Lysine; Diaminopimelic Acid; Threonine; Valine Patents (Class 435/115)
  • Patent number: 10703783
    Abstract: The present invention relates to an L-lysine-producing microorganism of the genus Corynebacterium and a method for producing L-lysine using the same.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: July 7, 2020
    Assignee: CJ CHEILJEDANG CORPORATION
    Inventors: Seung Bin Lee, Yoon Hee Chung, Hyung Joon Kim, Doo Jin Kang, Seong Eun Bang, Song Gi Ryu
  • Patent number: 10619174
    Abstract: A recombinant yeast having a reduced pyruvate decarboxylase activity, in the génome of which has been inserted: —one or more nucleic acids encoding an acetolactate synthase or ALS, —one or more nucleic acids encoding an acetolactate decarboxylase or ALD, —one or more nucleic acids encoding a butancdiol dehydrogenase or BDH, and —one or more copies of a nucleic acids encoding a NADH oxidase or NOXE.
    Type: Grant
    Filed: July 23, 2015
    Date of Patent: April 14, 2020
    Assignee: ALDERYS
    Inventors: Mélanie Bremond, Karine Jaillardon, Dominique Louis, Dominique Thomas
  • Patent number: 10617122
    Abstract: A virus infection inhibitor containing a fermentation by-product such as an amino acid fermentation by-product and a nucleic acid fermentation by-product is sprinkled onto a plant body of a plant, such as tobacco, tomato, bell pepper, and chili pepper to control a disease induced by infection of a virus such as Tobamovirus viruses and Cucumovirus viruses.
    Type: Grant
    Filed: April 11, 2014
    Date of Patent: April 14, 2020
    Assignee: AJINOMOTO CO., INC.
    Inventors: Reiko Tomita, Naoki Kadotani, Kentaro Sekine
  • Patent number: 10590446
    Abstract: The present invention relates to a method for producing highly-concentrated L-amino acid and riboflavin simultaneously, and a microorganism for simultaneously producing L-amino acid and riboflavin. Specifically, the present invention relates to a modified microorganism for producing L-lysine or L-threonine, and riboflavin simultaneously, wherein the microorganism belonging to Corynebacterium sp. capable of producing L-lysine or L-threonine is modified by enhancing the activity of an enzyme family expressed by a rib operon which contains riboflavin biosynthesis gene family. Also, the present invention relates to a method for the simultaneous production of L-lysine or L-threonine, and riboflavin using the modified microorganism, and relates to a formulation or granular formulation, feed, and feed additive, containing L-lysine or L-threonine, and riboflavin produced from a culture medium of the modified microorganism.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: March 17, 2020
    Assignee: CJ CHEILJEDANG CORPORATION
    Inventors: Sang Hee Park, Jun Ok Moon, Sang Jo Lim, Do Hyun Kwon, Kyung Han Lee, Jin Suck Sung, Hyun Joon Kim
  • Patent number: 10501745
    Abstract: The present disclosure relates to a novel promoter, a vector comprising the promoter, a microorganism comprising the vector, and a method for producing a target protein using the promoter.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: December 10, 2019
    Assignee: CJ CHEILJEDANG CORPORATION
    Inventors: Young Mi Lee, Seung Bin Lee, Seong Bo Kim, Ji Hyun Lee, Jin Sook Chang, Seung Hyun Cho, Seung Won Park
  • Patent number: 10301620
    Abstract: The present disclosure teaches the treatment of a blood pathology, such as a blood pathology associated with impaired hemoglobin synthesis including the treatment of ?-thalassemia or a related hemoglobinopathy. An RNA molecule such as a short interfering RNA or a hairpin RNA which targets an mRNA species encoding ?-globin is administered to a subject to reduce the amount of ?-globin produced to non-zero levels and ameliorate the effects of an ?- and ?-globin chain imbalance.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: May 28, 2019
    Assignee: MURDOCH CHILDRENS RESEARCH INSTITUTE
    Inventor: Jim Vadolas
  • Patent number: 10253339
    Abstract: The present invention relates to a novel gluconate repressor variant, a microorganism containing the same, and a method for producing L-lysine using the same.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: April 9, 2019
    Assignee: CJ CHEILJEDANG CORPORATION
    Inventors: Sang Hee Park, Hyung Joon Kim, Nam Hyun Kim, Jun Ok Moon, Jeong Seok Oh, Song-Gi Ryu, Hyang Choi
  • Patent number: 10130112
    Abstract: The method disclosed herein comprises creation of an enzymatic digest medium containing feathers which may be rendered with a meat material to form a product, or may be dried after digestion has reached a desired level and then mixed with a rendered material. The composition disclosed herein comprises a product which, whether used as animal feed or as an additive or flavor to animal feed, provides a product having at least one of an improved amino acid profile, improved digestibility and more desirable levels of protein, lysine, and ash compared to the same amount of a carrier 22 meat with which it is mixed.
