Utilizing Biotin Or Its Derivatives Patents (Class 435/111)
  • Publication number: 20140227745
    Abstract: The disclosure relates to a metabolic transistor in bacteria where a competitive pathway is introduced to compete with a product pathway for available carbon so as to control the carbon flux in the bacteria.
    Type: Application
    Filed: February 7, 2014
    Publication date: August 14, 2014
    Applicant: William Marsh Rice University
    Inventors: Ka-Yiu SAN, George N. BENNETT, Hui WU
  • Patent number: 8076106
    Abstract: A process for producing high yields of enantioselective amino acids and chiral amines by reacting a keto acid or ketone and an amino acid donor in the presence of a transaminase biocatalyst to produce a keto acid by-product and an amino acid or amine product. Further reacting the keto acid by-product with a peroxide to increase the yield of additional amino acid or amine product.
    Type: Grant
    Filed: August 6, 2009
    Date of Patent: December 13, 2011
    Assignee: Richmond Chemical Corporation
    Inventors: Ian Fotheringham, Nicholas Oswald
  • Patent number: 8071331
    Abstract: A method of producing amino acid metal chelates includes producing an amino acid ligand by enzymatically hydrolyzing bacterial cells, and reacting the amino acid ligand with a metal cation.
    Type: Grant
    Filed: June 3, 2009
    Date of Patent: December 6, 2011
    Assignee: Ajinomoto U.S.A., Inc.
    Inventors: Paul Summer, Shinya Tachibana, Randall Vos
  • Patent number: 7588923
    Abstract: A process for producing high yields of enantioselective amino acids and chiral amines by reacting a keto acid or ketone and an amino acid donor in the presence of a transaminase biocatalyst to produce a keto acid by-product and an amino acid or amine product. Further reacting the keto acid by-product with a peroxide to increase the yield of additional amino acid or amine product.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: September 15, 2009
    Assignee: Richmond Chemical Corporation
    Inventors: Ian Fotheringham, Nicholas Oswald
  • Publication number: 20080293109
    Abstract: The present invention relates to methods for converting plant cell wall polysaccharides into one or more products, comprising: treating the plant cell wall polysaccharides with an effective amount of a spent whole fermentation broth of a recombinant microorganism, wherein the recombinant microorganism expresses one or more heterologous genes encoding enzymes which degrade or convert the plant cell wall polysaccharides into the one or more products.
    Type: Application
    Filed: July 14, 2008
    Publication date: November 27, 2008
    Applicant: Novozymes, Inc.
    Inventors: Randy Berka, Joel Cherry
  • Patent number: 7037690
    Abstract: In a method for producing an L-amino acid by culturing a microorganism having an ability to produce an L-amino acid in a medium to produce and accumulate the L-amino acid in the medium and collecting the L-amino acid from the medium, a Gram-negative bacterium having the Entner-Doudoroff pathway and modified so that 6-phosphogluconate dehydratase activity or 2-keto-3-deoxy-6-phosphogluconate aldolase activity, or activities of the both are enhanced is used as the microorganism.
    Type: Grant
    Filed: March 26, 2003
    Date of Patent: May 2, 2006
    Assignee: Ajinomoto Co., Inc.
    Inventors: Yoshihiko Hara, Hiroshi Izui, Takahiro Asano, Yasuyuki Watanabe, Tsuyoshi Nakamatsu
  • Patent number: 6551794
    Abstract: Stable compositions containing biotinylated molecules, such as enzymes, are provided. The compositions include a biotinylated biomolecule, a biomolecule protectant, a buffer, a bulking agent selected from one or more water soluble, nonionic polymers and preferably a terminal sterilization protectant. The compositions can be utilized either as aqueous solutions or preferably in dried form, e.g., as a lyophilized, powder cake. They have applicability in any case where avidin/biotin technology is used and are particularly important as compositions containing a thrombin-like enzyme, e.g., for preparation of a fibrin monomer and fibrin monomer-based fibrin sealants.
    Type: Grant
    Filed: November 9, 1995
    Date of Patent: April 22, 2003
    Assignee: E. R. Squibb & Sons, Inc.
    Inventors: Steven James Burton, James C. Pearson, Peter A. D. Edwardson, Alan Menzies
  • Patent number: 6140088
    Abstract: Processes for stereoselective enzymatic conversion of certain keto carboxylic acid derivatives to form the corresponding alkylamino acid compounds are described. The invention also concerns an engineered yeast host cell containing recombinant nucleic acid capable of expressing a phenylalanine dehydrogenase, as well as an engineered host cell containing recombinant nucleic acid capable of expressing a phenylalanine dehydrogenase enzyme and nucleic acid capable of expressing a formate dehydrogenase enzyme.
