsuo Karakane, Yasunori Yoshimoto, Akira Hamada
  • Patent number: 8216738
    Abstract: A SOFC includes a cathode electrode, a solid oxide electrolyte, an anode electrode, and a hydrocarbon fuel inlet. The SOFC is configured for internal reforming of a hydrocarbon fuel at the anode electrode. The SOFC is configured to limit an interaction between the hydrocarbon fuel and the anode electrode adjacent to the hydrocarbon fuel inlet, or to limit an area of the anode electrode exposed to the hydrocarbon fuel adjacent to the hydrocarbon fuel inlet, or to provide a gradual introduction of the hydrocarbon fuel to the anode electrode.
    Type: Grant
    Filed: May 18, 2007
    Date of Patent: July 10, 2012
    Assignee: Versa Power Systems, Ltd.
    Inventors: Casey Brown, Wei Dong, Vlad Kalika, Scott Sherman, Scott Thompson
  • Patent number: 8216742
    Abstract: In at least one of flow distribution areas 35 provided on a separator 15, plurality of first projections 46 formed in a region corresponding to a first section (parted regions 32a and 32c) of a center area (including parted regions 32a through 32c) having a relatively high flow rate of a first fluid (refrigerant) are designed to have a larger diameter of a cross section than plurality of first projections 46 formed in a region corresponding to a second section (parted region 32b) of the center area having a relatively low flow rate of the first fluid. This arrangement effectively attains a substantially uniform flow rate distribution of a fluid in a fluid flow path formed on a separator, which is configured to have concavo-convex structures formed in a mutually reversed relation on two opposed sides thereof.
    Type: Grant
    Filed: November 17, 2008
    Date of Patent: July 10, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshinori Yamamoto, Toshiyuki Suzuki, Haruyuki Aono, Junichi Shirahama
  • Publication number: 20120171591
    Abstract: Collector plates made of bulk-solidifying amorphous alloys, the bulk-solidifying amorphous alloys providing ruggedness, lightweight structure, excellent resistance to chemical and environmental effects, and low-cost manufacturing, and methods of making such collector plates from such bulk-solidifying amorphous alloys are provided.
    Type: Application
    Filed: March 6, 2012
    Publication date: July 5, 2012
    Applicant: CRUCIBLE INTELLECTUAL PROPERTY, LLC
    Inventor: Trevor WENDE
  • Patent number: 8211592
    Abstract: A fluid distribution element is provided for a fuel cell having a major surface facing a membrane electrode assembly (MEA) and one or more flow channels for transporting gas and liquid to and from the MEA. One or more regions of the major surface are overlaid with a super-hydrophilic corrosion-resistant layer comprising a fluoropolymer. Methods of making such a fluid distribution element are also provided.
    Type: Grant
    Filed: September 15, 2005
    Date of Patent: July 3, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Gayatri Vyas, Youssef M. Mikhail, Thomas A. Trabold
  • Patent number: 8211584
    Abstract: The present invention discloses a metal separator for a fuel cell including a reaction gas channel formed to protrude from a first face of the metal separator to a second face thereof, a coolant channel formed between the reaction gas channels protruding from the second face of the metal separator, a reaction gas manifold opened to introduce a reaction gas into the metal separator, a coolant manifold opened to introduce a coolant into the metal separator, and a stepped portion positioned at any one of the space between the reaction gas channel and the reaction gas manifold, and the reaction gas channel. This configuration serves to widen the reaction gas flowing portion and the coolant flowing portion on the metal separator, and prevent deformation of the reaction gas flowing portion and the coolant flowing portion, thereby improving efficiency of the fuel cell.
