Including Rhodium, Ruthenium, Or Osmium Catalyst Patents (Class 429/526)
  • Patent number: 8679705
    Abstract: An electrode for fuel cells including a catalyst layer containing a benzoxazine monomer, a catalyst and a binder, and a fuel cell employing the electrode. The electrode for the fuel cells contains an even distribution of benzoxazine monomer, which is a hydrophilic (or phosphoric acidophilic) material and dissolves in phosphoric acid but does not poison catalysts, thereby improving the wetting capability of phosphoric acid (H3PO4) within the electrodes and thus allowing phosphoric acid to permeate first into micropores in electrodes. As a result, flooding is efficiently prevented. That is, liquid phosphoric acid existing in large amount within the electrodes inhibits gas diffusion which; this flooding occurs when phosphoric acid permeates into macropores in the electrodes. This prevention of flooding increases the three-phase interfacial area of gas (fuel gas or oxidized gas)-liquid (phosphoric acid)-solid (catalyst).
    Type: Grant
    Filed: June 19, 2007
    Date of Patent: March 25, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Hee-young Sun, Seong-woo Choi, Tae-young Kim
  • Publication number: 20140080037
    Abstract: An electrode for a fuel cell including a gas diffusion layer, and a catalyst layer bound to at least one surface of the gas diffusion layer and including a catalyst and a binder; and a fuel cell including the electrode.
    Type: Application
    Filed: April 23, 2013
    Publication date: March 20, 2014
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Suk-gi HONG, Jung-ock Park, Ki-chun KIL, Seong-eun PARK, Un-gyu PAIK
  • Patent number: 8663866
    Abstract: A proton exchange membrane and a membrane electrode assembly for an electrochemical cell such as a fuel cell are provided. A catalytically active component is disposed within the membrane electrode assembly. The catalytically active component comprises particles containing a metal oxide such as silica, metal or metalloid ions such as ions that include boron, and a catalyst. A process for increasing peroxide radical resistance in a membrane electrode is also provided that includes the introduction of the catalytically active component described into a membrane electrode assembly.
    Type: Grant
    Filed: February 28, 2007
    Date of Patent: March 4, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Kimberly Gheysen Raiford, Junaid Ahmed Siddiqui
  • Patent number: 8632929
    Abstract: An oxygen reduction electrode and a fuel cell including the same are provided. A catalyst layer of the oxygen reduction electrode includes a metalloporphyrin derivative as an additive. Accordingly, the oxygen reduction electrode can increase oxygen concentration and can easily form a triple phase boundary by reducing a flooding phenomenon caused by an electrolyte. A fuel cell including the same is also provided.
    Type: Grant
    Filed: December 18, 2006
    Date of Patent: January 21, 2014
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Woo-sung Jeon, Sang-Hyuk Suh, Suk-gi Hong
  • Patent number: 8609743
    Abstract: Disclosed is a method for producing an electrolyte membrane for fuel cells, which is characterized in that a radically polymerizable monomer is graft-polymerized to a resin without using a photopolymerization initiator by bringing the radically polymerizable monomer into contact with the resin after irradiating the resin with ultraviolet light. The electrolyte membrane for fuel cells obtained by ultraviolet irradiation graft polymerization has both excellent oxidation resistance and excellent mechanical characteristics. By using such an electrolyte membrane, there can be obtained a fuel cell exhibiting extremely high performance.
    Type: Grant
    Filed: February 4, 2008
    Date of Patent: December 17, 2013
    Assignee: Shin-Etsu Chemical Co., Ltd.
    Inventor: Mitsuhito Takahashi
  • Publication number: 20130330650
    Abstract: A catalyst layer including: (i) a first catalytic material, wherein the first catalytic material facilitates a hydrogen oxidation reaction suitably selected from platinum group metals, gold, silver, base metals or an oxide thereof; and (ii) a second catalytic material, wherein the second catalytic material facilitates an oxygen evolution reaction, wherein the second catalytic material includes iridium or iridium oxide and one or more metals M or an oxide thereof, wherein M is selected from the group consisting of transition metals and Sn, wherein the transition metal is preferably selected from the group IVB, VB and VIB; and the first catalytic material is supported on the second catalytic material. The catalyst can be used in fuel cells, supported on electrodes or polymeric membranes for increasing tolerance to cell voltage reversal.
