By Regenerative-type Heat Exchanger Patents (Class 432/180)
  • Patent number: 6250917
    Abstract: In order to create a regenerative, energy-saving fuel firing for an industrial furnace, particularly for a metal smelting furnace, that can flexibly take all possible time and space operating conditions and demands of the furnace to be heated as well as the thermic conditions of the respectively employed, heat-storing regenerators exactly into consideration, it is inventively proposed that at least two regenerator/burner modules (3) are switchable from burner mode (7) into regenerator mode (7r) (exhaust gas extraction mode) or, respectively, vice versa independently of one another proceeding from the process controller of the industrial furnace (1), namely with employment of reverse valves (11) or reversible ventilators or, respectively, two-stream ventilators.
    Type: Grant
    Filed: November 17, 1998
    Date of Patent: June 26, 2001
    Assignees: Gautschi Electro-fours S.A., Betriebsforschungsinstitut, VDEh-Institut fur angewandte Forschung GmbH
    Inventors: Ing Franz Engelberg, Martin Wicker, Gerhard Villinger, Wolfgang Bender
  • Patent number: 6234789
    Abstract: The present invention provides an alternate changeover regenerative burner system suitable for use as a heat source for an industrial furnace and the like where re-increase in temperature is relatively-often carried out; an alternate changeover regenerative burner constituted by a burner 2 having a regenerator 7 and air supply/exhaust switching mechanisms 12 and 13 for switching connection with an air supply system 17 and an exhaust system 16 of the burner 2 is regarded as a module unit; and three or more units of the alternate changeover regenerative burner constitute a combustion system 1; a ratio of the number of the burners 2 performing combustion and the number of the burners 2 being stopped is variable; and combustion is controlled in such a manner that all the units sequentially repeat alternate regenerative combustion with the units forming no fixed pairs.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: May 22, 2001
    Assignee: Nippon Furnace Kogyo Kabushiki Kaisha
    Inventor: Makoto Miyata
  • Patent number: 6203316
    Abstract: A rotary valve regenerative oxidizer generally includes a combustion chamber communicating with a first end of plurality of pie shaped heat exchange chambers and a rotary valve communicating with a second end of the heat exchange chambers. A contaminated gas is directed through an inlet of the rotary valve, through a first group of heat exchange chambers, and into the combustion chamber thereby heating and purifying the gas. The heated and purified gas is directed from the combustion chamber through a second group of heat exchange chambers and through an outlet of the rotary valve. A portion of the heated and purified gas received from the outlet of the rotary valve is directed through a heating element 56 for heating the gas to a temperature sufficient to volatilize organic solids for purging a third group of heat exchange chambers. The gas is directed from the third group of heat exchange chambers into the combustion chamber and out of the oxidizer through the second group of heat exchange chambers.
    Type: Grant
    Filed: November 12, 1999
    Date of Patent: March 20, 2001
    Assignee: Regenerative Environmental Equipment Co., Inc. (REECO, Inc.)
    Inventor: Rodney L. Pennington
  • Patent number: 6164962
    Abstract: A method of cooling a regenerative thermal oxidizer down rapidly includes the steps of increasing the cycle time of the heat exchangers once a decision has been made to shut the regenerative thermal oxidizer down. By increasing the cycle time, the regenerative thermal oxidizer rejects more heat from the system. That is, the efficiency of the system goes down, and more heat is lost. In this way, the system approaches an ambient temperature much more quickly then in known systems. In one method of performing this invention, the cycle time is increased as much as possible, and as rapidly as possible while monitoring the outlet temperature on the outlet gas. The cycles are reversed only when the outlet temperature approaches a maximum safe operating temperature. In a second method, the cycle times are increased in pre-programmed steps. By utilizing the present invention, one is able to cool a regenerative thermal oxidizer to ambient temperatures in less than half the time of the prior art systems.
    Type: Grant
    Filed: May 12, 1997
    Date of Patent: December 26, 2000
    Assignee: Durr Environmental, Inc.
    Inventor: Joseph M. Klobucar
  • Patent number: 6126440
    Abstract: A method and assembly is provided for modifying a regenerative or a recuperative furnace system having air-fuel burners for use with synthetic air. A portion of the exhaust gases from the furnace is recycled and mixed with oxygen gas to form synthetic air. The synthetic air is then used to support combustion in the furnace. A cassette regenerative oxy-fuel cross-fired furnace system is also provided. The cassette regenerative furnace system utilizes synthetic air containing a mixture of recycled exhaust gases and oxygen in combination with cassette regenerators.
    Type: Grant
    Filed: May 9, 1997
    Date of Patent: October 3, 2000
    Assignee: Frazier-Simplex, Inc.
    Inventors: Ronald D. Argent, Christopher J. Hoyle, Gordon Dickinson, Trevor Ward, George R. Mattocks
  • Patent number: 6116264
    Abstract: A valving system for diverting fluids from one location to another. The valving system includes a valve housing and two or more dampers. The dampers are rotatably coupled to one or more shafts and are designed to move in a synchronized manner such that when opens and closes prior to the other damper or dampers doing so. The valving system of the present invention is particularly useful in the field of regenerative incineration where it is necessary to rapidly change the movement of a hazardous fluid from one regeneration bed to another. However, it may be used in any environment in which switching of the fluid flow over relatively short time periods is desired. The valving system diverts the fluid in a switchable manner that minimizes energy usage without diverting raw fluid directly to an output. A sealing system is located at the ends of the dampers.