    Type: Grant
    Filed: December 14, 2012
    Date of Patent: November 20, 2018
    Assignee: INNOVATIVE PROTEIN HOLDING, LLC.
    Inventors: Don Scott Darling, Jonathan Scott Darling, Greg Drollinger, Scott Clawson
  • Patent number: 10059920
    Abstract: A non-naturally occurring microbe capable of growing in a medium comprising methanol is provided. The methanol contributes to a significant percentage (e.g., at least 40%) of the carbon source for the non-naturally occurring microbe, which expresses heterologous methanol dehydrogenase (MDH) and heterologous ribulose monophosphate (RuMP) pathway enzymes. Methods for producing liquid fuels and chemicals by the non-naturally occurring microbe and methods for preparing the non-naturally occurring microbe are also provided.
    Type: Grant
    Filed: January 9, 2015
    Date of Patent: August 28, 2018
    Assignee: University of Delaware
    Inventors: Eleftherios T. Papoutsakis, Sergios Nicolaou, Alan Fast, Vasiliki Falara, Robert Kyle Bennett, William Brian Whitaker, Nicholas Richard Sandoval, Jacqueline Gonzalez, Maciek Antoniewicz
  • Patent number: 9758772
    Abstract: The present application relates to an L-threonine-producing microorganism and a production method for L-threonine using the same, and more specifically, to a microorganism having enhanced L-threonine productivity and a method for producing L-threonine in high yield using the same.
    Type: Grant
    Filed: April 24, 2014
    Date of Patent: September 12, 2017
    Assignee: CJ Cheiljedang Corporation
    Inventors: Ji Sun Lee, Kwang Ho Lee, Eun Sung Koh, Hyung Joon Kim, Keun Cheol Lee, Young Bin Hwang
  • Patent number: 9745608
    Abstract: Recombinant microorganisms comprising DNA molecules in a deregulated form which improve the production of cadaverine or N-acetylcadaverine, as well as recombinant DNA molecules and polypeptides used to produce the microorganisms are provided. Said microorganisms comprise an intracellular lysine decarboxylase activity and a deregulated cadaverine export activity, or comprise a decreased cadaverine export activity and an enhanced N-acetylcadaverine forming activity. Processes for the production of cadaverine N-acetylcadaverine using the recombinant microorganisms are also provided.
    Type: Grant
    Filed: February 20, 2012
    Date of Patent: August 29, 2017
    Assignee: BASF SE
    Inventors: Christoph Wittmann, Stefanie Kind
  • Patent number: 9567614
    Abstract: A genetically engineered bacteria cell having an enhanced activity of GlnD or GlnK, and a method of producing succinic acid by using the genetically engineered bacteria cell are provided.
    Type: Grant
    Filed: March 30, 2015
    Date of Patent: February 14, 2017
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jiae Yun, Jieun Kim, Soonchun Chung, Joonsong Park, Jinhwan Park, Wooyong Lee, Kwangmyung Cho
  • Patent number: 9422568
    Abstract: A process for preparing L-amino acids employing coryneform bacteria in which the AmtR regulator has been attenuated is provided. Recombinant bacteria, polynucleotides and vectors corresponding to or having the attenuated AmtR regulator are disclosed.
    Type: Grant
    Filed: October 22, 2013
    Date of Patent: August 23, 2016
    Assignee: EVONIK DEGUSSA GmbH
    Inventors: Nadja Jessberger, Andreas Burkovski, Brigitte Bathe, Alexander Reth
  • Patent number: 9394346
    Abstract: The present invention describes a bacterium which has an ability to produce an amino acid and in which the rhtC gene encoding a protein having an enhanced activity of imparting L-threonine resistance to a bacterium expressing the protein. Preferably, the bacterium further includes an rhtB gene encoding for a protein having an enhanced activity of imparting to a bacterium L-homoserine resistance expressing the protein. The present invention also describes a method of cultivating the bacterium in a culture medium to produce and accumulate amino acids in the medium, and the amino acid is recovered from the medium.
    Type: Grant
    Filed: April 15, 2005
    Date of Patent: July 19, 2016
    Assignee: AJINOMOTO CO., INC.