    Type: Application
    Filed: January 27, 2012
    Publication date: December 12, 2013
    Inventors: Jonathan David Brereton Sharman, Brian Ronald Charles Theobald, Edward Anthony Wright
  • Patent number: 8597853
    Abstract: An electrode catalyst for a fuel cell including a carbon-based carrier and an active metal supported in the carrier, for example, an electrode catalyst for a fuel cell includes a carrier and an active metal supported in the carrier, wherein the electrode catalyst has an X value of 95 to 100% in Equation 1. X(%)=(XPS measurement value)/(TGA measurement value)×100??[Equation 1] wherein, the XPS measurement value represents a quantitative amount of the active metal present on a surface of the electrode catalyst, the TGA measurement value represents the XPS measurement value using a monochromated Al K?-ray, which is the quantitative amount of total active metal supported in the catalyst.
    Type: Grant
    Filed: November 12, 2010
    Date of Patent: December 3, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Myoung-Ki Min, Geun-Seok Chai, Hee-Tak Kim, Tae-Yoon Kim, Sang-Il Han, Kah-Young Song, Sung-Yong Cho
  • Patent number: 8592099
    Abstract: A membrane-electrode assembly for a fuel cell includes an anode and a cathode facing each other and a polymer electrolyte membrane interposed therebetween. At least one of the anode and the cathode includes a conductive electrode substrate and a catalyst layer formed thereon, and the catalyst layer includes a first catalyst layer including a first metal catalyst that grows from the polymer electrolyte membrane toward the electrode substrate and a second catalyst layer including a second metal catalyst covering the first catalyst layer.
    Type: Grant
    Filed: January 11, 2013
    Date of Patent: November 26, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-II Han, In-Hyuk Son
  • Publication number: 20130309595
    Abstract: Disclosed are metallized carbonaceous materials, processes for forming such materials, and electrodes and fuel cells comprising the disclosed materials.
    Type: Application
    Filed: July 26, 2013
    Publication date: November 21, 2013
    Applicant: DREXEL UNIVERSITY
    Inventors: Yossef A. Elabd, Yury Gogotsi, Benjamin Eirich, Daniel Shay
  • Publication number: 20130280637
    Abstract: Provided are a fuel cell electrode and a membrane electrode assembly in which catalyst particles are prevented from dissolving and the function of added catalyst can be sufficiently exerted when the fuel cell is operating at high current density. The fuel cell electrode includes an electrode material containing: an electrocatalyst having catalyst particles supported on a conductive support; a first ion conductor having anion conductivity; and a second ion conductor having a cation conductivity, the first and second ion conductors covering the electrocatalyst. The first ion conductor is provided to cover the catalyst particles, and the second ion conductor is provided to cover the first ion conductor and exposed part of the conductive support. The membrane electrode assembly includes the fuel cell electrode as at least one of the anode and cathode.
    Type: Application
    Filed: September 13, 2011
    Publication date: October 24, 2013
    Inventor: Norifumi Horibe
  • Publication number: 20130230794
    Abstract: A catalytic electrode may include a complex oxide deposited on a substrate. The complex oxide maybe an oxide of an alloy of ruthenium and another less expensive metal, including without limitation cobalt and manganese. The percentage of ruthenium in the complex oxide can be reduced to about 20 percent or less, while still allowing the electrode to maintain adequate electrocatalytic activity during redox reactions at the electrode. Electrodes can be synthesized using RuCo oxides with ruthenium content reduced to about 5%, or using RuMn oxides having ruthenium content reduced to about 10%, while maintaining good catalytic activity. These electrodes may be used in electrochemical cells including without limitation fuel cells, flow batteries and regenerative fuel cells such as halogen fuel cells or hydrogen-halogen fuel cells. These electrodes may also be used in electrolytic cells.
    Type: Application
    Filed: July 8, 2011
    Publication date: September 5, 2013
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Sujit Kumar Mondal, Jason S. Rugolo, Brian Huskinson, Michael J. Aziz
  • Publication number: 20130224522
    Abstract: A technology is provided that is capable of improving deterioration of a fuel cell due to non-stationary operation (startup/shutdown, fuel depletion). An anode-side catalyst composition comprising a catalyst having catalyst particles carried on electrically conductive material and an ion exchange resin, characterized in that the catalyst particle are formed of an alloy, of which oxygen reduction capability and water electrolysis are both lower than those of platinum, and which has hydrogen oxidation capability.
    Type: Application
    Filed: October 26, 2011
    Publication date: August 29, 2013
    Applicant: W. L. GORE & ASSOCIATES, CO., LTD.
    Inventors: Masashi Maruyama, Atsushi Sakamoto, Tomoyuki Kawaguchi, Takuya Kosaka
  • Patent number: 8518606
    Abstract: The catalyst thin layer consists of electronically conductive catalyst nano-particles embedded in a polymeric matrix. The ratio number of catalyst atoms/total number of atoms in the catalyst layer is comprised between 40% and 90%, more preferably between 50% and 60%.