    Type: Grant
    Filed: June 4, 2007
    Date of Patent: July 3, 2012
    Assignee: Hyundai Hysco
    Inventors: Yoo Taek Jeon, Ki Jung Kim, Jong-Chan Lee, Yeon Soo Jeong
  • Publication number: 20120164559
    Abstract: A flow field plate for use in a fuel cell includes a non-porous plate body having a flow field that extends between first and second ends of the non-porous plate body. The flow field includes a plurality of channels having channel inlets and channel outlets, a fluid inlet portion that diverges from the first end to the channel inlets, and a fluid outlet portion that converges from the channel outlets to the second end. A fuel cell including the flow field plate includes an electrode assembly having an electrolyte between an anode catalyst and a cathode catalyst. The flow field of the flow field plate is side by side with the electrode assembly. A method of processing a flow field plate includes forming the flow field in a non-porous plate body.
    Type: Application
    Filed: April 3, 2009
    Publication date: June 28, 2012
    Inventors: Robert Mason Darling, Eric J. O'Brien
  • Patent number: 8206875
    Abstract: The contraction and deformation of a seal member are inhibited. To realize this, in a separator in which the shapes of projections and recesses forming at least fluid passages are inverted from each other on the front surface and the back surface of the separator and which is provided with a manifold for supplying and discharging a fluid, the separator, when a seal member for sealing the fluid is provided along the edge side of the separator forming the contour of the manifold, a projecting section capable of functioning as a spacer between the separator and another member adjacent to the separator is provided between the seal member and the edge side.
    Type: Grant
    Filed: April 20, 2007
    Date of Patent: June 26, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yoshinori Yamamoto, Yuichi Yagami, Jiro Aizaki, Junichi Shirahama
  • Patent number: 8206866
    Abstract: A fuel cell, a method for operating a fuel cell and a fuel cell system, which ensure no dew condensation for a wet reaction gas in the inlet area of gas channels in plates in a fuel cell stack, are provided. Gas channels 2 and heat medium channels are disposed on one surface and the other surface of one plate 1, respectively. Gas channels are disposed on the other plate such that they face the gas channels 2 in the plate 1. A gas inlet header 3 is disposed at the upper part of the gas channel 2 in the plate 1 and a heat medium inlet header is disposed at the upper part of the heat medium channels such that they face the gas inlet header on the other side. Cooling water such as heat medium is supplied from the heat medium supply manifold hole 7 to the heat medium inlet header, thereby warming up the same. The water vapor in the reaction gas (wet fuel gas) is prevented from being condensed in the inlet area of the gas channels 2 by heating up the gas inlet header by the heat conduction.
    Type: Grant
    Filed: September 30, 2011
    Date of Patent: June 26, 2012
    Assignee: Sanyo Electric Co., Ltd.
    Inventors: Takaaki Matsubayashi, Mitsuo Karakane, Yasunori Yoshimoto, Akira Hamada
  • Patent number: 8206865
    Abstract: A separator includes a separator body 11 and a collector 12. The separator body 11 prevents a mixed flow of fuel gas and oxidizer gas. The collector 12 is formed from a metal lath RM in which through holes each having an opening shape assuming the form of a hexagon are formed in a meshy, step-like arrangement. This establishes a substantially linear contact mode between the collector 12 and each of the separator body 11 and a carbon cloth CC superposed on an MEA 30. This contact mode increases a contact area between the carbon cloth CC and gas and allows a necessary and sufficient contact area between the carbon cloth CC and the separator body 11. Thus, gas can be supplied efficiently, and generated electricity can be collected efficiently to thereby improve electricity generation efficiency of a fuel cell.
    Type: Grant
    Filed: July 13, 2006
    Date of Patent: June 26, 2012
    Assignee: Toyota Shatai Kabushiki Kaisha
    Inventor: Keiji Hashimoto
  • Publication number: 20120156590
    Abstract: A direct oxidation fuel cell (DOFC) having a liquid fuel and an anode electrode configured to generate power. The anode electrode includes a phase separation layer (PSL) positioned between a fuel channel plate and a GDL. The PSL can include at least one porous layer to improve fuel distribution and increase fuel cell performance.