    Type: Grant
    Filed: September 5, 1997
    Date of Patent: September 12, 2000
    Assignee: Bachmann Industries
    Inventors: Lothar Bachmann, Frank W. Jurgilas
  • Patent number: 6113389
    Abstract: An oxygen enrichment system is provided which uses the existing air/fuel burners of a regenerative furnace to distribute additional oxygen to the burners for increased efficiency, and reduced nitrous oxide emissions. The centrally positioned cooling air lances in the burners of a regenerative furnace are modified to deliver oxygen when the burners are firing for oxygen enrichment. During the burner firing cycle, oxygen is delivered from an oxygen supply through the oxygen lance to provide a central oxygen jet. The fuel is delivered concentrically around the oxygen jet. During the non-firing cycle of the burner, cooling air or other cooling fluid is delivered from the cooling air supply through the oxygen jet for cooling the offside of the furnace.
    Type: Grant
    Filed: June 1, 1999
    Date of Patent: September 5, 2000
    Assignee: American Air Liquide, Inc.
    Inventors: Mahendra L. Joshi, Harley A. Borders, Olivier Charon
  • Patent number: 6109914
    Abstract: The present invention relates to a gas recirculating furnace which aims to enable generation of a high-temperature strong recirculating current and comprises heat sources 3A and 3B for heating a recirculating gas outside the furnace and an out-of-furnace circulating path 4 for taking combustion gas in the inner space of the furnace 18 to the outside of the furnace and flowing it back to the inside of the furnace 18 from a different position.
    Type: Grant
    Filed: June 24, 1998
    Date of Patent: August 29, 2000
    Assignee: Nippon Furnace Kogyo Kabushiki Kaisha
    Inventor: Mamoru Matsuo
  • Patent number: 6102691
    Abstract: A combustion apparatus provided with a burner includes a fuel injection nozzle disposed rearward of a gas passable solid and a pre-mixture region between a downstream end of the solid and the fuel injection nozzle. The gas passable solid may be of a straightener type. Air for combustion includes main air and pilot air separated from each other. The apparatus may be coupled to each end of a radiant tube. The apparatus may be provided to a direct and indirect combustion type thermal facilities.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: August 15, 2000
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhisa Mitani, Yukio Fukuta
  • Patent number: 6095798
    Abstract: A combustion apparatus provided with a burner includes a fuel injection nozzle disposed rearward of a gas passable solid and a pre-mixture region between a downstream end of the solid and the fuel injection nozzle. The gas passable solid may be of a straightener type. Air for combustion includes main air and pilot air separated from each other. The apparatus may be coupled to each end of a radiant tube. The apparatus may be provided to a direct and indirect combustion type thermal facilities.
    Type: Grant
    Filed: September 3, 1999
    Date of Patent: August 1, 2000
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kazuhisa Mitani, Yukio Fukuta
  • Patent number: 6062297
    Abstract: A honeycomb regenerator for receiving a waste heat in an exhaust gas by passing an exhaust gas and a gas to be heated alternately therethrough, which is constructed by stacking a plurality of honeycomb structural bodies, is disclosed. In the honeycomb regenerator according to the invention, cell open rates of the honeycomb structural bodies positioned at an inlet portion of the exhaust gas and at an inlet portion of the gas to be heated are larger than those of the honeycomb structural bodies positioned at a center portion.
    Type: Grant
    Filed: February 24, 1999
    Date of Patent: May 16, 2000
    Assignee: NGK Insulators, Ltd.
    Inventors: Yoshiyuki Kasai, Kazuhiko Umehara, Wataru Kotani
  • Patent number: 6036486
    Abstract: A cassette regeneration system (10) for an oxy-fuel regeneration assembly (52) having oxy-fuel burners (54) includes a first regeneration assembly (62) having at least one removably connected cassette regenerator (32), a second regeneration assembly (62') having at least one removably connected cassette regenerator and an exhaust reversal valve assembly (82) in flow communication with the first and second regeneration assemblies and configured to selectively direct exhaust gas from the furnace to a selected one of the first and second regeneration assemblies. The system further includes an air supply conduit (98), at least one preheated air conduit (102) and an air reversal valve assembly (80) in flow communication with the air supply conduit and the at least one preheated air conduit and configured to selectively direct air from the air supply air conduit to a selected one of the first and second regeneration assemblies to the at least one preheated air conduit.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: March 14, 2000
    Assignee: Frazier-Simplex, Inc.
