Including Palladium Catalyst Patents (Class 429/525)
  • Patent number: 10026969
    Abstract: Atomic mixed metal electrodes, including electrodes containing a conductive polymer-mixed metal complex, as well as methods of making and using the same, are disclosed. In some embodiments, the atomic mixed metal electrode can be described as a conductive polymer-coated electrode having mixed metal clusters complexed to the conductive polymer at levels of between 2 and 10 metal atoms. A method for preparing the conductive polymer-mixed metal complexes is disclosed that can deposit metal atoms one at a time into a complex with the conductive polymer, allowing for highly tailored atomic clusters. A method of oxidizing alcohols, and the application to devices such as fuel cells are also disclosed.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: July 17, 2018
    Assignee: Georgia Tech Research Corporation
    Inventors: Alex P. Jonke, Miroslawa A. Josowicz, Jiri Janata
  • Patent number: 9502719
    Abstract: A method of preparing M-N—C catalysts utilizing a sacrificial support approach and inexpensive and readily available polymer precursors as the source of nitrogen and carbon is disclosed. Exemplary polymer precursors include those that do not form complexes with iron, but which do complex with silica, for example, polyetheleneimine (PEI), Poly(2-ethyl-2-oxazoline), Poly(acrylamide-co-diallyldimethylammonium chloride), Poly(melamine-co-formaldehyde), Poly[[6-[(1,1,3,3-tetramethylbutyl)amino]-s-triazine-2,4-diyl]-[(2,2,6,6-tetramethyl-4-piperidyl)imino]-hexamethylene-[(2,2,6,6-tetramethyl-4-piperidyl)imino] and the like.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: November 22, 2016
    Assignee: STC.UNM
    Inventors: Alexey Serov, Barr Halevi, Michael Robson, Wendy Patterson, Kateryna Artyushkova, Plamen B Atanassov
  • Publication number: 20150147681
    Abstract: A self-supporting porous alloyed metal material and methods for forming the same. The method utilizes a sacrificial support based technique that enables the formation of uniquely shaped voids in the material. The material is suitable for use as an electrocatalyst in a variety of fuel cell and other applications.
    Type: Application
    Filed: October 2, 2014
    Publication date: May 28, 2015
    Applicant: STC.UNM
    Inventors: Alexey Serov, Plamen B. Atanassov
  • Publication number: 20150147682
    Abstract: Nitride stabilized metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous noble metal shell with a nitride-stabilized non-noble metal core. The nitride-stabilized core provides a stabilizing effect under high oxidizing conditions suppressing the noble metal dissolution during potential cycling. The nitride stabilized nanoparticles may be fabricated by a process in which a core is coated with a shell layer that encapsulates the entire core. Introduction of nitrogen into the core by annealing produces metal nitride(s) that are less susceptible to dissolution during potential cycling under high oxidizing conditions.
    Type: Application
    Filed: November 26, 2014
    Publication date: May 28, 2015
    Inventors: Kurian Abraham Kuttiyiel, Kotaro Sasaki, Radoslav R. Adzic
  • Publication number: 20150118599
    Abstract: A method of fabricating composite filaments is provided. An initial composite filament including a core and a cladding (such as a Pt-group metal) is cut into smaller pieces (or is first mechanically reduced and then cut into smaller pieces). The smaller pieces of the filaments are inserted into a metal matrix, and the entire structure is then further reduced mechanically in a series of reduction steps. The process can be repeated until the desired cross sectional dimension of the filaments is achieved. The matrix can then be chemically removed to isolate the final composite filaments with the cladding thickness down to the nanometer range. The process allows the organization and integration of filaments of different sizes, compositions, and functionalities into arrays suitable for various applications.
    Type: Application
    Filed: February 24, 2014
    Publication date: April 30, 2015
    Inventor: Joze Bevk
  • Publication number: 20150093686
    Abstract: A method of preparing catalytic materials comprising depositing platinum or non-platinum group metals, or alloys thereof on a porous oxide support.
