Including Platinum Catalyst Patents (Class 429/524)
  • Patent number: 7781364
    Abstract: A methanol-tolerant cathode catalyst and a membrane electrode assembly for fuel cells that includes such a cathode catalyst. The cathode catalyst includes a support having at least one transition metal in elemental form and a chalcogen disposed on the support. Methods of making the cathode catalyst and membrane electrode assembly are also described.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: August 24, 2010
    Assignee: Los Alamos National Security, LLC
    Inventors: Piotr Zelenay, Jong-Ho Choi, Nicolas Alonso-Vante, Andrzej Wieckowski, Dianxue Cao
  • Publication number: 20100209815
    Abstract: Catalytic layers for use in the electrodes of fuel cells including a non-noble metal substrate layer coated with one or a few monolayers of noble metal, such as Pt. These thin, highly porous structures with large catalytically active surface areas, should exhibit a significantly higher power output per mg of Pt and per cm2 of the membrane than the current Polymer Electrolyte Fuel Cells catalytic layers.
    Type: Application
    Filed: April 28, 2010
    Publication date: August 19, 2010
    Inventor: Yuriy Viacheslavovich Tolmachev
  • Publication number: 20100209806
    Abstract: Membrane electrode assembly (MEA) with an anode, which contains at least two catalytically active metals which are not alloyed with one another, wherein at least one first catalytically active metal (A) oxidizes ethanol and at least one second catalytically active metal (B) oxidizes acetaldehyde.
    Type: Application
    Filed: July 3, 2008
    Publication date: August 19, 2010
    Applicant: Fraunhofer-Gesellschaft zur Forderung der angewandten Forschung e.V.
    Inventors: Carsten Cremers, Michael Krausa
  • Publication number: 20100209822
    Abstract: Disclosed is a bipolar plate for a fuel cell, including: a non-conductive anode membrane on which a fuel flow channel is formed; a non-conductive cathode membrane on which an air flow channel is formed; a non-conductive separation membrane that is provided between the anode membrane and the cathode membrane to separate them from each other so that the fuel and the air are not mixed; and a metal unit that provides a current moving path allowing charge to be moved from the anode membrane to the cathode membrane via the separation membrane when the anode membrane, the separation membrane and the cathode membrane are stacked sequentially. More specifically, each of the anode membrane, the cathode membrane and the separation membrane is glass, preferably, photosensitive glass.
    Type: Application
    Filed: April 3, 2009
    Publication date: August 19, 2010
    Applicant: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Sejin KWON, Jongkwang Lee, Kiin Kim
  • Publication number: 20100203427
    Abstract: A fuel cell includes a cathode, an anode, a proton-conductive film (6) arranged between the cathode and the anode and an oxidization catalyst layer (14) provided on an opposite side to a surface the cathode which faces the proton-conductive film (6) and containing an oxidization catalyst which oxidizes an organic substance.
    Type: Application
    Filed: September 15, 2006
    Publication date: August 12, 2010
    Inventors: Hiroyuki Hasebe, Masakazu Kudo
  • Publication number: 20100203428
    Abstract: A supported catalyst for fuel cell includes a conductive carrier and platinum supported on the conductive carrier. A 90% particle diameter D90 on a cumulative particle size curve obtained by determining a particle size distribution of the supported catalyst by a light scattering method is 28 ?m or less.
    Type: Application
    Filed: April 15, 2010
    Publication date: August 12, 2010
    Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshiharu TABATA, Tomoaki Terada, Takahiro Nagata, Mikihiro Kataoka, Hiroaki Takahashi, Nobuaki Mizutani, Yousuke Horiuchi
  • Publication number: 20100196789
    Abstract: A platinum alloy catalyst PtX, wherein the atomic percent of platinum in the bulk alloy is from 5 to 50 at %, the remaining being X, characterised in that the atomic percent of platinum at the surface of the alloy is from 10 to 80 at %, the remainder being X, provided that the at % of platinum at the surface of the alloy is at least 25% greater than the at % of platinum in the bulk alloy is disclosed.