    Inventors: Ronald D. Argent, Christopher J. Hoyle, Gordon Dickinson, Trevor Ward
  • Patent number: 6033208
    Abstract: A regenerator burner for particular use in the heating of furnace spaces of industrial furnaces is provided. The regenerator burner includes an outer tube in which a central fuel feed arrangement is provided and a burner head which contains combustion air feed and combustion exhaust gases lead-off arrangements and from which the outer tube extends. Two regenerators each of which can be acted on with combustion air and with combustion exhaust gases are also provided. The two regenerators are arranged in two annular spaces which are coaxial to the fuel feed arrangement and are positioned radially one within the other with the annular spaces extending at least over a portion of their axial length in surrounding relation to the fuel feed arrangement in the outer tube. A nozzle mechanism being allocated to each of the two annular spaces at an end of the regenerator burner opposite the burner head. The nozzle mechanisms are operable alternately as inlet and outlet nozzles.
    Type: Grant
    Filed: September 11, 1998
    Date of Patent: March 7, 2000
    Inventor: Joachim Wunning
  • Patent number: 6027333
    Abstract: With respect to a radiant tube burner to be used for heating a heating furnace or the like, to suppress the generation of NOx accompanying combustion, to make the structure thereof fit for a radiant tube burner equipment, to simplify the control of a fuel supply system and an air supply system, and to prevent the coking. Furthermore, to provide a combustion control scheme appropriate to a radiant tube burner. For these purposes, the present invention placed the respective tips of a fuel nozzle, e.g., pilot burner joint-use nozzle (11), and an air throat (13) in the end of a radiant tube (3) and moreover has a combustion air injection port (33) of the air throat (13) provided to be deviated in contact with or near to the inner circumferential wall surface of the radiant tube (3). In addition, a control device (307) for making a burner burn alternately.
    Type: Grant
    Filed: May 23, 1996
    Date of Patent: February 22, 2000
    Assignees: NKK Corporation, Japan & Nippon Furnace Kogyo Kaisha, Ltd.
    Inventors: Yoshiki Fujii, Toshio Ishii, Shunichi Sugiyama, Ryoichi Tanaka, Mamoru Matsuo, Makoto Miyata, Shigeo Kurioka, Hiroaki Sato, Akinori Hokabori, Toshikazu Akiyama
  • Patent number: 5997292
    Abstract: According to the present invention, gas which contains no impurities and has a high temperature of approximately 700 to 1400.degree. C. can be supplied for a long period with a short preparation time, and fluctuation in the temperature during supply can be reduced.
    Type: Grant
    Filed: February 6, 1997
    Date of Patent: December 7, 1999
    Assignee: Nippon Furnace Kogyo Kabushiki Kaisha
    Inventors: Ryoichi Tanaka, Toshiaki Hasegawa, Jun Sudo, Tsutomu Yasuda, Yukio Mizutani, Masashi Katsuki, Hiroshige Ikebe, deceased
  • Patent number: 5993203
    Abstract: Techniques for increasing the thermal efficiency of high temperature combustion sources such as glass and other process furnaces are disclosed. These techniques include one or more of the steps of co-firing of a carbonaceous solid fuel or heavy fuel oil with the primary fuel in the primary combustion zone such that the co-fired fuel is cracked and thereby generates a high number density of carbonaceous particles sufficient to improve soot radiation; providing enhanced mixing of first burnout air with the flue gas in a first burnout zone; and promoting instability of boundary layer gases adjacent refractory packings.
    Type: Grant
    Filed: October 6, 1997
    Date of Patent: November 30, 1999
    Assignee: Gas Research Institute
    Inventor: Richard Koppang
  • Patent number: 5967771
    Abstract: A system for the abatement of industrial process gases utilizes a rotary regenerative oxidizer comprised of one or more heat exchange beds, each bed comprised of a parallel, axial, and longitudinal array of heat regenerative channels that thermally and/or catalytically oxidize contaminated gases. Utilizing a rotary regenerative oxidizer, and if desired, a plurality of heat regenerative beds incorporated therein, facilitates the use of regenerative technology at lower gas flow rates, increases thermal efficiency, and significantly reduces the floor space normally required when implementing fixed-bed nonrotary regenerative oxidizers. The heat exchange channels may be catalytically treated to enhance oxidation of the pollutants at a lower temperature.
    Type: Grant
    Filed: July 17, 1998
    Date of Patent: October 19, 1999
    Assignee: Engelhard Corporation
    Inventors: James M. Chen, Pascaline H. Nguyen, James C. Fu
  • Patent number: 5957684
    Abstract: A regenerative atmosphere-gas heating system includes at least three regenerative heaters. Each of these regenerative heaters successively cycles through a combustion state, an atmosphere gas heating state and an atmosphere gas sucking state. As a result, the atmosphere gas can be recovered for reuse and the developed heat of the recovered atmosphere gas can be converted into developed heat of the combustion air for an improvement in thermal efficiency.
    Type: Grant
    Filed: February 10, 1998
    Date of Patent: September 28, 1999
    Assignee: Kawasaki Steel Corporation
    Inventor: Tsuguhiko Nakagawa
  • Patent number: 5951280
    Abstract: In a high-temperature regenerator of an absorption refrigerator according to the present invention, the longitudinal cross-sectional area of a portion of a combustion chamber parallel to the surface combustion plate is given a shape that is narrowed to a size equal to the surface area of the fire hole towards the downstream side from a surface combustion plate. As a result, a pipe wall of the combustion chamber protects the vicinity of the fire hole. Since this pipe wall contains absorption fluid flowing through it in the form of convection flow, it does not reach high temperatures as in the refractory material of the prior art, thereby being able to avoid the problem of increased NOx values. In addition, the problem of the prior art of inhibiting heat transfer to pipe wall is also eliminated.