    Type: Application
    Filed: March 11, 2013
    Publication date: April 2, 2015
    Applicant: STC.UNM
    Inventors: Alexey Serov, Ulises A Martinez, Plamen B Atanassov
  • Publication number: 20150086902
    Abstract: A catalytic material includes (i) a support material and (ii) a thin film catalyst coating having an inner face adjacent to the support material and an outer face, the thin film catalyst coating having a mean thickness of ?8 nm, and wherein at least 40% of the support material surface area is covered by the thin film catalyst coating; and wherein the thin film catalyst coating includes a first metal and one or more second metals, and wherein the atomic percentage of first metal in the thin film catalyst coating is not uniform through the thickness of the thin film catalyst coating.
    Type: Application
    Filed: March 28, 2013
    Publication date: March 26, 2015
    Applicant: JOHNSON MATTHEY FUEL CELLS LIMITED
    Inventors: Graham Alan Hards, Ian Roy Harkness, Michael Ian Petch, Jonathan David Brereton Sharman, Edward Anthony Wright, Alexander Martin Willcocks
  • Patent number: 8980502
    Abstract: The invention includes a method for use in creating electrochemical electrodes including removing a supporting structure in situ after the assembly of the electrochemical cell.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: March 17, 2015
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Michael David Gasda, Glenn Eisman, Daniel Gall
  • Patent number: 8974986
    Abstract: A method for producing metal-supported carbon includes supporting metal microparticles on the surface of carbon black, by a liquid-phase reduction method, in a thin film fluid formed between processing surfaces arranged to be opposite to each other so as to be able to approach to and separate from each other, at least one of which rotates relative to the other.
    Type: Grant
    Filed: July 4, 2008
    Date of Patent: March 10, 2015
    Assignee: M. Technique Co., Ltd.
    Inventor: Masakazu Enomura
  • Patent number: 8968967
    Abstract: A fuel cell catalyst support includes a fluoride-doped metal oxide/phosphate support structure and a catalyst layer, supported on such fluoride-doped support structure. In one example, the support structure is a sub-stechiometric titanium oxide and/or indium-tin oxide (ITO) partially coated or mixed with a fluoride-doped metal oxide or metal phosphate. In another example, the support structure is fluoride-doped and mixed with at least one of low surface carbon, boron-doped diamond, carbides, borides, and silicides.
    Type: Grant
    Filed: September 17, 2008
    Date of Patent: March 3, 2015
    Assignee: Ballard Power Systems Inc.
    Inventors: Belabbes Merzougui, Minhua Shao, Lesia V. Protsailo
  • Publication number: 20150050583
    Abstract: The present invention refers to highly sinter-stable metal nanoparticles supported on mesoporous graphitic spheres, the so obtained metal-loaded mesoporous graphitic particles, processes for their preparation and the use thereof as catalysts, in particular for high temperature reactions in reducing atmosphere and cathode side oxygen reduction reaction (ORR) in PEM fuel cells.
    Type: Application
    Filed: February 8, 2013
    Publication date: February 19, 2015
    Applicant: STUDIENGESELLSCHAFT KOHLE MBH
    Inventors: Ferdi Schüth, Diana Carolina Galeano Nunez, Hans-Josef Bongard, Karl Mayrhofer, Josef C. Meier, Claudio Baldizzone, Stefano Mezzavilla
  • Patent number: 8956771
    Abstract: An electrode catalyst for fuel cell, a method of preparing the electrode catalyst, a membrane electrode assembly including the electrode catalyst, and a fuel cell including the membrane electrode assembly. The electrode catalyst includes a crystalline catalyst particle incorporating a precious metal having oxygen reduction activity and a Group 13 element, where the Group 13 element is present in a unit lattice of the crystalline catalyst particle.
    Type: Grant
    Filed: September 21, 2012
    Date of Patent: February 17, 2015
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Kang-hee Lee, Chan-ho Pak, Dae-jong Yoo, Seon-ah Jin
  • Publication number: 20150044594
    Abstract: A catalyst-layer-supporting substrate comprising a substrate supporting a catalyst layer; wherein the catalyst layer comprises two or more porous catalyst metal particle layers that are superposed alternately with (i) two or more intersticed layers comprising at least one element selected from the group consisting of Mn, Fe, Co, Ni, Zn, Sn, Al, and Cu; or (ii) two or more fibrous carbon layers having interstices among fibers of the fibrous carbon. A method for forming a catalyst-layer-supporting structure that comprises porous catalyst metal particle by removing a pore-forming metal from a mixture layer containing a pore-forming metal and a catalyst metal.