    Type: Application
    Filed: December 20, 2010
    Publication date: June 21, 2012
    Inventors: Chao-Yang WANG, Liang WANG, Yongjun LENG, Hiroaki Matsuda
  • Patent number: 8202666
    Abstract: A unit cell assembly, stacked in a plurality to form a fuel cell, includes: a separator; a unit cell constituent member disposed at a first region on one face of the separator; a seal member which is formed of an elastic member and bonded to a second region surrounding the first region on one face of the separator, and which is integrated with at least part of a peripheral edge of the unit cell constituent member; and a first insulating portion having insulating properties and provided at least on part of a peripheral edge of the separator.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: June 19, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Masaaki Kanao, Kenji Sato, Hiroshi Nishiyama
  • Patent number: 8202667
    Abstract: A fuel cell device includes a housing containing a fuel processor that generates fuel gas and a fuel cell having electrodes forming an anode and cathode, and an ion exchange electrolyte positioned between the electrodes. The housing can be formed as first and second cylindrically configured outer shell sections that form a battery cell that is configured similar to a commercially available battery cell. A thermal-capillary pump can be operative with the electrodes and an ion exchange electrolyte, and operatively connected to the fuel processor. The electrodes are configured such that heat generated between the electrodes forces water to any cooler edges of the electrodes and is pumped by capillary action back to the fuel processor to supply water for producing hydrogen gas. The electrodes can be formed on a silicon substrate that includes a flow divider with at least one fuel gas input channel that can be controlled by a MEMS valve.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 19, 2012
    Inventor: Anthony M. Chiu
  • Patent number: 8202668
    Abstract: A fuel cell device includes a housing containing a fuel processor that generates fuel gas and a fuel cell having electrodes forming an anode and cathode, and an ion exchange electrolyte positioned between the electrodes. The housing can be formed as first and second cylindrically configured outer shell sections that form a battery cell that is configured similar to a commercially available battery cell. A thermal-capillary pump can be operative with the electrodes and an ion exchange electrolyte, and operatively connected to the fuel processor. The electrodes are configured such that heat generated between the electrodes forces water to any cooler edges of the electrodes and is pumped by capillary action back to the fuel processor to supply water for producing hydrogen gas. The electrodes can be formed on a silicon substrate that includes a flow divider with at least one fuel gas input channel that can be controlled by a MEMS valve.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: June 19, 2012
    Assignee: STMicroelectronics, Inc.
    Inventor: Anthony M. Chiu
  • Patent number: 8197987
    Abstract: A separator for fuel cell comprising an electrolyte with ionic conductivity, a pair of electrodes with the electrolyte sandwiched therebetween, and a separator 10 for individually supplying a fuel gas and an oxidizing agent gas to the pair of the electrodes, respectively, wherein the separator 10 is provided with a multilayered metal sheet with at least the outermost layer thereof, and a corrosion-resistant film covering the whole surface of the metal sheet in order to form a metal separator, and the metal separator is further provided with a reacting gas sealing unit 21, a reacting gas manifold junction unit 22, and a reacting gas rectification unit 23, formed of an elastic body.
    Type: Grant
    Filed: January 25, 2007
    Date of Patent: June 12, 2012
    Assignee: Hitachi, Ltd.
    Inventors: Hironori Sasaki, Kenji Yamaga, Katsunori Nishimura
  • Patent number: 8197984
    Abstract: A fuel cell stack includes a box-shaped casing and a stack body in the box-shaped casing. The stack body is formed by stacking a plurality of unit cells. The casing includes end plates, a plurality of side plates, angle members, and coupling pins. The angle members couple adjacent ends of the side plates. The coupling pins couple the end plates and the side plates.