    Type: Application
    Filed: July 22, 2008
    Publication date: August 5, 2010
    Inventors: Janet Mary Fisher, David Thompsett
  • Publication number: 20100196802
    Abstract: A fuel cell having an excellent life property is achieved. A supported catalyst for a fuel cell includes a catalytic particle made of an alloy of platinum and gold, and a conductive carrier supporting the catalytic particle. 50% or more of gold forms a solid solution with platinum.
    Type: Application
    Filed: April 15, 2010
    Publication date: August 5, 2010
    Applicants: CATALER CORPORATION, TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Toshiharu TABATA, Tomoaki Terada, Takahiro Nagata, Mikihiro Kataoka, Hiroaki Takahashi, Nobuaki Mizutani, Yousuke Horiuchi
  • Publication number: 20100196801
    Abstract: An alkaline fuel cell electrode catalyst includes a first catalyst particle that contains at least one of iron (Fe), cobalt (Co) and nickel (Ni), a second catalyst particle that contains at least one of platinum (Pt) and ruthenium (Ru), and a carrier for supporting the first catalyst particle and the second catalyst particle.
    Type: Application
    Filed: May 15, 2008
    Publication date: August 5, 2010
    Applicant: TOYOTA JIDOSHA KABUSHIKI KAISHA
    Inventors: Haruyuki Nakanishi, Yusuke Kuzushima
  • Publication number: 20100190086
    Abstract: A porous catalyst layer formed from discrete particles of unsupported metal, wherein at least 80%, suitably at least 90%, of the discrete particles have a mass of from 1 to 1000 zeptograms, and wherein the catalyst layer has a metal volume fraction of less than 30% and a metal loading of less than 0.09 mg/cm2 is disclosed. The catalyst layer is suitable for use in fuel cells and other electrochemical applications.
    Type: Application
    Filed: June 19, 2008
    Publication date: July 29, 2010
    Inventors: Ian Roy Harkness, Jonathan David Brereton Sharman, Edward Anthony Wright
  • Publication number: 20100190094
    Abstract: The invention provides an electrode comprising an electrically conductive material having a surface capable of producing surface enhanced Raman scattering of incident light from a complex adsorbed at the surface of the electrode, the complex including the electrically conductive material combined with a second material that is substantially reducible and not substantially oxidizable. The surface of the electrode can be microroughened. The invention also includes a method for making various embodiments of the electrode, and a method of generating electricity using the electrode. In accordance with a further aspect of the invention, a fuel cell is provided including the electrode of the invention.
    Type: Application
    Filed: March 8, 2010
    Publication date: July 29, 2010
    Inventor: John J. McMahon
  • Publication number: 20100183942
    Abstract: This invention relates to an electrode catalyst for a fuel cell comprising catalyst metal particles of noble metal-base metal-Ce (cerium) ternary alloy carried on carbon materials, wherein the noble metal is at least one member selected from among Pt, Ru, Rh, Pd, Ag and Au, the base metal is at least one member selected from among Ir, Co, Fe, Ni and Mn, and the relative proportion (i.e., the molar proportion) of noble metal:base metal:Ce (cerium) is 20 to 95:5 to 60:0.1 to 3. The electrode catalyst for a fuel cell inhibits deterioration of an electrolyte membrane or an electrolyte in an electrode catalyst layer, improves durability, and, in particular, improves the capacity for power generation in the high current density region.
    Type: Application
    Filed: June 11, 2008
    Publication date: July 22, 2010
    Applicants: TOYOTA JIDOSHA KABUSHIKI KAISHA, CATALER CORPORATION
    Inventors: Hiroaki Takahashi, Yosuke Horiuchi, Takahiro Nagata, Tomoaki Terada, Toshiharu Tabata
  • Patent number: 7759277
    Abstract: The present invention provides a catalyst having high activity and excellent stability, a process for preparation of the catalyst, a membrane electrode assembly, and a fuel cell. The catalyst of the present invention comprises an electronically conductive support and catalyst fine particles. The catalyst fine particles are supported on the support and are represented by the formula (1): PtuRuxGeyTz (1). In the formula, u, x, y and z mean 30 to 60 atm %, 20 to 50 atm %, 0.5 to 20 atm % and 0.5 to 40 atm %, respectively. When the element represented by T is Al, Si, Ni, W, Mo, V or C, the content of the T-element's atoms connected with oxygen bonds is not more than four times as large as that of the T-element's atoms connected with metal bonds on the basis of X-ray photoelectron spectrum (XPS) analysis.