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: August 27, 2013
    Assignees: Commissariat a l'energie Atomique et aux Energies Alternatives, Universita Degli Studi di Bari
    Inventors: Steve Martin, Riccardo D'agostino, Antoine Latour, Antonella Milella, Fabio Palumbo, Jessica Thery
  • Publication number: 20130216923
    Abstract: The present invention relates to an electro-catalyst M?aIrbMc, wherein M? is selected from the group consisting of Pt, Ta and Ru, and wherein the molar ratio a:b is within the range of 85:15 to 50:50 and the molar ratio a:c is within the range of 50:50 to 95:5, both calculated as pure metal and wherein M is selected from metals from Groups 3-15 of the Periodic System of Elements. The present invention further relates to an electrode comprising a support and the electro-catalyst. The present invention further relates to the use of the electro-catalyst and/or the electrode in electrochemical processes which comprise an oxygen reduction reaction (ORR), an oxygen evolution reaction (OER), a hydrogen evolution reaction (HER), a hydrogen oxidation reaction (HOR), a carbon monoxide oxidation reaction (COR) or a methanol oxidation reaction (MOR).
    Type: Application
    Filed: June 23, 2011
    Publication date: August 22, 2013
    Inventors: Seyed Schwan Hosseiny, Machiel Saakes, Matthias Wessling
  • Publication number: 20130216934
    Abstract: An electrode catalyst for a fuel cell, the electrode catalyst including a first catalyst that exhibits hydrophilicity, the first catalyst including pores, wherein at least 50 volume percent of the pores have an average diameter of about 100 nanometers or less; a method of preparing the electrode catalyst; and a membrane electrode assembly (MEA) and a fuel cell that include the electrolyte catalyst. The electrode catalyst for a fuel cell rapidly controls the migration of phosphoric acid at an initial stage of operation of an MEA, thereby securing a path for the migration of a conductor and a path for the diffusion of a fuel, and thus, an activation time of the MEA is shortened.
    Type: Application
    Filed: December 7, 2012
    Publication date: August 22, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: SAMSUNG ELECTRONICS CO., LTD.
  • Publication number: 20130177838
    Abstract: Hollow metal nanoparticles and methods for their manufacture are disclosed. In one embodiment the metal nanoparticles have a continuous and nonporous shell with a hollow core which induces surface smoothening and lattice contraction of the shell. In a particular embodiment, the hollow nanoparticles have an external diameter of less than 20 nm, a wall thickness of between 1 nm and 3 nm or, alternatively, a wall thickness of between 4 and 12 atomic layers. In another embodiment, the hollow nanoparticles are fabricated by a process in which a sacrificial core is coated with an ultrathin shell layer that encapsulates the entire core. Removal of the core produces contraction of the shell about the hollow interior. In a particular embodiment the shell is formed by galvanic displacement of core surface atoms while remaining core removal is accomplished by dissolution in acid solution or in an electrolyte during potential cycling between upper and lower applied potentials.
    Type: Application
    Filed: July 13, 2011
    Publication date: July 11, 2013
    Applicant: Brookhaven Science Associates, LLC
    Inventors: Jia Xu Wang, Radoslav R. Adzic
  • Patent number: 8470495
    Abstract: Disclosed is an electrode catalyst comprising: (a) a support; (b) metal catalyst particles supported on the support and formed of a catalytically active metal or metal-containing alloy; and (c) an anti-coarsening compound, which is dispersed in at least one region selected from the group consisting of interstitial spaces among the catalyst particles and contact sites between the support and the catalyst particles, and has a coarsening temperature higher than that of the catalyst. A method for preparing the electrode catalyst is also disclosed.
    Type: Grant
    Filed: July 18, 2006
    Date of Patent: June 25, 2013
    Assignee: LG Chem, Ltd.
    Inventors: Byungwoo Park, Chunjoong Kim, Myunggoo Kang, Jin Nam Park, Hyuk Kim, Min Suk Kim
  • Publication number: 20130149632
    Abstract: An electrode catalyst for a fuel cell including porous catalyst particles including a noble metal having oxygen-reduction activity and a carbonaceous support, wherein the porous catalyst particles are disposed on the carbonaceous support, and an electrochemical specific surface area of the porous catalyst particles is about 70 m2/g or more.
    Type: Application
    Filed: December 10, 2012
    Publication date: June 13, 2013
    Applicants: SAMSUNG SDI CO., LTD., SAMSUNG ELECTRONICS CO., LTD.