    Type: Grant
    Filed: July 23, 2004
    Date of Patent: June 12, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Narutoshi Sugita, Takashi Kosaka, Ayumu Ishizuka, Ken Takahashi, Hiroshi Morikawa, Teruyuki Ohtani
  • Patent number: 8197986
    Abstract: A surface on the fuel electrode side of a lower portion of a separator in a fuel cell stack is made to have water repellency, so that water accumulated in a fuel gas flow path can be appropriately discharged, and thus so that reduction in fuel cell performance and deterioration of the fuel electrode can be surely prevented. For that purpose, in a fuel cell device, a fuel cell having an electrolyte layer interposed between the fuel electrode and an oxygen electrode includes a cell module laminated so as to interpose a separator formed with the fuel gas flow path along the fuel electrode, and a fuel gas flows substantially perpendicularly to the direction of gravity in the fuel gas flow path. The separator is provided with a water-repellent surface on the fuel electrode side of a lower portion thereof.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: June 12, 2012
    Assignee: KabushikiKaisha Equos Research
    Inventors: Toshihiko Nonobe, Noriyuki Takada
  • Patent number: 8192894
    Abstract: A fuel cell is formed by stacking an electrolyte electrode assembly and a pair of separators alternately. Each of the separators includes first to third plates. A first cylindrical portion provided at a first small diameter end portion of one separator is inserted into a fuel gas supply passage of the other separator. The first cylindrical portion is subjected to a crimping process such that a joint portion as a predetermined overlapping portion is formed integrally with the one separator and the other separator.
    Type: Grant
    Filed: January 13, 2006
    Date of Patent: June 5, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventor: Tadashi Tsunoda
  • Patent number: 8187768
    Abstract: The present invention relates to a separating plate of solid oxide fuel cell stack. The separating plate of solid oxide fuel cell stack includes a substrate, upper and lower micro channel plates and upper and lower sealing guides. The substrate includes a fuel inflow/outflow manifold and an air inflow/outflow manifold disposed opposing to each other in a diagonal direction, a fuel channel having a pair of horizontal channels and an inclined channel connecting ends of the horizontal channels so as to connect the fuel inflow/outflow manifold, and an air channel having a pair of vertical channels and an inclined channel connecting ends of the vertical channels so as to connect the air inflow/outflow manifold. The upper and lower micro channel plates are attached to upper and lower parts of the substrate and includes a plurality of micro channels so as to distribute uniformly fuel flowing in the fuel channel and air flowing in the air channel.
    Type: Grant
    Filed: October 28, 2009
    Date of Patent: May 29, 2012
    Assignee: Korea Electric Power Corporation
    Inventors: Tae-Hee Lee, Young-Sung Yoo, Jin-Hyeok Choi
  • Publication number: 20120129072
    Abstract: Disclosed herein is an air-cooled metal separator that does not need cooling water. The air-cooled metal separator includes a channel section formed in the middle of a metal plate, the channel section including a reaction gas channel depressed into a front surface of the metal plate to protrude from a rear surface thereof and an air channel defined between the reaction gas channels protruding from the rear surface of the metal plate; a first gasket continuously formed along a rim of a front surface of the channel section; and a second gasket discontinuously formed along a rim of a rear surface of the channel section to allow a discontinuous portion of the second gasket to provide a flow passage of air.
    Type: Application
    Filed: August 4, 2009
    Publication date: May 24, 2012
    Applicant: HYUNDAI HYSCO
    Inventors: Ki-Jung Kim, Yoo-Taek Jeon
  • Patent number: 8182960
    Abstract: A metal separator for fuel cells formed with a metal plate and provided between cells accumulated, in which the metal plate is formed like trapezoidal irregularities to separate channels for a fuel gas from ones for an oxidant gas. Slope portions are formed after forming uniformly and thinly wall thickness of both upper and lower flat portions or either of the upper or the lower flat portion to 90% or less of that of the metal plate to be formed to obtain trapezoidal irregularities by forming flat portions which contact upper and lower cells and slope portions which interconnect the upper and the lower flat portions.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: May 22, 2012
    Assignee: Hitachi Cable, Ltd.
    Inventors: Masahiro Seido, Kazuhiko Nakagawa, Takaaki Sasaoka, Mineo Washima
  • Patent number: 8182961
    Abstract: The present invention provides a separator for a solid polymer type fuel cell superior in low contact resistance of the fuel cell separator surface with carbon paper and flatness and a method of production of the same, that is, a separator for a solid polymer type fuel cell comprising a substrate of stainless steel or titanium or a titanium alloy having a surface layer part on which conductive compound particles are fixed, wherein said conductive compound particles are comprised of one or more types of metal borides, metal carbides, and metal nitrides with an average particle size of 0.