    Type: Application
    Filed: April 23, 2014
    Publication date: February 12, 2015
    Applicant: KABUSHIKI KAISHA TOSHIBA
    Inventors: Mei WU, Tsuyoshi Kobayashi, Mutsuki Yamazaki, Yoshihiko Nakano
  • Publication number: 20150030967
    Abstract: There is provided a metal fine particle association suitably applied to an electrode catalyst to achieve even higher output leading to reduction in amount of the catalyst used, and a process for producing the same, that is, a metal fine particle association including a plurality of metal fine particles that have a mean particle diameter of 1 nm to 10 nm and are associated to form a single assembly, an association mixture including the metal fine particle association and a conductive support; a premix for forming an association, including metal fine particles, a metal fine particle dispersant made of a hyperbranched polymer, and a conductive support; and a method for producing the association mixture.
    Type: Application
    Filed: February 14, 2013
    Publication date: January 29, 2015
    Inventors: Keisuke Kojima, Takuya Tsujiguchi, Nobuyoshi Nakagawa, Misaki Kojima, Takanori Iwakami
  • Publication number: 20150024289
    Abstract: The invention provides a unique catalyst system without the need for carbon. Metal nanoparticles were grown onto conductive, two-dimensional material of TiSi2 nanonet by atomic layer deposition. The growth exhibited a unique selectivity with the elemental metal deposited only on defined surfaces of the nanonets in nanoscale without mask or patterning.
    Type: Application
    Filed: February 18, 2014
    Publication date: January 22, 2015
    Inventors: Dunwei Wang, Jin Xie, Xiaogang Yang, Xiahui Yao
  • Publication number: 20150017555
    Abstract: The present invention relates to the use of mesoporous graphitic particles having a loading of sintering-stable metal nanoparticles for fuel cells and further electrochemical applications, for example as constituent of layers in electrodes of fuel cells and batteries.
    Type: Application
    Filed: February 8, 2013
    Publication date: January 15, 2015
    Applicant: STUDIENGESELLSCHAFT KOHLE MBH
    Inventors: Ferdi Schüth, Diana Carolina Galeano Nunez, Hans-Josef Bongard, Stefano Mezzavilla, Karl J. Mayrhofer, Josef C. Meier, Claudio Baldizzone, Jean-Francois Drillet, Sakthivel Mariappan, Tadios Tesfu, Volker Peinecke
  • Publication number: 20150017565
    Abstract: Embodiments of the disclosure relate to electrocatalysts. The electrocatalyst may include at least one gas-diffusion layer having a first side and a second side, and particle cores adhered to at least one of the first and second sides of the at least one gas-diffusion layer. The particle cores includes surfaces adhered to the at least one of the first and second sides of the at least one gas-diffusion layer and surfaces not in contact with the at least one gas-diffusion layer. Furthermore, a thin layer of catalytically atoms may be adhered to the surfaces of the particle cores not in contact with the at least one gas-diffusion layer.
    Type: Application
    Filed: May 15, 2014
    Publication date: January 15, 2015
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Radoslav Adzic, Stoyan Bliznakov, Miomir Vukmirovic
  • Patent number: 8921260
    Abstract: A catalytic nanoparticle includes a porous, hollow core and an atomically thin layer of platinum atoms on the core. The core is a porous palladium, palladium-M or platinum-M core, where M is selected from the group consisting of gold, iridium, osmium, palladium, rhenium, rhodium and ruthenium.
    Type: Grant
    Filed: February 12, 2010
    Date of Patent: December 30, 2014
    Assignee: Ballard Power Systems Inc.
    Inventors: Minhua Shao, Lesia V. Protsailo
  • Publication number: 20140370421
    Abstract: A method and article of manufacture including a catalytic substrate with a surface layer providing balanced active sites for adsorption/dissociation of H2 and adsorption of OHad for use in AFCs.
    Type: Application
    Filed: June 18, 2013
    Publication date: December 18, 2014
    Inventors: Dusan Strmcnik, Vojislav Stamenkovic, Nenad Markovic
  • Publication number: 20140356761
    Abstract: An electrocatalyst suitable for use in a fuel cell, the electrocatalyst comprising: palladium, iridium and an anionic polymer.