    Inventors: SAMSUNG ELECTRONICS CO., LTD., SAMSUNG SDI CO., LTD.
  • Publication number: 20130130131
    Abstract: A rechargeable lithium air battery comprises a non-aqueous electrolyte disposed between a spaced-apart pair of a lithium anode and an air cathode. The electrolyte includes including a lithium salt and an additive containing an alkylene group or a lithium salt and an organosilicon compound. The alkylene additive may be alkylene carbonate, alkylene siloxane, or a combination of alkylene carbonate and alkylene siloxane. The alkylene carbonate may be vinylene carbonate, butylene carbonate, or a combination of vinylene carbonate and butylene carbonate. The alkylene siloxane may be a polymerizable silane such as triacetoxyvinylsilane. In preferred embodiments, the organosilicon compound is a silane containing polyethyleneoxide side chain(s).
    Type: Application
    Filed: November 13, 2012
    Publication date: May 23, 2013
    Applicant: JOHNSON IP HOLDING, LLC
    Inventor: Johnson IP Holding, LLC
  • Publication number: 20130122402
    Abstract: An electrode for a fuel cell, a method of preparing the electrode, a catalyst slurry, and a fuel cell including the electrode. The electrode includes an electrode support and a catalyst layer formed on the electrode support, wherein the catalyst layer includes a catalyst material and a water-based binder, wherein the water-based binder is at least one selected from the group consisting of cellulose derivatives and composites of organic polymer materials and inorganic oxides.
    Type: Application
    Filed: September 13, 2012
    Publication date: May 16, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Suk-gi Hong, Yoon-hoi Lee, Jung-ock Park, Jin-su Ha
  • Patent number: 8410012
    Abstract: The present invention relates to a catalyst composition, a method for fabricating the same and a fuel cell including the same. The catalyst composition provided by the present invention includes: a catalyst carrier; and a metal solid solution, disposed on the surface of the catalyst carrier, in which the metal solid solution includes palladium and a second metal, and the second metal is selected from the group consisting of gold, platinum, ruthenium, nickel, silver and manganese. Accordingly, the catalyst composition provided by the present invention can exhibit excellent catalytic characteristics, and can be applied in a fuel cell to enhance the electrochemical properties and stability of the fuel cell.
    Type: Grant
    Filed: January 8, 2010
    Date of Patent: April 2, 2013
    Assignees: Tatung University, Tatung Company
    Inventors: Hong-Ming Lin, Cheng-Han Chen, Wei-Jen Liou, Wei-Syuan Lin, She-Huang Wu
  • Publication number: 20130078549
    Abstract: According to one embodiment, a catalyst-supporting substrate comprises a substrate and a catalyst layer including a plurality of pores, the catalyst layer being supported on the substrate. The average diameter of the section of the pore when the catalyst is cut in the thickness direction of the thickness is 5 nm to 400 nm, and the long-side to short-side ratio of the pore on the section is 1:1 to 10:1 in average.
    Type: Application
    Filed: September 25, 2012
    Publication date: March 28, 2013
    Inventors: Taishi FUKAZAWA, Wu MEl, Yoshihiro AKASAKA, Norihiro YOSHINAGA
  • Publication number: 20130059231
    Abstract: Disclosed is a method for producing a core-shell structured electrocatalyst for a fuel cell. The method includes uniformly supporting nano-sized core particles on a support to obtain a core support, and selectively forming a shell layer only on the surface of the core particles of the core support. According to the method, the core and the shell layer can be formed without the need for a post-treatment process, such as chemical treatment and heat treatment. Further disclosed is a core-shell structured electrocatalyst for a fuel cell produced by the method. The core-shell structured electrocatalyst has a large amount of supported catalyst and exhibits superior catalytic activity and excellent electrochemical properties. Further disclosed is a fuel cell including the core-shell structured electrocatalyst.