    Type: Grant
    Filed: January 9, 1998
    Date of Patent: September 14, 1999
    Assignee: Sanyo Electric Co., Ltd.
    Inventor: Norikazu Kubota
  • Patent number: 5934899
    Abstract: A process and apparatus for combustion of a fuel and oxidant in which a first portion of a fuel is mixed with an oxidant to form a fuel-lean fuel/oxidant mixture in a fuel-lean combustion zone. The remaining portion of fuel is mixed with the fuel-lean fuel/oxidant mixture downstream of the fuel-lean combustion zone, forming a substantially stoichiometric fuel/oxidant mixture. The stoichiometric fuel/oxidant mixture is ignited, forming a primary flame having high luminosity and low NO.sub.x emissions.
    Type: Grant
    Filed: August 25, 1997
    Date of Patent: August 10, 1999
    Assignee: Combustion Tec
    Inventors: Mahendra L. Joshi, Patrick J. Mohr
  • Patent number: 5931653
    Abstract: The present invention relates to a low nitrogen oxygen regenerative burner, a regenerative burner system and a regenerative burning method. The low nitrogen oxide regenerative burner is comprised of one or more pairs of regenerators having a regenerating section inside and air supply and exhaust ports which open directly opened into a furnace; and one or more fuel injection nozzles for each of the air supply and exhaust ports, which also open directly into the furnace at locations apart from the corresponding air supply and exhaust port. The regenerative burner system consists of a furnace body, the low nitrogen oxide regenerative burner and a control means. The regenerative burning method is the process whereby air is preheated in the regenerator, injected from the air supply and exhaust ports of the regenerators into the furnace, fuel from the fuel injection nozzles located apart from the air supply and exhaust ports, is injected.
    Type: Grant
    Filed: July 24, 1995
    Date of Patent: August 3, 1999
    Assignee: Tokyo Gas Co., Ltd.
    Inventor: Ichiro Nakamachi
  • Patent number: 5931663
    Abstract: A continuous system and method for purging waste gases from dual heat exchange beds associated with a regenerative thermal oxidizer are disclosed. The system includes a purge recovery tank, a stack open to the atmosphere, a stack bypass, a stack valve in the stack, and a stack bypass valve in the stack bypass. The purge recovery tank is in fluid communication with two heat exchange beds, the stack, and the stack bypass. The stack is in fluid communication with the stack bypass and the heat exchange beds. A purge recycle control valve is used to recycle untreated waste gases from the purge recovery tank to the heat exchange beds and into the regenerative thermal oxidizer. A second embodiment wherein the purge recovery tank is positioned between the two heat exchange beds is also disclosed.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: August 3, 1999
    Assignee: Process Combustion Corporation
    Inventors: David A. Lewandowski, Peter B. Nutcher, Peter J. Waldern
  • Patent number: 5921771
    Abstract: A method and apparatus for supplying oxygen to an oxy-fuel fired furnace that has been preheated by heated flue gas recycled from the furnace. One or more regenerators are provided each having at least a first and a second regenerator bed. The beds are alternately cycled so that one is being preheated with hot flue gas exhausted from the furnace while the other is preheating oxygen through its already heated bed for supply to the furnace burner. The amount of hot flue gas supplied to the regenerator beds is controlled by continuously venting a portion of the total furnace flue gas so as to bypass the regenerators, and the regenerator beds are purged of residual oxygen by recycled cooled flue gas which is then supplied to the furnace before the regenerator beds are heated by the flue gas.
    Type: Grant
    Filed: January 6, 1998
    Date of Patent: July 13, 1999
    Assignee: Praxair Technology, Inc.
    Inventor: Hisashi Kobayashi
  • Patent number: 5922290
    Abstract: A regenerative thermal oxidation system for reducing the VOC content of asphalt vapors.
    Type: Grant
    Filed: August 4, 1997
    Date of Patent: July 13, 1999
    Assignee: Owens Corning Fiberglas Technology, Inc.
    Inventors: Richard A. Jenne, Kenneth E. Carney
  • Patent number: 5899689
    Abstract: Furnace for processes and treatments in a sub-stoichiometric atmosphere, includes a combustion chamber (1) provided with a fuel-feeding mechanism, feeding mechanism (3) for combustion promoter and an extraction mechanism (4) for the gases produced in the interior of the chamber (1). The feeding mechanism (3) for combustion promoter and the extraction mechanism (4) for the gases are connected, in an alternating way with suitable selection mechanisms (203, 213, 104, 114), to the furnace through at least one device (2) connected by a suitable mechanism (402) to an open port (121) on the combustion chamber (1) of the furnace. The device achieves post-combustion (102) of the gases, heat exchange and heat storage (112).
    Type: Grant
    Filed: October 2, 1997
    Date of Patent: May 4, 1999
    Assignee: Demag Italimpianti S.p.A.