    Type: Application
    Filed: August 11, 2011
    Publication date: December 4, 2014
    Applicant: AMALYST LIMITED
    Inventors: Chris Gibbs, Liu Fang, Dimitrios Papageorgopoulos
  • Publication number: 20140349215
    Abstract: Electrochemical cell electrode (100) comprising a nanostructured catalyst support layer (102) having first and second generally opposed major sides (103,104). The first side (103) comprises nanostructured elements (106) comprising support whiskers (108) projecting away from the first side (103). The support whiskers (108) have a first nanoscopic electrocatalyst layer (110) thereon, and a second nanoscopic electrocatalyst layer (112) on the second side (104) comprising a precious metal alloy. Electrochemical cell electrodes (100) described herein are useful, for example, as a fuel cell catalyst electrode for a fuel cell.
    Type: Application
    Filed: December 19, 2012
    Publication date: November 27, 2014
    Applicant: 3M INNOVATIVE PROPERTIES COMPANY
    Inventors: Mark K. Debe, Amy E. Hester
  • Publication number: 20140349203
    Abstract: The invention relates to a carbon-free electrocatalyst for fuel cells, containing an electrically conductive substrate and a catalytically active species, wherein the conductive substrate is an inorganic, multi-component substrate material of the composition 0X1-0X2, in which 0X1 means an electrically non-conductive inorganic oxide having a specific surface area (BET) in the range of 50 to 400 mVg and 0X2 means a conductive oxide. The non-conductive inorganic oxide 0X1 is coated with the conductive oxide 0X2. The multi-component substrate preferably has a core/shell structure. The multi-component substrate material 0X1-0X2 has an electrical conductivity in the range>0.01 S/cm and is coated with catalytically active particles containing noble metal. The electrocatalysts produced therewith are used in electrochemical devices such as PEM fuel cells and exhibit high corrosion stability.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 27, 2014
    Inventors: Barbara Klose-Schubert, Daniel Herein, Marco Lopez, Carsten Becker
  • Publication number: 20140342262
    Abstract: The present invention relates to a hydrogen, methanol, or ethanol fuel cell comprising an anode electrocatalyst comprising palladium and iridium, and relates to a fuel cell stack comprising said fuel cell. The invention also relates to a method of making a fuel cell. The invention also relates to the use of the anode electrocatalyst in a hydrogen, methanol or ethanol fuel cell.
    Type: Application
    Filed: December 18, 2012
    Publication date: November 20, 2014
    Applicant: UCL BUSINESS PLC
    Inventors: Daniel Brett, Christopher Gibbs, Rhodri Jervis, Noramalina Mansor
  • Patent number: 8889315
    Abstract: The present invention provides a catalyst which is not corroded in an acidic electrolyte or at a high potential, is excellent in durability and has high oxygen reduction ability. The catalyst of the present invention is characterized by including a niobium oxycarbonitride. The catalyst of the invention is also characterized by including a niobium oxycarbonitride represented by the composition formula NbCxNyOz, wherein x, y and z represent a ratio of the numbers of atoms and are numbers satisfying the conditions of 0.01?x?2, 0.01?y?2, 0.01?z?3 and x+y+z?5.
    Type: Grant
    Filed: August 8, 2008
    Date of Patent: November 18, 2014
    Assignee: Showa Denko K.K.