    Type: Grant
    Filed: July 8, 1999
    Date of Patent: October 31, 2000
    Assignee: Bristol-Myers Squibb Company
    Inventors: Ronald Hanson, Mary Jo Donovan, Steven Goldberg, Paul A. Jass, Wen-Sen Li, Ramesh Patel, Keith Ramig, Laszlo J. Szarka, John J. Venit
  • Patent number: 6133018
    Abstract: 2-Aminopropane is used as the amine donor in the stereoselective synthesis of a chiral amine from a ketone with a transaminase. In a typical embodiment, (S)-1-methoxy-2-aminopropane is prepared by bringing methoxyacetone into contact with a transaminase in the presence of 2-aminopropane as an amine donor until a substantial amount of methoxyacetone is converted to (S)-1-methoxy-2-aminopropane and 2-aminopropane is converted to acetone. In a second embodiment, L-alanine is prepared by bringing pyruvic acid into contact with a transaminase in the presence of 2-aminopropane as an amine donor.
    Type: Grant
    Filed: March 10, 1999
    Date of Patent: October 17, 2000
    Assignee: Celgro
    Inventors: Wei Wu, Mohit B. Bhatia, Craig M. Lewis, Wei Lang, Alice L. Wang, George W. Matcham
  • Patent number: 6110713
    Abstract: A method of producing glutamic acid by culturing an amino acid auxotroph of a biologically pure strain of Bacillus methanolicus which exhibits sustained growth at 50.degree. C. using methanol as a carbon and energy source and requiring vitamin B.sub.12 and biotin is provided.
    Type: Grant
    Filed: January 22, 1997
    Date of Patent: August 29, 2000
    Assignee: Regents of the University of Minnesota
    Inventors: Richard S. Hanson, Michael C. Flickinger, Patricia Olson, Won Hur, Nuhza Al-Tahoo, Craig Bremmon
  • Patent number: 5869300
    Abstract: A method for producing L-glutamic acid, comprising inoculating a microorganism having an ability to produce L-glutamic acid, in a liquid medium containing a carbon source and a nitrogen source, conducting continuous L-glutamic acid fermentation in which both a carbon source and a nutrient having an effect of promoting bacterial growth are fed so as to make the microorganism grow, and then collecting L-glutamic acid produced and accumulated in a culture broth.
    Type: Grant
    Filed: November 20, 1997
    Date of Patent: February 9, 1999
    Assignee: Ajinomoto Co., Inc.
    Inventors: Tatsuya Yoshioka, Toshimasa Ishii, Yoshio Kawahara, Yosuke Koyama, Eiko Shimizu
  • Patent number: 5846790
    Abstract: A mutant strain having an ability to produce L-glutamic acid in the absence of any biotin action-suppressing agent in a medium containing an excessive amount of biotin is obtained by giving temperature sensitivity with respect to a biotin action-suppressing agent to a coryneform L-glutamic acid-producing bacterium. This strain is cultivated in a liquid medium to produce and accumulate L-glutamic acid in the medium. A mutant strain having an ability to produce L-lysine and L-glutamic acid in the absence of any biotin action-suppressing agent in a medium containing an excessive amount of biotin is obtained by giving temperature sensitivity with respect to a biotin action-suppressing agent and giving L-lysine productivity to a coryneform L-glutamic acid-producing bacterium. This strain is cultivated in a liquid medium to simultaneously produce and accumulate L-lysine and L-glutamic acid in the medium.
    Type: Grant
    Filed: February 18, 1997
    Date of Patent: December 8, 1998
    Assignee: Ajinomoto Co., Inc.
    Inventors: Eiichiro Kimura, Yoko Asakura, Akinori Uehara, Sumio Inoue, Yoshio Kawahara, Yasuhiko Yoshihara, Tsuyoshi Nakamatsu
  • Patent number: 5759835
    Abstract: Nitric oxide synthase has been discovered to exist in bacteria. The bacterial nitric oxide synthase was purified as much as 1,362-fold by a combination of 2', 5'-ADP-agarose affinity chromatography, and hydroxylapatite chromatography and its unique N-terminal amino acid sequence was identified.
    Type: Grant
    Filed: September 12, 1995
    Date of Patent: June 2, 1998
    Assignee: University of Iowa Research Foundation
    Inventors: John P. Rosazza, Yijun Chen
  • Patent number: 5690907
    Abstract: A method for ligand-based binding of lipid encapsulated particles to molecular epitopes on a surface in vivo or in vitro comprises sequentially administering (a) a site-specific ligand activated with a biotin activating agent; (b) an avidin activating agent; and (c) lipid encapsulated particles activated with a biotin activating agent, whereby the ligand is conjugated to the particles through an avidin-biotin interaction and the resulting conjugate is bound to the molecular epitopes on such surface. The conjugate is effective for imaging by x-ray, ultrasound, magnetic resonance or positron emission tomography. Compositions for use in ultrasonic imaging of natural or synthetic surfaces and for enhancing the acoustic reflectivity thereof are also disclosed.