    Type: Application
    Filed: February 23, 2012
    Publication date: March 7, 2013
    Inventors: Seung Jun HWANG, Soo-Kil KIM, Sung Jong YOO, Jong Hyun JANG, Eun Ae CHO, Hyoung-Juhn KIM, Suk-Woo NAM, Tae Hoon LIM
  • Patent number: 8383287
    Abstract: This invention provides a fuel cell electrode catalyst in which at least one transition metal element and at least one chalcogen element are supported on a conductive support, wherein the fuel cell electrode catalyst comprises a core portion comprising a transition metal crystal and a shell portion comprising surface atoms of the transition metal crystal particle and chalcogen elements coordinating to the surface atoms, and the outer circumference of the core portion is being partially covered with the shell portion. The fuel cell electrode catalyst has a high level of oxygen reduction performance, high activity as a fuel cell catalyst and comprises a transition metal element and a chalcogen element.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: February 26, 2013
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Yukiyoshi Ueno, Hirofumi Iisaka
  • Patent number: 8383293
    Abstract: An electrocatalyst for fuel cell applications includes a catalyst support and a noble metal or noble metal-based alloy catalyst supported upon the catalyst support. The catalyst support characteristically includes a Group IV-VI transition metal silicide with or without the mixing of carbon. A fuel cell incorporating the electrocatalyst into the anode and/or cathode is disclosed. Such fuel cell exhibit improved cycling and operating performance.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: February 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Belabbes Merzougui, Jon C. Halalay, John T. Johnson, Gregory C. Garabedian, Michael P. Balogh, Swathy Swathirajan
  • Patent number: 8377610
    Abstract: A membrane-electrode assembly for a fuel cell includes an anode and a cathode facing each other and a polymer electrolyte membrane interposed therebetween. At least one of the anode and the cathode includes a conductive electrode substrate and a catalyst layer formed thereon, and the catalyst layer includes a first catalyst layer including a first metal catalyst that grows from the polymer electrolyte membrane toward the electrode substrate and a second catalyst layer including a second metal catalyst covering the first catalyst layer.
    Type: Grant
    Filed: March 20, 2007
    Date of Patent: February 19, 2013
    Assignee: Samsung SDI Co., Ltd.
    Inventors: Sang-Il Han, In-Hyuk Son
  • Patent number: 8367266
    Abstract: A porous catalyst layer formed from discrete particles of unsupported metal, wherein at least 80%, suitably at least 90%, of the discrete particles have a mass of from 1 to 1000 zeptograms, and wherein the catalyst layer has a metal volume fraction of less than 30% and a metal loading of less than 0.09 mg/cm2 is disclosed. The catalyst layer is suitable for use in fuel cells and other electrochemical applications.
    Type: Grant
    Filed: June 19, 2008
    Date of Patent: February 5, 2013
    Assignee: Johnson Matthey Fuel Cells Limited
    Inventors: Ian Roy Harkness, Jonathan David Brereton Sharman, Edward Anthony Wright
  • Publication number: 20130029234
    Abstract: A porous carbonaceous composite material including a core including a carbon nanotube (CNT); and a coating layer on the core, the coating layer including a carbonaceous material including a hetero element.
    Type: Application
    Filed: July 24, 2012
    Publication date: January 31, 2013
    Applicant: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Victor ROEV, Dong-min IM, Dong-joon LEE, Sang-bok MA
  • Patent number: 8361288
    Abstract: Compositions, electrodes, systems, and/or methods for water electrolysis and other electrochemical techniques are provided. In some cases, the compositions, electrodes, systems, and/or methods are for electrolysis which can be used for energy storage, particularly in the area of energy conversion, and/or production of oxygen, hydrogen, and/or oxygen and/or hydrogen containing species. In some embodiments, the water for electrolysis comprises at least one impurity and/or at least one additive which has little or no substantially affect on the performance of the electrode.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: January 29, 2013
    Assignee: Sun Catalytix Corporation
    Inventors: Steven Y. Reece, Arthur J. Esswein, Kimberly Sung, Zachary I. Green, Daniel G. Nocera
  • Publication number: 20130017473
    Abstract: Provided is a method for manufacturing a mixed catalyst containing a metal oxide nanowire, and an electrode and a fuel cell which include a mixed catalyst manufactured by the method. The method includes: forming a metal/polymer nanowire by electrospinning a polymer solution containing a first metal precursor and a second metal precursor; forming a metal oxide nanowire by heat-treating the metal/polymer mixture nanowire; and mixing the metal oxide nanowire with active metal nanoparticles. Here, the metal of the second metal precursor is used as a dopant for the metal oxide nanowire. In the event an electrode catalyst layer of a fuel cell is formed using the manufactured mixed catalyst, the fuel cell has the advantages of significantly improved performance and reduced costs in generating electricity.
    Type: Application
    Filed: December 14, 2010
    Publication date: January 17, 2013
    Applicant: GWANGJU INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Won Bae Kim, Yong-Seok Kim
  • Publication number: 20130011768
    Abstract: The present invention relates to an anode supported solid-oxide fuel cell based flame fuel cell that enable the generation of both electricity and heat from a flame (i.e. flame is used as a heat source and a fuel source for the fuel cell's operation, while supplying a useful heat for other thermochemical systems) and, more particularly, to an anode supported solid-oxide fuel cell based flame fuel cell that uses hydrocarbon/air mixture as a fuel source and includes a catalyst layer that can act as a protective layer for the anode layer, an anode layer, a cathode layer, an electrolyte layer, and an interlayer between the cathode layer and the electrolyte layer.