    Inventors: Ryuji Monden, Hiroshi Konuma, Toshikazu Shishikura, Tadatoshi Kurozumi
  • Patent number: 8871672
    Abstract: In one example embodiment, a core-shell type platinum-containing catalyst is allowed to reduce the amount of used platinum and has high catalytic activity and stability. In one example embodiment, the core-shell type platinum-containing catalyst includes a core particle (with an average particle diameter R1) made of a non-platinum element and a platinum shell layer (with an average thickness ts) satisfying 1.4 nm?R1?3.5 nm and 0.25 nm?ts?0.9 nm. The core particle includes an element satisfying Eout?3.0 eV, where average binding energy relative to the Fermi level of 5d orbital electrons of platinum present on an outermost surface of the shell layer is Eout. In a fuel cell including a platinum-containing catalyst which contains a Ru particle as a core particle, the output density at a current density of 300 mA/cm2 is 70 mW/cm2 or over, and an output retention ratio is approximately 90% or over.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: October 28, 2014
    Assignee: Sony Corporation
    Inventors: Shuji Goto, Shizuka Hosoi, Yuli Li, Yoshihiro Kudo, Akihiro Maesaka
  • Patent number: 8871393
    Abstract: A regenerative fuel cell is provided by the present invention. In the methods and systems described herein, a source of fuel is partially oxidized to release protons and electrons, without total oxidation to carbon monoxide or carbon dioxide. The partially oxidized fuel can be regenerated, by reduction, when the fuel cell is reversed. Other variations of the invention provide a convenient system for hydrogen storage, including steps for both release and recapture of hydrogen.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: October 28, 2014
    Assignee: HRL Laboratories, LLC
    Inventors: Ping Liu, John Vajo
  • Patent number: 8859458
    Abstract: Provided are a method of preparing an electrocatalyst for fuel cells in a core-shell structure, an electrocatalyst for fuel cells having a core-shell structure, and a fuel cell including the electrocatalyst for fuel cells. The method may be useful in forming a core and a shell layer without performing a subsequent process such as chemical treatment or heat treatment and forming a core support in which core particles having a nanosize diameter are homogeneously supported, followed by selectively forming shell layers on surfaces of the core particles in the support. Also, the electrocatalyst for fuel cells has a high catalyst-supporting amount and excellent catalyst activity and electrochemical property.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: October 14, 2014
    Assignee: Korea Institute of Science and Technology
    Inventors: Seung Jun Hwang, Sung Jong Yoo, Soo Kil Kim, Eun Ae Cho, Jong Hyun Jang, Hyoung Juhn Kim, Suk Woo Nam, Tae Hoon Lim
  • Publication number: 20140295316
    Abstract: A catalyst includes (i) a primary metal or alloy or mixture including the primary metal, and (ii) an electrically conductive carbon support material for the primary metal or alloy or mixture including the primary metal, wherein the carbon support material: (a) has a specific surface area (BET) of 100-600 m2/g, and (b) has a micropore area of 10-90 m2/g.
    Type: Application
    Filed: September 19, 2012
    Publication date: October 2, 2014
    Inventors: Sarah Caroline Ball, Graham Alan Hards, Marlene Rodlert, Jonathan David Brereton Sharman, Michael E Spahr
  • Patent number: 8791043
    Abstract: An ordered mesoporous carbon (OMC) composite catalyst includes an OMC; and metal particles and at least one component selected from a group consisting of nitrogen and sulfur included in the OMC. The ordered mesoporous carbon composite catalyst may be formed by impregnating an ordered mesoporous silica with a mixture of at least one selected from the group consisting of a nitrogen-containing carbon precursor, and a sulfur-containing carbon precursor, a metal precursor, and a solvent; drying and heat-treating the impregnated OMS; carbonizing the dried and heat-treated OMS to obtain a carbon-OMS composite; and removing the OMS from the carbon-OMS composite. A fuel cell may contain the OMC composite catalyst.
    Type: Grant
    Filed: December 31, 2009
    Date of Patent: July 29, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Chan-ho Pak, Hyuk Chang, Ji-man Kim, Jeong-kuk Shon
  • Publication number: 20140199609
    Abstract: Provided is an electrocatalyst for solid polymer fuel cells capable of increasing the active surface area for reactions in a catalyst component, increasing the utilization efficiency of the catalyst, and reducing the amount of expensive precious metal catalyst used. Also provided are a membrane electrode assembly that uses this electrocatalyst and a solid polymer fuel cell. An electrocatalyst for a solid polymer fuel cell is provided with a catalyst and solid proton conducting material. A liquid conductive material retention part that retains a liquid proton conducting material that connects the catalyst and solid proton conducting material is provided between the same. The surface area of the catalyst exposed within the liquid conductive material retention part is larger than the surface area of the catalyst in contact with the solid proton conducting material.
    Type: Application
    Filed: October 21, 2011
    Publication date: July 17, 2014
    Applicant: NISSAN MOTOR CO., LTD.