    Inventor: Piergiorgio Fontana
  • Patent number: 5888063
    Abstract: A method of quick purging beds of a regenerative fume incinerator which is practically applicable for use in 2, 3 and 4 bed incinerators. For a very short purge period near the end of an operating time cycle, the bed being switched from receiving impure gases to discharge of clean gas is purged of impure gases by being supplied with clean gas discharged by the incinerator. The quick purging takes less than 4% of the cycle time and thus inflow of impure gases is stopped for a very brief period when this quick purge method is used in a 2 bed incinerator. When using this quick purge method in a three or four bed regenerative fume incinerator there is always at least one bed receiving impure gases. This quick purge method improves the quality of the discharged clean gas without significant loss of thermal efficiency and without significant reduction in operating capacity.
    Type: Grant
    Filed: March 7, 1996
    Date of Patent: March 30, 1999
    Inventors: Gregory J. Scott, Reagan Houston
  • Patent number: 5876197
    Abstract: In order to create a regenerative, energy-saving fuel firing for an industrial furnace, particularly for a metal smelting furnace, that can flexibly take all possible time and space operating conditions and demands of the furnace to be heated as well as the thermic conditions of the respectively employed, heat-storing regenerators exactly into consideration, it is inventively proposed that at least two regenerator/burner modules (3) are switchable from burner mode (7) into regenerator mode (7r) (exhaust gas extraction mode) or, respectively, vice versa independently of one another proceeding from the process controller of the industrial furnace (1), namely with employment of reverse valves (11) or reversible ventilators or, respectively, two-stream ventilators.
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: March 2, 1999
    Assignees: Gautschi Electro-fours S.A., BFI Betriebsforschungsinstitut, VDEh-Institut fur angewandte Forschung GmbH
    Inventors: Franz Engelberg, Martin Wicker, Gerhard Villinger, Wolfgang Bender
  • Patent number: 5874053
    Abstract: A system for the abatement of industrial process emissions comprises a horizontal regenerative catalytic oxidizer (RCO). The system utilizes at least two regenerative chambers and at least two catalytic chambers in a controlled abatement process. Pollutants injected into the RCO from the process emissions are catalytically oxidized. The horizontal configuration of the RCO reduces the size of the RCO per cubic foot of emissions treated, and also simplifies maintenance requirements in removing and replacing, or regenerating, the catalyst. Chutes and valves situated above and below the catalyst provide maintenance means without the associated contamination concerns typically caused by catalytic migration throughout vertically configured RCOs.
    Type: Grant
    Filed: December 1, 1997
    Date of Patent: February 23, 1999
    Assignee: Automotive Systems Laboratory, Inc.
    Inventors: James M. Chen, Richard A. Gay, Sean T. Gribbon
  • Patent number: 5871349
    Abstract: A rotary valve thermal oxidizer including an interfacial seal disposed between rotating and fixed valve portions to prevent the mixing of treated and untreated gas streams. In a preferred embodiment, the valve sealing device includes a flowable sealing material contained within a receptacle, and contacted by a partition nested within the receptacle. Other sealing devices, as well as purge and/or sealing gases, may be employed to prevent leakage, while avoiding the use of machined parts.
    Type: Grant
    Filed: October 16, 1997
    Date of Patent: February 16, 1999
    Assignee: Smith Engineering Company
    Inventors: Jeffrey C. Johnson, Thomas J. Truppi, Erwin Hendricks, Theodore R. Wheeler
  • Patent number: 5851256
    Abstract: A method of operating a regenerative glass furnace for melting glass for the manufacture of shaped glass articles so as to minimize emission of NOx in waste gases leaving the furnace, the furnace having sealed regenerators which act as heat exchangers, the method including supplying fuel in excess of that required for stoichiometric combustion to ensure that glass of the required quality at the required production rate is obtained, and that the waste gases leaving the furnace through the regenerators contain combustible material, and reacting the combustible material with sufficient air to ensure that the waste gases exiting to atmosphere contain permissible levels of combustible material and contain permissible levels of NOx. Alternatively, the furnace may be operated at substantially stoichiometric conditions and fuel is supplied to waste gases as they leave the melting chamber. The invention also relates to a regenerator glass furnace for use in the method.
    Type: Grant
    Filed: July 25, 1996
    Date of Patent: December 22, 1998
    Assignee: Pilkington Glass Limited
    Inventors: Richard Quirk, David Alan Bird, Ian Nigel William Shulver, Robin Maxwell McIntosh
  • Patent number: 5848885
    Abstract: A regenerative heat exchange system performs heat exchange by alternately passing combustion exhaust gas as high-temperature fluid and combustion air as low-temperature fluid through a fixed regenerator. A regenerative burner carries out combustion using preheated air from the exchange system. The regenerative heat system comprises: a permeable regenerator partitioned into three or more chambers in the circumferential direction; a double-pipe outlet/inlet partitioned into a supply chamber and an exhaust chamber; and changeover member which isolates the regenerator from the outlet/inlet and by which the regenerator selectively communicates with the outlet/inlet by a supply communicating hole and an exhaust communicating hole which are provided with such a positional relation that the supply communicating hole and the exhaust communicating hole do not simultaneously lie in any of the partitioned chambers.