    Type: Grant
    Filed: June 8, 1995
    Date of Patent: November 25, 1997
    Assignee: The Jewish Hospital of St. Louis
    Inventors: Gregory M. Lanza, Samuel A. Wickline
  • Patent number: 5674732
    Abstract: The present invention provides a novel culture which belongs to Actinoplanes (Actinoplanes sp. FERM BP-3832). This culture is capable of producing rapamycin more than ten times efficiently than the cultures which have been reported (e.g., Streptomyces hygroscopicus ATCC 29253). The present invention provides a process for the production of rapamycin which comprises cultivating Actinoplanes sp. FERM BP-3832 and thereafter isolating rapamycin from the fermentation mixture.
    Type: Grant
    Filed: October 26, 1994
    Date of Patent: October 7, 1997
    Assignee: Pfizer Inc.
    Inventors: Hiroyuki Nishida, Tatsuo Sakakibara, Yuji Yamauchi, Taisuke Inagaki, Yasuhiro Kojima, Nakao Kojima
  • Patent number: 5492818
    Abstract: The present invention provides a method of producing L-glutamic acid by fermentation, comprising the steps ofculturing a mutant of an L-glutamic acid-producing microorganism of the genus Brevibacterium or Corynebacterium which has lower .alpha.-ketoglutaric acid dehydrogenase activity compared with the wild strains from which said mutant is derived, in a liquid nutrient culture medium containing biotin at a concentration of 10 to 1000 .mu.g/l without adding a biotin activity-suppressing substance thereto;producing and accumulating L-glutamic acid in the culture solution; andrecovering L-glutamic acid from said culture solution.According to the method of the present invention, it is possible to industrially produce L-glutamic acid by fermentation in a more economical and efficient manner.
    Type: Grant
    Filed: December 5, 1994
    Date of Patent: February 20, 1996
    Assignee: Ajinomoto Co., Inc.
    Inventors: Hidetsugu Nakazawa, Hiroki Kawashima, Inao Oyama, Keiji Ishii, Yoshio Kawahara
  • Patent number: 5326693
    Abstract: A basic L-amino acid and an acidic L-amino acid may be concurrently produced by either culturing a basic L-amino acid-producing bacteria under conditions for producing an acidic L-amino acid or mix-culturing a basic L-amino acid-producing bacteria and an acidic L-amino acid-producing bacteria.
    Type: Grant
    Filed: December 8, 1992
    Date of Patent: July 5, 1994
    Assignee: Ajinomoto Co., Inc.
    Inventors: Hideo Kuronuma, Harufumi Miwa, Shigeru Nakamori, Toshimasa Ishii, Yasuhiko Yoshihara
  • Patent number: 5196326
    Abstract: A basic L-amino acid and an acidic L-amino acid may be concurrently produced by either culturing a basic L-amino acid-producing bacteria under conditions for producing an acidic L-amino acid or mix-culturing a basic L-amino acid-producing bacteria and an acidic L-amino acid-producing bacteria.
    Type: Grant
    Filed: February 15, 1991
    Date of Patent: March 23, 1993
    Assignee: Ajinomoto Co., Inc.
    Inventors: Hideo Kuronuma, Harufumi Miwa, Shigeru Nakamori, Toshimasa Ishii, Yasuhiko Yoshihara
  • Patent number: 5041374
    Abstract: Polyether antibiotic material is liberated from agglomerates containing a lipid material and the polyether antibiotic material by separating the polyether antibiotic from the lipid through formation of an acid salt of the lipid and a desired acid salt of the polyether antibiotic. The agglomerates can be formed during fermentation or produced by adding lipids afterwards.
    Type: Grant
    Filed: May 29, 1986
    Date of Patent: August 20, 1991
    Assignee: International Minerals & Chemical Corp.
    Inventors: Alexander H. T. Chu, Robert J. Urban
  • Patent number: 4935348
    Abstract: To improve the yield and/or reduce the energy cost in carrying out a microbiological or enzymatic process in a reactor and to make the reaction conditions essentially independent of the size of the reactor, it is proposed to make use, as a reactor, of an endless circulation tube in which the reaction components are circulated essentially according to a plug flow and in this process are fed through one or more in-line mixers fitted inside the tube. This method and reactor are suitable in particular for the preparation by fermentation of polysaccharides, especially xanthan, in which water, a production medium containing one or more sugars and nutrient salts and an inoculating material of a suitable aerobic bacterium are introduced into the said reactor tube and exposed to fermentation with air being supplied.
    Type: Grant
    Filed: November 12, 1985
    Date of Patent: June 19, 1990
    Assignee: Cooperatieve Vereniging Suiker Unie U.A.