    Inventors: Hiroshi Iden, Atsushi Ohma, Kei Sakai, Kazuyuki Satou, Yoshitaka Ono, Hiroyuki Tanaka, Ken Akizuki
  • Publication number: 20140186747
    Abstract: A method of fabricating composite filaments is provided. An initial composite filament including a core and a cladding (such as a Pt-group metal) is cut into smaller pieces (or is first mechanically reduced and then cut into smaller pieces). The smaller pieces of the filaments are inserted into a metal matrix, and the entire structure is then further reduced mechanically in a series of reduction steps. The process can be repeated until the desired cross sectional dimension of the filaments is achieved. The matrix can then be chemically removed to isolate the final composite filaments with the cladding thickness down to the nanometer range. The process allows the organization and integration of filaments of different sizes, compositions, and functionalities into arrays suitable for various applications.
    Type: Application
    Filed: February 24, 2014
    Publication date: July 3, 2014
    Applicant: The Trustees of Columbia University in the city of New York
    Inventor: Jose Bevk
  • Patent number: 8758951
    Abstract: A continuous coal electrolytic cell for the production of pure hydrogen without the need of separated purification units Electrodes comprising electrocatalysts comprising noble metals electrodeposited on carbon substrates are also provided. Also provided are methods of using the electrocatalysts provided herein for the electrolysis of coal in acidic medium, as well as electrolytic cells for the production of hydrogen from coal slurries in acidic media employing the electrodes described herein. Further provided are catalytic additives for the electro-oxidation of coal. Additionally provided is an electrochemical treatment process where iron-contaminated effluents are purified in the presence of coal slurries using the developed catalyst.
    Type: Grant
    Filed: May 8, 2006
    Date of Patent: June 24, 2014
    Assignee: Ohio University
    Inventor: Gerardine Botte
  • Publication number: 20140154609
    Abstract: An electrode catalyst for a fuel cell, wherein the electrode catalyst includes an active particle including: a core including an alloy represented by Formula 1 PdCuaMb??Formula 1 wherein M is a transition metal, 0.05?a?0.32, and 0<b?0.2; and a shell including a Pd alloy on the core.
    Type: Application
    Filed: September 24, 2013
    Publication date: June 5, 2014
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Dae-jong YOO, Chan-ho PAK, Seon-ah JIN, Kang-hee LEE
  • Patent number: 8735019
    Abstract: A fuel cell including a single fuel cell which includes a membrane electrode including a polymer electrolyte membrane, an anode electrode on one surface of the polymer electrolyte membrane, and a cathode electrode on another surface of the polymer electrolyte membrane, the anode electrode including an anode catalyst layer and a gas diffusion layer and the cathode electrode including a cathode catalyst layer and a gas diffusion layer. At least one of the anode cathode catalyst layers includes core-shell type catalyst particles, each having a core and a shell covering the core and including a shell metallic material. At least one of the polymer electrolyte membrane, anode catalyst layer, gas diffusion layer at the anode side, cathode catalyst layer and gas diffusion layer at the cathode side includes metallic nanoparticles having an average particle diameter different from that of the core-shell type catalyst particles and including the shell metallic material.
    Type: Grant
    Filed: April 7, 2010
    Date of Patent: May 27, 2014
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Tatsuya Arai, Naoki Takehiro, Atsuo Iio, Koshi Sekizawa, Hiroko Kimura
  • Patent number: 8735023
    Abstract: One embodiment includes at least one of the anode and cathode of a fuel cell comprises a first layer and a second layer in intimate contact with each other. Both the first layer and the second layer comprise a catalyst capable of catalyzing an electrochemical reaction of a reactant gas. The second layer has a higher porosity than the first layer. A membrane electrode assembly (MEA) based on the layered electrode configuration and a process of making a fuel cell are also described.
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: May 27, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Anusorn Kongkanand, Eric L. Thompson, Frederick T. Wagner
  • Publication number: 20140141354
    Abstract: A fuel cell electrode including a catalyst layer including: a catalyst; and a conductor storage material having pores with an average diameter of about 5 nm to about 1000 nm.