    Type: Grant
    Filed: May 22, 1996
    Date of Patent: December 15, 1998
    Assignee: Nippon Furnace Kogyo Kabushiki Kaisha
    Inventors: Ryoichi Tanaka, Mamoru Matsuo, Tsutomu Yasuda
  • Patent number: 5839894
    Abstract: The invention relates to a method for the automatic and energy-saving dedusting of organic deposits on heat exchangers of regenerative afterburning systems without secondary emissions. Through a special guiding of the exhaust gas, the partial exhaust-air stream is returned without interruption of the main exhaust gas stream from the tower to be burnt off completely into the crude gas (FIG. 1). With this, the entire system is returned without any additional operations again into the original clean initial state and the burdening of the atmosphere is avoided.
    Type: Grant
    Filed: August 16, 1996
    Date of Patent: November 24, 1998
    Inventors: Johannes Schedler, Heimo Thalhammer
  • Patent number: 5823124
    Abstract: A system of this invention reduces the emission of NO.sub.x and fuel pollutants from a furnace. The system includes a furnace with a chamber for combusting air, oxygen and fuel flows in an approximately stoichiometric proportion. A reburn unit, that can be a port, is coupled to communicate with and receive the combustion exhaust from the chamber. The reburn unit is also coupled to receive a second fuel flow that is added to the exhaust flow at a stoichiometric ratio and temperature at which a reaction occurs to lower the amount of NO.sub.x in the exhaust flow. The reburn unit is coupled to a burnout unit that can be a regenerator or a recuperator, that is coupled to receive an oxidant flow with air and/or oxygen. The oxidant flow combusts fuel in the exhaust flow to prevent emission of this fuel into the atmosphere.
    Type: Grant
    Filed: November 3, 1995
    Date of Patent: October 20, 1998
    Assignee: Gas Research Institute
    Inventor: Richard R. Koppang
  • Patent number: 5823770
    Abstract: A process and apparatus for oxidizing components of a feed gas mixture in a heat regenerative reactor are provided. The heat regenerative reactor comprises a vessel having a two ends, the interior of which defines an unfired heat exchange/reaction zone containing a gas-permeable bed comprising heat exchange material in which the components of the feed gas mixture are oxidized. A gas handling system selectively introduces the feed gas mixture into one end of the vessel and discharges reacted gas through the other end of the vessel such that the direction of gas flow through the vessel may be reversed. At the time of flow reversal, a bypass system introduces the feed gas mixture into the vessel at a point intermediate the two ends of the vessel so that the feed gas mixture bypasses a portion of the gas-permeable bed. During bypass, a purging system purges unreacted feed gas mixture from the heat exchange/reaction zone.
    Type: Grant
    Filed: February 26, 1997
    Date of Patent: October 20, 1998
    Assignee: Monsanto Company
    Inventors: Yurii Shaevich Matros, Grigori Abramovich Bounimovitch, Vadim Olegovich Strots
  • Patent number: 5823769
    Abstract: A process and apparatus for combustion of a fuel and oxidant in which a first portion of a fuel is mixed with an oxidant to form a fuel-lean fuel/oxidant mixture in a fuel-lean combustion zone. The remaining portion of fuel is mixed with the fuel-lean fuel/oxidant mixture downstream of the fuel-lean combustion zone, forming a substantially stoichiometric fuel/oxidant mixture. The stoichiometric fuel/oxidant mixture is ignited, forming a primary flame having high luminosity and low NO.sub.x emissions.
    Type: Grant
    Filed: March 26, 1996
    Date of Patent: October 20, 1998
    Assignee: Combustion Tec, Inc.
    Inventors: Mahendra L. Joshi, Patrick J. Mohr
  • Patent number: 5820836
    Abstract: A process of cleaning a gas and a rotating catalytic gas cleaning device including a crown of vertical axis driven into rotation in a cage. The crown has an annular catalyst bed covering its inner wall and an annular thermal load, outside the catalytic bed, made of a material exhibiting a large heat exchange surface. A polluted gas is radially passed from a peripheral inlet to a central zone of the crown with crossing of an annular thermal load and a catalytic layer. The gas is radially passed gas from the central zone to a peripheral outlet, while again crossing the catalytic bed and thermal load with thermal exchange.
    Type: Grant
    Filed: January 3, 1997
    Date of Patent: October 13, 1998
    Assignees: Institute Francais du Petrole, Jacques Bourcier
    Inventors: Jean Morlec, Jacques Bourcier
  • Patent number: 5795364
    Abstract: A mixing method insures adequate mixing of gases in a glass furnace that employs a reburning process. Because of the mixing method, a novel glass furnace can be constructed that strikes an optimum balance between a reduction in nitrogen oxide (NO.sub.x) emissions and the cost of the reburn process, particularly, the number of requisite reburn and overfire air jets as well as reburn fuel. The glass furnace is constructed as follows. A combustion housing defines a primary zone for receiving combustible fuel, a reburn zone connected to the primary zone for receiving exhaust from the primary zone and reburn fuel to generate a first gas mixture. A burnout zone is connected to the reburn zone and receives the first gas mixture and overfire air to generate a second gas mixture.