    Type: Application
    Filed: June 29, 2012
    Publication date: January 10, 2013
    Applicant: SYRACUSE UNIVERSITY
    Inventor: Jeongmin Ahn
  • Patent number: 8349514
    Abstract: An electrode catalyst for fuel cells, a method of preparing the electrode catalyst, and a fuel cell including the electrode containing the electrode catalyst have been improved. The electrode catalyst includes a beryllium (Be) oxide catalyst, which oxidizes carbon monoxide included in a fuel gas into carbon dioxide, and a platinum (Pt) based catalyst. Thus, loss in catalytic activity of the Pt-based catalyst due to carbon monoxide is decreased, and the activity and life of the fuel cell including the electrode catalyst are improved.
    Type: Grant
    Filed: March 25, 2010
    Date of Patent: January 8, 2013
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Kyung-jung Kwon, Chan-ho Pak, Kang-hee Lee
  • Patent number: 8349757
    Abstract: The invention provides an electrode comprising an electrically conductive material having a surface capable of producing surface enhanced Raman scattering of incident light from a complex adsorbed at the surface of the electrode, the complex including the electrically conductive material combined with a second material that is substantially reducible and not substantially oxidizable. The surface of the electrode can be microroughened. The invention also includes a method for making various embodiments of the electrode, and a method of generating electricity using the electrode. In accordance with a further aspect of the invention, a fuel cell is provided including the electrode of the invention.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: January 8, 2013
    Assignee: Fordham University
    Inventor: John J. McMahon
  • Publication number: 20130004885
    Abstract: A process includes patterning a surface of a platinum group metal-based electrode by contacting the electrode with an adsorbate to form a patterned platinum group metal-based electrode including platinum group metal sites blocked with adsorbate molecules and platinum group metal sites which are not blocked.
    Type: Application
    Filed: September 26, 2011
    Publication date: January 3, 2013
    Inventors: Dusan Strmcnik, Bostjan Genorio, Vojislav Stamenkovic, Nenad Markovic
  • Publication number: 20120328970
    Abstract: A material for a solid oxide fuel cell, the material including: a first compound having a perovskite crystal structure, a first ionic conductivity, a first electronic conductivity, and a first thermal expansion coefficient, wherein the first compound is represented by Formula 1 below; and a second compound having a perovskite crystal structure, a second ionic conductivity, a second electronic conductivity, and a second thermal expansion coefficient, BaaSrbCoxFeyZ1-x-yO3-?,??Formula 1 wherein Z is a transition metal element, a lanthanide element, or a combination thereof, a and b satisfy 0.4?a?0.6 and 0.4?b?0.6, respectively, x and y satisfy 0.6?x?0.9 and 0.1?y?0.4, respectively, and ? is selected so that the first compound is electrically neutral.
    Type: Application
    Filed: June 20, 2012
    Publication date: December 27, 2012
    Applicants: SAMSUNG ELECTRO-MECHANICS CO., LTD., SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Soo-yeon SEO, Chan KWAK, Hee-jung PARK
  • Patent number: 8338323
    Abstract: The present invention provides a process for producing an electrode for electrochemical reaction, wherein a conductive diamond layer is formed on an electrode substrate in the electrode; and the electrode substrate on which the conductive diamond layer is formed is kept at a temperature of 400° C. or more and 1,000° C. or less in a water vapor, thereby forming a micropore in the conductive diamond layer. Also, the present invention provides an electrode for electrochemical reaction obtained by the foregoing production process.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: December 25, 2012
    Assignees: Permelec Electrode Ltd., Shinshu University
    Inventors: Yoshio Takasu, Wataru Sugimoto, Tatsuya Ohashi, Junfeng Zhang
  • Patent number: 8338051
    Abstract: This invention relates to an electrode catalyst for a fuel cell comprising catalyst metal particles of noble metal-base metal-Ce (cerium) ternary alloy carried on carbon materials, wherein the noble metal is at least one member selected from among Pt, Ru, Rh, Pd, Ag and Au, the base metal is at least one member selected from among Ir, Co, Fe, Ni and Mn, and the relative proportion (i.e., the molar proportion) of noble metal:base metal:Ce (cerium) is 20 to 95:5 to 60:0.1 to 3. The electrode catalyst for a fuel cell inhibits deterioration of an electrolyte membrane or an electrolyte in an electrode catalyst layer, improves durability, and, in particular, improves the capacity for power generation in the high current density region.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: December 25, 2012
    Assignees: Toyota Jidosha Kabushiki Kaisha, Cataler Corporation
    Inventors: Hiroaki Takahashi, Yosuke Horiuchi, Takahiro Nagata, Tomoaki Terada, Toshiharu Tabata
  • Patent number: 8334080
    Abstract: A catalyst for a fuel cell is disclosed that includes a conductive carrier, and a catalyst layer formed to cover the conductive carrier and formed of one of Pt, Ru, and a Pt-based alloy.