    Type: Grant
    Filed: February 27, 2007
    Date of Patent: May 22, 2012
    Assignee: Nippon Steel Corporation
    Inventors: Koki Tanaka, Youichi Ikematsu, Hiroshi Kihira, Michio Kaneko, Wataru Hisada, Tamotsu Itoh
  • Patent number: 8182962
    Abstract: The present invention relates to a fuel cell separator plate comprising at least one separator sheet and at least one flange suitable to be fixed on the side of the separator sheet by means of shape-coupling. The invention also relates to a fuel cell comprising said separator sheet, preferably a molten carbonate fuel cell (MCFC). The invention also relates to a stack of these fuel cells being electrically coupled to each other.
    Type: Grant
    Filed: April 21, 2005
    Date of Patent: May 22, 2012
    Assignee: Ansaldo Fuels S.p.A.
    Inventors: Sergio Fasce, Lorenzo Tosonotti, Maurizio Zappaterra
  • Publication number: 20120122018
    Abstract: The present invention provides a fuel cell separator and a method for surface treatment of the same, in which ionized nanoparticles are attached to the surface of a separator to form fine projections such that the surface of the separator exhibits superhydrophobicity. For this purpose, the present invention provides a method for surface treatment of a fuel cell separator which provides nanoparticles for forming fine projections on the surface of the separator to a discharge electrode and ionizes the nanoparticles by an arc discharge generated in the discharge electrode. The ionized nanoparticles are then attached to the surface of the separator by an electric field generated by applying a high voltage between the separator and the discharge electrode, thereby forming fine projections for imparting superhydrophobicity.
    Type: Application
    Filed: May 12, 2011
    Publication date: May 17, 2012
    Applicants: KIA MOTORS CORPORATION, HYUNDAI MOTOR COMPANY
    Inventors: Haeng Jin Ko, Sae Hoon Kim, Yoo Chang Yang, Yun Seok Kim
  • Patent number: 8178250
    Abstract: A fuel cell device includes a housing containing a fuel processor that generates fuel gas and a fuel cell having electrodes forming an anode and cathode, and an ion exchange electrolyte positioned between the electrodes. The housing can be formed as first and second cylindrically configured outer shell sections that form a battery cell that is configured similar to a commercially available battery cell. A thermal-capillary pump can be operative with the electrodes and an ion exchange electrolyte, and operatively connected to the fuel processor. The electrodes are configured such that heat generated between the electrodes forces water to any cooler edges of the electrodes and is pumped by capillary action back to the fuel processor to supply water for producing hydrogen gas. The electrodes can be formed on a silicon substrate that includes a flow divider with at least one fuel gas input channel that can be controlled by a MEMS valve.
    Type: Grant
    Filed: March 31, 2009
    Date of Patent: May 15, 2012
    Assignee: STMicroelectronics, Inc.
    Inventor: Anthony M. Chiu
  • Patent number: 8173321
    Abstract: The invention relates to a fuel cell having a membrane electrode arrangement (16) arranged between two separator plate units (44), a first fluid area (12) for distribution of a first fluid which is adjacent to one side of the membrane-electrode arrangement (16), a second fluid area (14) for distribution of a second fluid which is adjacent to a side of the membrane-electrode arrangement (16) opposite this side, with a separating wall (36) being arranged in at least one fluid area (12) and subdividing the fluid area (12) into at least one metering area (32) and one fluid subarea (34), with the at least one metering area (32) having a fluid connection to the adjacent fluid subarea (34) at at least one metering point (38), such that the first fluid can be metered from the metering area (32) through the metering point (38) into the adjacent fluid subarea (34).