    Type: Grant
    Filed: November 1, 1995
    Date of Patent: August 18, 1998
    Assignee: Gas Research Institute
    Inventors: Roy Payne, David K. Moyeda
  • Patent number: 5775897
    Abstract: A gaseous flow reversing system is disclosed for use with a regenerative furnace. The reversing system includes a combustion air inlet unit for receiving combustion air, and a valve unit. The valve unit is slidable between first and second positions with respect to the combustion air inlet unit for alternately directing the flow of combustion air from between the combustion air inlet unit and a first regenerator port when the valve unit is in the first position, and from between the combustion air inlet unit and a second regenerator port when the valve unit is in the second position. The valve unit includes valve flow distribution channels for distributing the flow of the combustion air into at least one of the regenerator ports from among a plurality of locations extending along the valve unit.
    Type: Grant
    Filed: March 11, 1997
    Date of Patent: July 7, 1998
    Assignee: Morgan Construction Company
    Inventor: Daniel P. Smith
  • Patent number: 5770162
    Abstract: A regenerative thermal oxidizer unit comprising two heat regenerator units in which a gas to be purified from VOCs passes through the units in an essentially horizontal direction.
    Type: Grant
    Filed: July 8, 1996
    Date of Patent: June 23, 1998
    Assignee: Norton Chemical Process Products Corporation
    Inventor: Hassan S. Niknafs
  • Patent number: 5755846
    Abstract: A method of operating a regenerative glass melting furnace with end-firing or cross-firing utilizes burners to provide sub-stoichiometric combustion and super-stoichiometric combustion along the sidewalls or transverse walls of the furnace and equipment associated with the method. Fuel supply is controlled so that overall combustion is stoichiometric.
    Type: Grant
    Filed: May 10, 1994
    Date of Patent: May 26, 1998
    Assignee: Beteiligungen Sorg GmbH & Co. KG
    Inventors: Manfred Wagner, Klaus Sorg, Helmut Pieper
  • Patent number: 5755569
    Abstract: A regenerative thermal oxidizer is provided with a combustion chamber and a plurality of heat transfer columns. Heat transfer media within the columns include solid surfaces which define vapor flow passages. To permit higher volumetric vapor flow rates nearer the combustion chamber, the passages are larger in cross-sectional area and the solid surfaces have less total surface area in those portions of the heat transfer media nearer the combustion chamber than in those portions away from the combustion chamber. The larger cross-sectional area of the passages and reduced area of the solid surfaces decreases the resistance to vapor flow and allows the passages to accommodate the higher volumetric flow rate of the vapor stream passing through the hotter portions of the heat transfer media.
    Type: Grant
    Filed: February 6, 1997
    Date of Patent: May 26, 1998
    Assignee: Koch Engineering Company, Inc.
    Inventors: Lawrence D. Berg, Christopher R. Harmon, Richard L. Shilling, Neil Yeoman
  • Patent number: 5753197
    Abstract: A system for the abatement of industrial process emissions comprises a horizontal regenerative catalytic oxidizer (RCO). The system utilizes at least two regenerative chambers and at least two catalytic chambers in a controlled abatement process. Pollutants injected into the RCO from the process emissions are catalytically oxidized. The horizontal configuration of the RCO reduces the size of the RCO per cubic foot of emissions treated, and also simplifies maintenance requirements in removing and replacing, or regenerating, the catalyst. Chutes and valves situated above and below the catalyst provide maintenance means without the associated contamination concerns typically caused by catalytic migration throughout vertically configured RCOs.
    Type: Grant
    Filed: November 1, 1996
    Date of Patent: May 19, 1998
    Assignee: Engelhard Corporation
    Inventors: James M. Chen, Richard A. Gay, Sean T. Gribbon
  • Patent number: 5707229
    Abstract: A regenerative thermal oxidizer includes a heat exchange column formed of a body which defines at least one entire flow passage through the heat exchanger. The structure of the heat exchange column assists in purging residual gas to be cleaned from the heat exchanger prior to that regenerative heat exchanger moving into a mode where it receives the cleaned gas. The heat exchanger columns preferably have 70 to 80 percent of their surface area used as the flow passages. In a further geometric arrangement made possible by the inventive heat exchanger described above, two heat exchanger columns are positioned on opposed sides of a combustion chamber. End faces of the two opposed heat exchangers transfer radiative heat energy from the hotter of the two heat exchanger end faces to the cooler of the two heat exchanger end faces. In this way, radiative heat energy is not lost, but is reused to heat the other of the heat exchangers.
    Type: Grant
    Filed: July 2, 1996
    Date of Patent: January 13, 1998
    Assignee: Durr Industries, Inc.
    Inventor: Joseph M. Klobucar
  • Patent number: 5700433
    Abstract: There is disclosed herein a system for use in a regenerative thermal oxidizer to position a rotatable valve body relative to a lower fixed surface and an upper surface and support the valve body from the lower surface. However, the support and positioning provides for sealing engagement between the body and the upper and lower surfaces. A plurality of assemblies, each secured to the lower surface engage an external and circumferential support flange on the valve body for accomplishing the support and positioning.