    Type: Grant
    Filed: March 7, 2005
    Date of Patent: December 18, 2012
    Assignee: Fujitsu Limited
    Inventor: Fumio Takei
  • Publication number: 20120308907
    Abstract: A catalyst composition comprising at least one precious metal, wherein the catalyst composition is capable of catalyzing, in the presence of a halogen ion or a mixture of halogen ions, a charging reaction and a discharging reaction in a regenerative fuel cell. This disclosure relates to electrodes comprising those catalysts that are useful in fuel cells. The catalysts are active towards hydrogen evolution reaction (HER) and hydrogen oxidation reaction (HOR) and porous electrodes are made in a process designed to control their porosity. The catalysts and electrodes are employed in regenerative fuel cells comprising hydrogen and halogen acid or mixture of halogen acids. The catalysts are particularly useful in hydrogen/bromine reduction/oxidation reactions. The catalysts exhibit highly acceptable life and performance.
    Type: Application
    Filed: January 24, 2011
    Publication date: December 6, 2012
    Applicant: RAMOT AT TEL AVIV UNIVERSITY LTD.
    Inventors: Emanuel Peled, Arnon Blum, Adi Aharon, Nina Travitsky, Yaron Konra, Kobby Saadi, Vladimir Zel, Meital Goor, Meital Alon, Roy Gorenshtein
  • Publication number: 20120308916
    Abstract: A nanoparticle includes a noble metal skeletal structure. The noble metal skeletal structure is formed as an atomically thin layer of noble metal atoms that has a hollow center.
    Type: Application
    Filed: February 12, 2010
    Publication date: December 6, 2012
    Applicant: UTC POWER CORPORATION
    Inventors: Minhua Shao, Lesia V. Protsailo
  • Patent number: 8304362
    Abstract: The invention discloses core/shell type catalyst particles comprising a Mcore/Mshell structure with Mcore=inner particle core and Mshell=outer particle shell, wherein the medium diameter of the catalyst particle (dcore+shell) is in the range of 20 to 100 nm, preferably in the range of 20 to 50 nm. The thickness of the outer shell (tshell) is about 5 to 20% of the diameter of the inner particle core of said catalyst particle, preferably comprising at least 3 atomic layers. The core/shell type catalyst particles, particularly the particles comprising a Pt-based shell, reveal a high specific activity. The catalyst particles are preferably supported on suitable support materials such as carbon black and are used as electrocatalysts for fuel cells.
    Type: Grant
    Filed: August 27, 2007
    Date of Patent: November 6, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Michael Lennartz, Dan V. Goia, Carsten Becker, Stéphanie Chevalliot
  • Patent number: 8293671
    Abstract: Provided is a method for suppressing corrosion of a carbon material, which acts as a carrier in a catalyst layer of PEFC. The present invention relates to an electrode catalyst produced by subjecting a carbon material having a noble metal catalyst supported thereon to heat treatment under inert gas atmosphere.
    Type: Grant
    Filed: February 21, 2006
    Date of Patent: October 23, 2012
    Assignee: Nissan Motor Co., Ltd.
    Inventor: Shinji Yamamoto
  • Patent number: 8293675
    Abstract: The invention relates to a process for producing a catalyst comprising a metal of the platinum group and a second metal selected from among the metals of the platinum group or the transition metals, in which a catalyst comprising the metal of the platinum group is mixed with a complex comprising the second metal to give a dry powder in a first step and the powder is subsequently heat treated to form a compound between the metal of the platinum group and the second metal. The invention further relates to the use of the catalyst produced according to the invention.
    Type: Grant
    Filed: November 6, 2008
    Date of Patent: October 23, 2012
    Assignee: BASF SE
    Inventors: Stefan Kotrel, Gerhard Cox, Ekkehard Schwab, Alexander Panchenko
  • Patent number: 8288308
    Abstract: The invention discloses core/shell type catalyst particles comprising a Mcore/Mshell structure with Mcore=inner particle core and Mshell?outer particle shell, wherein the medium diameter of the catalyst particle (dcore+shell) is ?20 nm. The thickness of the outer shell (tshell) comprises at least 3 atomic layers. The core/shell type catalyst particles, particularly the particles comprising a Pt-based shell, reveal a high specific activity. The catalyst particles are preferably supported on suitable support materials such as carbon black and are used as electrocatalysts for fuel cells.