    Type: Application
    Filed: June 14, 2013
    Publication date: May 22, 2014
    Inventors: Jung-ock PARK, Yoon-hoi LEE, Jin-su HA, Suk-gi HONG
  • Patent number: 8728680
    Abstract: A fuel cell component includes an electrode support material made with nanofiber materials of Titania and ionomer. A bipolar plate stainless steel substrate and a carbon-containing layer doped with a metal selected from the group consisting of platinum, iridium, ruthenium, gold, palladium, and combinations thereof.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: May 20, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: Youssef M. Mikhail, Mahmoud H. Abd Elhamid, Gayatri Vyas Dadheech
  • Patent number: 8716168
    Abstract: Electrode catalysts for fuel cells, a method of manufacturing the same, a membrane electrode assembly (MEA) including the same, and a fuel cell including the MEA are provided. The electrode catalysts include a first catalyst alloy containing palladium (Pd), cobalt (Co), and phosphorus (P), a second catalyst alloy containing palladium (Pd) and phosphorus (P), and a carbon-based support to support the catalysts.
    Type: Grant
    Filed: December 8, 2010
    Date of Patent: May 6, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Dae-jong Yoo, Kyung-jung Kwon, Chan-ho Pak, Victor Roev, Kang-hee Lee, Seon-ah Jin
  • Publication number: 20140113218
    Abstract: Catalysts comprising porous metal nanoparticles, which are individually encapsulated with a reaction-enhancing material, and their use in fuel cell catalysis are provided.
    Type: Application
    Filed: October 23, 2012
    Publication date: April 24, 2014
    Applicant: THE JOHNS HOPKINS UNIVERSITY
    Inventors: Jonah Daedalus Erlebacher, Joshua D. Snyder
  • Publication number: 20140106258
    Abstract: Truncated ditetragonal gold prisms (Au TDPs) are synthesized by adding a dilute solution of gold seeds to a growth solution, and allowing the growth to proceed to completion. The Au TDPs exhibit the face-centered cubic crystal structure and are bounded by 12 high-index {310} facets. The Au TDPs may be used as heterogeneous catalysts as prepared, or may be used as substrates for subsequent deposition of an atomically thin layer of a platinum group metal catalyst. When the Au TDPs are used as substrates, the atomically thin layer of metal reproduces the high-index facets of the Au TDPs.
    Type: Application
    Filed: October 15, 2013
    Publication date: April 17, 2014
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Fang Lu, Oleg Gang, Yugang Zhang, Yu Zhang, Jia X. Wang
  • Patent number: 8691717
    Abstract: The invention discloses core/shell, type catalyst particles comprising a Mcore/Mshell structure with Mcore=inner particle core and Mshell=outer particle shell, wherein the medium diameter of the catalyst particle (dcore+shell) is in the range of 20 to 100 nm, preferably in the range of 20 to 50 nm. The thickness of the outer shell (tshell) is about 5 to 20% of the diameter of the inner particle core of said catalyst particle, preferably comprising at least 3 atomic layers. The core/shell type catalyst particles, particularly the particles comprising a Pt˜based shell reveal a high specific activity. The catalyst particles are preferably supported on suitable support materials such as carbon black and are used as electrocatalysts for fuel cells.
    Type: Grant
    Filed: July 24, 2012
    Date of Patent: April 8, 2014
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Michael Lennartz, Dan V. Goia, Carsten Becker, Stéphanie Chevalliot
  • Patent number: 8691716
    Abstract: The invention describes the preparation of electrocatalysts, both anodic (aimed at the oxidation of the fuel) and cathodic (aimed at the reduction of the oxygen), based on mono- and plurimetallic carbon nitrides to be used in PEFC (Polymer electrolyte membrane fuel cells), DMFC (Direct methanol fuel cells) and H2 electrogenerators. The target of the invention is to obtain materials featuring a controlled metal composition based on carbon nitride clusters or on carbon nitride clusters supported on oxide-based ceramic materials. The preparation protocol consists of three steps. In the first the precursor is obtained through reactions of the type: a) sol-gel; b) gel-plastic; c) coagulation-flocculation-precipitation.
    Type: Grant
    Filed: March 16, 2012
    Date of Patent: April 8, 2014
    Assignee: Breton S.p.A.
    Inventors: Vito Di Noto, Enrico Negro, Sandra Lavina, Giuseppe Pace
  • Patent number: 8685594
    Abstract: A cathode catalyst for a fuel cell includes a carrier, and an active material including M selected from the group consisting of Ru, Pt, Rh, and combinations thereof, and Ch selected from the group consisting of S, Se, Te, and combinations thereof, with the proviso that the active material is not RuSe when the carrier is C.