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: May 8, 2012
    Assignee: Daimler AG
    Inventor: Felix Blank
  • Patent number: 8173328
    Abstract: Various embodiments relate to interconnects for solid oxide fuel cells (“SOFCs”) comprising ferritic stainless steel and having at least one via that when subjected to an oxidizing atmosphere at an elevated temperature develops a scale comprising a manganese-chromate spinel on at least a portion of a surface thereof, and at least one gas flow channel that when subjected to an oxidizing atmosphere at an elevated temperature develops an aluminum-rich oxide scale on at least a portion of a surface thereof. Other embodiments relate to interconnects comprising a ferritic stainless steel and having a fuel side comprising metallic material that resists oxidation during operation of the SOFCs, and optionally include a nickel-base superalloy on the oxidant side thereof. Still other embodiments relate to ferritic stainless steels adapted for use as interconnects comprising ?0.1 weight percent aluminum and/or silicon, and >1 up to 2 weight percent manganese. Methods of making interconnects are also disclosed.
    Type: Grant
    Filed: June 1, 2011
    Date of Patent: May 8, 2012
    Assignee: ATI Properties, Inc.
    Inventors: James M. Rakowski, Charles P. Stinner
  • Publication number: 20120107722
    Abstract: A separator for a fuel cell includes a metal separator (metal substrate) having projections formed by ribs, and porous members provided in a plurality of flow passages partitioned by the projections, in which a hydrophilic portion is provided in a center part of a cross section orthogonal to a flow direction in the porous member, and a water repellent portion is provided in at least a part of portions in contact with wall surfaces of the flow passage within a range of the cross section. According to the present invention, the mixed phase flow in which the reaction gas and the cooling water inside the flow passages are mixed can be made an even flow in the separator in which the porous members are provided in the gas flow passages.
    Type: Application
    Filed: November 1, 2011
    Publication date: May 3, 2012
    Inventors: Hiroyuki SATAKE, Masaya KOZAKAI, Kenji YAMAGA
  • Patent number: 8168340
    Abstract: A bipolar plate includes angled facets oriented to form V-shaped projections on the plate edge. Liquid leaving the reactant channels is drawn back into the V-shaped grooves of the projections, leaving no liquid to obstruct the channel exit openings. The bipolar plate includes one portion of the bipolar plate offset from another portion of the bipolar plate so as to expose the reactant channels. The liquid is drawn toward the end portions of the reactant channels by capillary forces, while the gas flows can exit near the beginning of the offset portion. A fuel cell stack includes angled facets that are rotated to lie in the plane of the bipolar plate edges. The edges are chamfered so the channel exit openings of the reactant channels are at the tip portions thereof, thus allowing the liquid to flow away from the channel exit openings and the gas to exit freely.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: May 1, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Lee C. Whitehead, Steven R. Falta, Thomas A. Trabold, Jon P. Owejan, Thomas W. Tighe
  • Patent number: 8163432
    Abstract: The present invention provides a fuel cell capable of inhibiting desiccation and flooding of a membrane electrode assembly. The fuel cell has a laminated body having a membrane electrode assembly including an electrolyte membrane sandwiched by an anode catalyst layer and a cathode catalyst layer. A pair of separators sandwiches the laminated body, and between at least one separator and the laminated body, inlet and outlet passages are formed. The inlet passage is blocked at a downstream end of the reaction gas supplied to the laminated body and the outlet passage is blocked at an upstream end of the reaction gas having passed through the laminated body. The inlet passage and the outlet passage are arranged separately from each other. The depth of the upstream region of the inlet passage is larger than that of the downstream region of the inlet passage.
    Type: Grant
    Filed: December 12, 2008
    Date of Patent: April 24, 2012
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Shinji Jomori, Naoki Takehiro, Tatsuya Arai, Keiichi Kaneko, Takumi Taniguchi
  • Patent number: 8158299
    Abstract: The invention relates to a bipolar plate for a fuel cell stack, which comprises at least a an anode-side sub-plate. An interior of the bipolar plate is enclosed by the sub-plates, with a fluid port area arranged having at least one fluid port, over which a fluid can be conveyed to the fluid channels. The fluid channels are arranged on at least one of the flat sides, as well as a manifold zone, over which the fluid can be distributed to its assigned fluid channels and an accumulation zone, over which the fluid can be carried away from the fluid channels to another fluid port area. At least one of the sub-plates has a uniform arrangement of raised support points in the manifold zone and/or accumulation zone. Apart from the peripherally situated support points, a negative support point of the same type is designed adjacent to each raised support point inside the manifold zone and/or the accumulation zone.