    Type: Grant
    Filed: June 9, 2010
    Date of Patent: October 16, 2012
    Assignee: Umicore AG & Co. KG
    Inventors: Marco Lopez, Michael Lennartz, Dan V. Goia, Carsten Becker, Stephanie Chevalliot
  • Publication number: 20120251923
    Abstract: A material for a solid oxide fuel cell including a compound of Chemical Formula 1: BaaSrbCoxFeyM1-x?yO3-???Chemical Formula 1 wherein M represents at least one of a transition metal element or a lanthanide element, a and the b are in a range of 0.4?a?0.6 and 0.4?b?0.6, respectively, x and y are in a range of 0.6?x?0.9 and 0.1?y?0.4, respectively, and ? is selected so that the compound of Chemical Formula 1 is electrically neutral.
    Type: Application
    Filed: March 30, 2012
    Publication date: October 4, 2012
    Applicants: SAMSUNG ELECTRO-MECHANICS CO., LTD., SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Soo-yeon SEO, Chan KWAK, Hee-jung PARK
  • Patent number: 8278011
    Abstract: The present invention relates to SiC nanostructures, including SiC nanopowder, SiC nanowires, and composites of SiC nanopowder and nanowires, which can be used as catalyst supports in membrane electrode assemblies and in fuel cells. The present invention also relates to composite catalyst supports comprising nanopowder and one or more inorganic nanowires for a membrane electrode assembly.
    Type: Grant
    Filed: February 23, 2009
    Date of Patent: October 2, 2012
    Assignee: Nanosys, Inc.
    Inventors: Yimin Zhu, Jay L. Goldman, Baixin Qian, Ionel C. Stefan
  • Publication number: 20120237854
    Abstract: A fuel cell component includes an electrode support material made with nanofiber materials of Titania and ionomer. A bipolar plate stainless steel substrate and a carbon-containing layer doped with a metal selected from the group consisting of platinum, iridium, ruthenium, gold, palladium, and combinations thereof.
    Type: Application
    Filed: May 31, 2012
    Publication date: September 20, 2012
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Youssef M. Mikhail, Mahmoud H. Abd Elhamid, Gayatri Vyas Dadheech
  • Publication number: 20120231366
    Abstract: A fuel cell anode comprises a porous ceramic molten metal composite of a metal or metal alloy, for example, tin or a tin alloy, infused in a ceramic where the metal is liquid at the temperatures of an operational solid oxide fuel cell, exhibiting high oxygen ion mobility. The anode can be employed in a SOFC with a thin electrolyte that can be a ceramic of the same or similar composition to that infused with the liquid metal of the porous ceramic molten metal composite anode. The thicknesses of the electrolyte can be reduced to a minimum that allows greater efficiencies of the SOFC thereby constructed.
    Type: Application
    Filed: March 9, 2012
    Publication date: September 13, 2012
    Applicant: UNIVERSITY OF FLORIDA RESEARCH FOUNDATION, INC.
    Inventors: ERIC D. WACHSMAN, Sean Robert Bishop
  • Patent number: 8257883
    Abstract: A fuel cell that employs a decomposition catalyst on one or more of the membrane, bipolar plates or diffusion media layers in the fuel cell that decomposes hydrogen peroxide, and thus reduces the generation of hydroxyl free radicals. In one embodiment, the decomposition catalyst is ruthenium oxide and is deposited on the structure by various processes, such as chemical vapor deposition process.
    Type: Grant
    Filed: August 3, 2005
    Date of Patent: September 4, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Youssef M. Mikhail, Mahmoud H. Abd Elhamid, Gayatri Vyas
  • Patent number: 8252486
    Abstract: Disclosed is an electrode catalyst for solid polymer fuel cells wherein CO tolerance is improved. Specifically disclosed is a catalyst for fuel cells having a first catalyst and a second catalyst. The first catalyst contains Pd, C and an oxide, namely SnO2 or TiO2, and the second catalyst contains C and an alloy containing Pt and Ru.
    Type: Grant
    Filed: July 14, 2006
    Date of Patent: August 28, 2012
    Assignees: Kyoto University, National University Corporation Hokkaido University
    Inventors: Ryuji Kikuchi, Tatsuya Takeguchi