    Inventors: Nicholaas M. Gerard oosterhuis, Kees Koerts
  • Patent number: 4933844
    Abstract: A method and apparatus for analyzing blood plasma to determine the concentration of its lipoprotein constituents, VLDL, LDL, HDL and proteins includes obtaining the NMR chemical shift spectrum of a sample. Stored reference NMR spectra of the lipoprotein constituents are added together to form a lineshape that best fits the measured blood plasma NMR spectrum, and from this, the concentration of each lipoprotein constituent in the blood plasma is determined.
    Type: Grant
    Filed: September 26, 1988
    Date of Patent: June 12, 1990
    Inventor: James D. Otvos
  • Patent number: 4782020
    Abstract: .alpha.-Hydroxycarboxylic acids are continuously converted into the corresponding optically active .alpha.- aminocarboxylic acids. The conversion is carried out in a membrane reactor in the presence of nicotinamide-adenine dinucleotide increased in molecular weight by bonding to a water soluble high molecular weight material, a dehydrogenase specific for the .alpha.-hydroxycarboxylic acid, a dehydrogenase specific for the corresponding .alpha.-amino-carboxylic acid and ammonium ions. There is continuously supplied to the membrane reactor an aqueous solution of the .alpha.-hydroxycarboxylic acid to be reacted, a substantially lesser amount of the corresponding .alpha.-ketocarboxy lic acid, and an amount of ammonium ion at least equivalent to the .alpha.-hydroxycarboxylic acid to be reacted. There is maintained over the membrane a difference in pressure 1 and 15 bar. Behind the membrane, there is continuously drawn off a filtrate stream containing the .alpha.-aminocarboxylic acid formed.
    Type: Grant
    Filed: August 10, 1987
    Date of Patent: November 1, 1988
    Assignee: Degussa Aktiengesellschaft
    Inventors: Wolfgang Leuchtenberger, Christian Wandrey, Maria-Regina Kula
  • Patent number: 4728610
    Abstract: L-Glutamic acid is produced in a high yield by cultivating an L-glutamic acid-producing microorganism which requires oleic acid but does not require biotin for growth in a culture medium containing an oleic acid compound and a biotin compound of no less than 100 .mu.g/liter as biotin, with carbohydrate and acetic acid as carbon sources being maintained in a weight ratio of about 80:20 through about 40:60.
    Type: Grant
    Filed: October 27, 1986
    Date of Patent: March 1, 1988
    Assignee: Takeda Chemical Industries, Ltd.
    Inventors: Yukihiro Kanegae, Yoshio Sugiyama, Isamu Nakatsui
  • Patent number: 4440856
    Abstract: L-glutamic acid is produced by culturing a mutant microorganism belonging to the genus Corynebacterium or Brevibacterium which mutant is temperature-sensitive remediable with an unsaturated higher fatty acid. L-glutamic acid is recovered from the culture liquor.
    Type: Grant
    Filed: December 16, 1981
    Date of Patent: April 3, 1984
    Assignee: Kyowa Hakko Kogyo Co., Ltd.
    Inventors: Toshihide Nakanishi, Mamoru Kohata, Minoru Sakurai
  • Patent number: 4389483
    Abstract: A method for producing L-glutamic acid by fermentation which comprises culturing aerobically in a culture medium a mutant of the genus of Brevibacterium or Corynebaterium which is resistant to Decoyinine or Tubercidin and capable of producing L-glutamic acid, and recovering the L-glutamic acid accumulated in the culture medium.
    Type: Grant
    Filed: December 17, 1981
    Date of Patent: June 21, 1983
    Assignee: Ajinomoto Company Incorporated
    Inventors: Hirofumi Hiraga, Minoru Yoshimura, Shigeho Ikeda, Hiroe Yoshii
  • Patent number: 4334020
    Abstract: A mutant of the genus Brevibacterium or Corynebacterium resistant to a compound having vitamine-P activity produces L-glutamic acid in a high yield, when it is cultured in an aqueous medium aerobically.
    Type: Grant
    Filed: June 6, 1980
    Date of Patent: June 8, 1982
    Assignee: Ajinomoto Company Incorporated
    Inventors: Hidetsugu Nakazawa, Ichiro Yamane, Eiichi Akutsu
  • Patent number: 4276379
    Abstract: This invention relates generally to (1) processes for the production and isolation of a novel fructosyl transferase enzyme from the fermentation broth of Pullularia pullulans, (2) enzymatic transfructosylation of sucrose to produce a novel fructose-polymer containing substrate, and (3) production of fructose syrups containing greater than 55% fructose from said novel substrate.
    Type: Grant
    Filed: June 9, 1978
    Date of Patent: June 30, 1981
    Assignee: CPC International Inc.
    Inventor: Robert E. Heady