    Type: Grant
    Filed: August 31, 2006
    Date of Patent: April 1, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Alexey AlexandrovichSerov, Chan Kwak, Myoung-Ki Min, Si-Hyun Lee
  • Patent number: 8679705
    Abstract: An electrode for fuel cells including a catalyst layer containing a benzoxazine monomer, a catalyst and a binder, and a fuel cell employing the electrode. The electrode for the fuel cells contains an even distribution of benzoxazine monomer, which is a hydrophilic (or phosphoric acidophilic) material and dissolves in phosphoric acid but does not poison catalysts, thereby improving the wetting capability of phosphoric acid (H3PO4) within the electrodes and thus allowing phosphoric acid to permeate first into micropores in electrodes. As a result, flooding is efficiently prevented. That is, liquid phosphoric acid existing in large amount within the electrodes inhibits gas diffusion which; this flooding occurs when phosphoric acid permeates into macropores in the electrodes. This prevention of flooding increases the three-phase interfacial area of gas (fuel gas or oxidized gas)-liquid (phosphoric acid)-solid (catalyst).
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: March 25, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hee-young Sun, Seong-woo Choi, Tae-young Kim
  • Patent number: 8679704
    Abstract: A catalyst structure for an electrochemical cell includes a catalyst support structure, catalyst particles and an outer carbide film. The catalyst particles are deposited on the catalyst support structure. The outer carbide film is formed on the catalyst support structure. The outer carbide film surrounds the catalyst particles.
    Type: Grant
    Filed: May 14, 2009
    Date of Patent: March 25, 2014
    Assignee: United Technologies Corporation
    Inventors: Minhua Shao, Belabbes Merzougui
  • Publication number: 20140080037
    Abstract: An electrode for a fuel cell including a gas diffusion layer, and a catalyst layer bound to at least one surface of the gas diffusion layer and including a catalyst and a binder; and a fuel cell including the electrode.
    Type: Application
    Filed: April 23, 2013
    Publication date: March 20, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Suk-gi HONG, Jung-ock Park, Ki-chun KIL, Seong-eun PARK, Un-gyu PAIK
  • Publication number: 20140065496
    Abstract: The invention relates to gas diffusion electrodes for rechargeable electrochemical cells, which comprise at least one support material bearing at least one catalyst, wherein the support material comprises at least one compound selected from the group consisting of electrically conductive metal oxides, carbides, nitrides, borides, silicides and organic semiconductors. The present invention further relates to a process for producing such gas diffusion electrodes and also rechargeable electrochemical cells comprising such gas diffusion electrodes.
    Type: Application
    Filed: August 28, 2013
    Publication date: March 6, 2014
    Applicant: BASF SE
    Inventors: Alexander Panchenko, Sigmar Braeuninger, Claudia Querner, Arnd Garsuch
  • Patent number: 8632929
    Abstract: An oxygen reduction electrode and a fuel cell including the same are provided. A catalyst layer of the oxygen reduction electrode includes a metalloporphyrin derivative as an additive. Accordingly, the oxygen reduction electrode can increase oxygen concentration and can easily form a triple phase boundary by reducing a flooding phenomenon caused by an electrolyte. A fuel cell including the same is also provided.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: January 21, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Woo-sung Jeon, Sang-Hyuk Suh, Suk-gi Hong
  • Publication number: 20140017591
    Abstract: An electrode catalyst for a fuel cell, the electrode catalyst including a catalyst particle including palladium, gallium, and cerium.
    Type: Application
    Filed: March 5, 2013
    Publication date: January 16, 2014
    Applicants: KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGY, SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Chan-ho PAK, Seon-ah JIN, Sung-hyeon PARK, Seong-ihi WOO, Chang-hyuck CHOI
  • Patent number: 8609743
    Abstract: Disclosed is a method for producing an electrolyte membrane for fuel cells, which is characterized in that a radically polymerizable monomer is graft-polymerized to a resin without using a photopolymerization initiator by bringing the radically polymerizable monomer into contact with the resin after irradiating the resin with ultraviolet light. The electrolyte membrane for fuel cells obtained by ultraviolet irradiation graft polymerization has both excellent oxidation resistance and excellent mechanical characteristics. By using such an electrolyte membrane, there can be obtained a fuel cell exhibiting extremely high performance.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: December 17, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Mitsuhito Takahashi