    Type: Grant
    Filed: May 28, 2008
    Date of Patent: April 17, 2012
    Assignee: Daimler AG
    Inventors: Felix Blank, Thomas Kunick, Markus Schudy
  • Publication number: 20120088184
    Abstract: The present invention provides an improved metal separator for a fuel cell and a method for preparing same. More particularly, the invention provides a metal separator for a fuel cell, whereby the separator has a surface structure that imparts reduced contact resistance, improved corrosion resistance, and stable electrical conductivity. The invention further provides a surface treatment method for making the metal separator of the invention. The inventive method comprises sintering Fe—Cr—B—V-based powder on the surface of a metal foam to form an alloy layer; and forming a nitride layer of a (Cr—V—B)N-based material while supplying nitrogen gas on the surface of the alloy layer.
    Type: Application
    Filed: November 22, 2010
    Publication date: April 12, 2012
    Applicant: HYUNDAI MOTOR COMPANY
    Inventors: Young Min Nam, Yoo Chang Yang, Suk Min Baeck, Seung Gyun Ahn
  • Patent number: 8153325
    Abstract: A first separator has an outlet side first connection channel connecting a first fuel gas flow field and a fuel gas discharge passage, and a second separator includes an outlet side second connection channel connecting a second fuel gas flow field and the fuel gas discharge passage. The outlet side first connection channel and the outlet side second connection channel include outer passages and outer passages arranged in the same plane formed by facing the first separator and the second separator. The outer passages and the outer passages are formed alternately and independently in the same plane.
    Type: Grant
    Filed: December 5, 2008
    Date of Patent: April 10, 2012
    Assignee: Honda Motor Co., Ltd.
    Inventors: Masaru Oda, Hiroto Chiba, Masahiro Mohri, Chikara Iwasawa, Narutoshi Sugita
  • Patent number: 8148034
    Abstract: A metallic separator for a fuel cell including 2.2 to 6.0 parts by weight of tungsten based on 100 parts by weight of stainless steel containing molybdenum, and the weight ratio of molybdenum to tungsten (Mo/W) is 0.15 to 1.60. The separator for fuel cells has excellent anti-corrosive properties and contact resistance as low as that of a metal material, and thus, a fuel cell having high efficiency can be manufactured at a reasonable cost using the separator.
    Type: Grant
    Filed: September 22, 2006
    Date of Patent: April 3, 2012
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Jung-ock Park, Tae-young Kim, Kyoo-young Kim, Duck-young Yoo
  • Publication number: 20120077111
    Abstract: Provided is a fuel cell separator that has excellent resistance to heat and hot water and has a glass transition temperature between 140° C. and 165° C. Said fuel cell separator is formed by curing a composition containing a graphite material and a binder component resin. The binder component resin contains a cresol novolac epoxy resin having a hydrolysable chlorine content of at most 450 ppm and an epoxy equivalent weight of 192-210 g/eq, a phenol resin having a hydroxyl equivalent weight of 103-106 g/eq, and an imidazole compound having a molecular weight between 140 and 180.
    Type: Application
    Filed: July 22, 2010
    Publication date: March 29, 2012
    Applicant: NISSHINBO CHEMICAL INC.
    Inventor: Fumio Tanno
  • Patent number: 8137853
    Abstract: A membrane humidifier for a fuel cell with a wet side plate having a plurality of flow channels formed therein and a dry side plate having a plurality of flow channels formed therein, the flow channels of the wet side plate adapted to facilitate a flow of a wet gas therethrough and the flow channels of said dry side plate adapted to facilitate a flow of a dry gas therethrough, wherein a pressure drop in the humidifier is minimized and a humidification of a proton exchange membrane in the fuel cell is optimized.
    Type: Grant
    Filed: October 22, 2010
    Date of Patent: March 20, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Yan Zhang, Annette M. Brenner, Hubert A. Gasteiger, Steven G. Goebel, Glenn W. Skala