    Type: Grant
    Filed: March 19, 2009
    Date of Patent: July 20, 2010
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Taishi Fukazawa, Wu Mei, Yoshihiko Nakano, Tsuyoshi Kobayashi, Itsuko Mizutani, Hiroyasu Sumino
  • Patent number: 7754644
    Abstract: The present invention provides a noble metal particle with an improved methanol-oxidation property. This noble metal particle has a platinum particle and ruthenium particles deposited on only part of the surface of the platinum particle. This noble metal particle suitably can be produced by precipitating the ruthenium particles out of the solution so that the ruthenium particles are deposited on only part of the surface of the platinum particle by further adding a ruthenium salt into the solution and reducing the ruthenium salt after the reduction of the platinum salt in the solution essentially is completed. This noble metal particle is suitable as a catalyst to be supported on an electrode of a polymer electrolyte fuel cell typified by a direct methanol fuel cell.
    Type: Grant
    Filed: September 1, 2006
    Date of Patent: July 13, 2010
    Assignee: Nippon Sheet Glass Company, Limited
    Inventor: Ryohei Ogawa
  • Publication number: 20100151354
    Abstract: A direct fuel cell comprises a cathode comprising electroactive catalyst material; and an anode assembly comprising an anode having a porous layer and electroactive catalyst material in the porous layer. The electrode characteristics of the anode assembly are selected so that fuel supplied to the anode is reacted within the anode so that cross-over from the anode to the cathode does not have more than a 10% negative effect on voltage or a 25 mV voltage loss when at peak power and steady state conditions. The anode and cathode each have a first major surface facing each other in non-electrical contact and without a microporous separator or ion exchange membrane therebetween.
    Type: Application
    Filed: April 30, 2008
    Publication date: June 17, 2010
    Applicants: NATIONAL RESEARCH COUNCIL OF CANADA, THE UNIVERSITY OF BRITISH COLUMBIA
    Inventors: David P. Wilkinson, Alfred Lam
  • Publication number: 20100143821
    Abstract: A composition comprising an admixture of at least platinum particles and metal nanoparticles of metal that, when in admixture with the platinum particles, beneficially alters the characteristics of the platinum, including metals selected from one or more of the metals in groups 3-16, lanthanides, combinations thereof, and/or alloys thereof. The composition could be used to form an ink that further comprises an ionically conductive material, such as a polymer, capable of ionic networking throughout the ink composition so as to create a substantially structurally coherent mass without significantly impacting the reactivity of a substantial number of the nanoparticles. In one application, the ink may be used to form a catalyst whereby the ink is applied to an electrically conductive backing material, such as carbon paper or fibers.
    Type: Application
    Filed: July 23, 2007
    Publication date: June 10, 2010
    Applicant: QuantumSphere, Inc.
    Inventors: Kimberly McGrath, R. Douglas Carpenter
  • Publication number: 20100136457
    Abstract: The present invention provides a gas diffusion electrode in which flooding therein is suppressed. The gas diffusion electrode includes: a membrane formed of conductive fibers; a layer formed of conductive fine particles existing while coming into contact with one of surfaces of the membrane; and a catalyst, in which the membrane formed of the conductive fibers includes a region carrying the catalyst and a region free from carrying the catalyst, the region carrying the catalyst including a surface of the membrane formed of the conductive fibers on an opposite side of a surface of the membrane formed of the conductive fibers, which is brought into contact with the layer formed of the conductive fine particles. The catalyst can be formed by a reactive sputtering method.
    Type: Application
    Filed: January 31, 2008
    Publication date: June 3, 2010
    Applicant: CANON KABUSHIKI KAISHA
    Inventor: Kazuhiro Yamada