    Type: Grant
    Filed: February 21, 1996
    Date of Patent: December 23, 1997
    Assignee: Eisenmann Corporation
    Inventor: Geoffrey Somary
  • Patent number: 5692893
    Abstract: A rotary valve suitable for a 2-bed regenerative fume incinerator which provides for purging of the beds and uninterrupted inflow and outflow during operation of the incinerator including the time intervals in which the valve is rotated from one position of operation to another and during the time intervals in which the beds are individually purged.
    Type: Grant
    Filed: August 16, 1996
    Date of Patent: December 2, 1997
    Inventor: Reagan Houston
  • Patent number: 5692892
    Abstract: A continuous flow rotary valve for multiple bed regenerative fume incinerators which has a cylindrical valve housing with three or more bed ports spaced equally about the middle or central portion of the housing, feed and exit ports at opposite ends of the housing and a purge port spaced from the other ports. The valve also includes a cylindrical valve rotor having feed, exit and purge cavities in free flow fluid communication with the feed, exit and purge ports. The feed and exit cavities have radially outward openings which are circumferentially wider than the circumferential space on the housing between two bed ports. During rotary movement of the valve rotor from one operating position to another, the feed cavity will supply feed gas to two bed ports during a portion of the rotary movement and the exit cavity will receive exit gas from two beds during a different portion of the rotary movement.
    Type: Grant
    Filed: June 12, 1996
    Date of Patent: December 2, 1997
    Inventor: Reagan Houston
  • Patent number: 5664942
    Abstract: A single bed thermal oxidizer for oxidizing a contaminate in a gas (air) stream has a plenum above the bed containing burners for gaseous fuel and means for injecting excess air. The burners are activated to initially heat the adjacent top bed portion. The burners are then turned off and a mixture of gaseous fuel and air is passed down into and through the bed which oxidizes the gaseous fuel and transfers the hot portion of the bed downward to preheat the central region of the bed. At that point, the gaseous fuel is terminated and the contaminated gas stream is introduced into the preheated bed for oxidation of the contaminate.
    Type: Grant
    Filed: October 25, 1994
    Date of Patent: September 9, 1997
    Assignee: ABB Air Preheater, Inc.
    Inventor: Craig E. Bayer
  • Patent number: 5647741
    Abstract: A heat exchanger for a combustion apparatus capable of providing satisfactory sealing between an open end of an oxidizing agent duct and a regenerative structure. A regenerator includes a high-temperature section constituted by a regenerative unit made of a ceramic material and a low-temperature section constituted by a regenerative unit made of a metal material. The regenerator is formed with a plurality of communication passages which permit a combustion chamber and a suction/exhaust duct structure to communicate with each other. The communication passages are provided by a plurality of through-holes formed in the regenerative units. The number of the through-holes and an equivalent diameter thereof are determined so as to permit a pressure loss gradient in the low-temperature section positioned on the side of the suction/exhaust duct structure to be larger than that in the high-temperature section positioned on the side of the combustion chamber.
    Type: Grant
    Filed: December 6, 1994
    Date of Patent: July 15, 1997
    Assignees: Chiyoda Corporation, Furnace Techno Co., Ltd.
    Inventors: Shunzo Bunya, Hitoshi Kaji, Yasuo Hirose
  • Patent number: 5643538
    Abstract: A heat transfer device includes a ring having a vertical axis that can rotate inside a cage. The ring is inwardly provided with partitions. A permanent circulation of gaseous effluents is established on one hand between an effluent delivery pipe and a central zone via a first limited angular sector of the ring and on the other hand between the central zone and an effluent discharge pipe 6 via a second limited angular sector of the ring. The ring is charged with a mass of large heat exchange surface material and the device can be used for recovering positive or negative thermal energy. A thermal reactor of the catalytic bed type, for example, can be placed in the central zone for removing volatile organic compounds (VOC). The device may be used for catalytic or thermal oxidation of the organic compounds in gaseous effluents, for example.
    Type: Grant
    Filed: May 22, 1995
    Date of Patent: July 1, 1997
    Assignees: Institut Francais du Petrole, Jacques Bourcier
    Inventors: Jean Morlec, Jacques Bourcier
  • Patent number: 5628629
    Abstract: An industrial furnace and a burner for regenerative combustion includes a heat storage member, a switching mechanism disposed on one end of the heat storage member, and a burner tile disposed on the opposite end of the heat storage member. The burner tile has a protruding portion extending ahead an air supply and gas exhaust surface. The switching mechanism has a stationary disk and a rotatable disk which slidably contacts the stationary disk. A speed of supply air to the furnace is in operation equal to or higher than a speed of exhaust air therefrom.
    Type: Grant
    Filed: October 11, 1995
    Date of Patent: May 13, 1997
    Assignees: Toyota Jidosha Kabushiki Kaisha, Nippon Furnace Kogyo Kaisha, Ltd.
    Inventors: Kazuhisa Mitani, Tomohiko Nishiyama, Ryoichi Tanaka