    Inventors: Vitaliy Arkadyevich Livshits, Natalia Pavlovna Zakataeva, Vladimir Veniaminovich Aleshin, Alla Valentinovna Belareva, Irina Lyvovna Tokhmakova
  • Patent number: 9090898
    Abstract: Recombinant hosts for producing polyhydroxyalkanoates and methods of producing polyhydroxyalkanoates from renewable carbon substrates are provided. Certain recombinant hosts that produce 5 carbon chemicals such as 5-aminopentanoate (5AP), 5-hydroxyvalerate (5HV), glutarate, and 1,5 pentanediol (PDO) are also provided. One embodiment provides a recombinant host expressing a gene encoding a heterologous enzyme selected from the group consisting of a polyhydroxyalkanoate synthase and a 5-hydroxyvalerate-CoA (5HV-CoA) transferase, wherein the host produces a polymer containing 5-hydroxyvalerate. Preferably, the host expresses both a polyhydroxyalkanoate synthase and a 5HV-CoA transferase. The host can be prokaryotic or eukaryotic. A preferred prokaryotic host is E. coli. The polymers produced by the recombinant hosts can be homopolymers or copolymers of 5-hydroxyvalerate. A preferred copolymer is poly(3-hydroxybutyrate-co-5-hydroxyvalerate).
    Type: Grant
    Filed: December 14, 2009
    Date of Patent: July 28, 2015
    Assignee: Metabolix, Inc.
    Inventors: William R. Farmer, Jeff Bickmeier, Chenfeng Lu, Dong-Eun Chang, Frank Skraly, Thomas Martin Ramseier
  • Publication number: 20150147786
    Abstract: A process for mechanical destructuring of starch-based biomass was developed that makes use of a short application of high compression, impact, and shearing forces. The biomass may be destructured using a specific energy input that is less than 40% of the total combustible energy of the biomass. The destructured starch-based biomass, with or without saccharification and/or in-feed glycosyl hydrolase enzymes, may be used in feed applications. The destructured starch-based may saccharified to produce syrups and fermentable sugars, and for production of products including ethanol using a biocatalyst.
    Type: Application
    Filed: November 18, 2014
    Publication date: May 28, 2015
    Inventors: KATHLEEN A CLARKSON, F Glenn Gallagher, Aaron Perelman, Luis Fernando Romero Millan, Vivek Sharma, Jayarama K. Shetty, Daniel A. Slanac, Paula Johanna Maria Teunissen
  • Publication number: 20150140614
    Abstract: The invention relates to an isolated polynucleotide having promoter activity, a variant of the promoter of the gap gene coding for glyceraldehyde-3-phosphate dehydrogenase; and to a microorganism which produces and/or secretes a fine chemical, the microorganism including the isolated polynucleotide having promoter activity, which enables various genes to be overexpressed in comparison with the particular starting strain; and to a process for preparing fine chemicals using the microorganism.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 21, 2015
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: ALEXANDER RETH, BRIGITTE BATHE, STEPHAN HANS, WILFRIED CLAES
  • Publication number: 20150125906
    Abstract: The present invention relates to methods of degrading or converting biomass material enriched with hemicellulosic material into fermentable sugars.
    Type: Application
    Filed: January 14, 2015
    Publication date: May 7, 2015
    Inventors: Prashant Iyer, Harry Showmaker, Hui Xu, Kishore Rane
  • Publication number: 20150111261
    Abstract: An L-threonine-producing Escherichia coli including a pathway selected from the group consisting of a pathway that produces acetaldehyde from acetyl-CoA with acetaldehyde dehydrogenase, and a pathway that produces L-threonine from acetaldehyde and glycine with threonine aldolase, and a pathway that produces 2-amino-3-oxobutyrate from glycine and acetyl-CoA with glycine C-acetyltransferase, and a pathway that produces L-threonine from 2-amino-3-oxobutyrate with threonine dehydrogenase.
    Type: Application
    Filed: October 21, 2013
    Publication date: April 23, 2015
    Applicant: Mitsui Chemicals, Inc.
    Inventors: Dominik Lukas JURGEN-LOHMANN, Ryota Fujii, Tomonori Hidesaki
  • Publication number: 20150104837
    Abstract: The present invention relates to a novel isolated gene (polynucleotide) which encodes a protein having a biofilm formation inhibitory activity derived from Coryneform bacteria, a L-lysine-producing strain in which the polynucleotide is inactivated, and a method for producing L-lysine using the same.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: Un Hwan HA, Yong Jae KIM, Jung Hoon LEE, Hee Sung SHIN, Jun Ok MOON, Hyung Joon KIM, Kwang Ho LEE
  • Publication number: 20150104836
    Abstract: Provided is a method of producing L-amino acids by using a recombinant coryneform microorganism in which the expression of a target gene is weakened by using a gene transcription inhibition method.
    Type: Application
    Filed: September 26, 2014
    Publication date: April 16, 2015
    Inventors: Jun Ok MOON, Sang Jo LIM, Do Hyun KWON, Kwang Ho LEE, Hyun Won BAE
  • Publication number: 20150099281
    Abstract: The present invention relates to a modified polynucleotide encoding aspartate kinase (EC:2.7.2.4; hereinafter, referred to as LysC), transketolase (EC:2.2.1.1; hereinafter, referred to as Tkt) or pyruvate carboxylase (EC:6.4.1.1; hereinafter, referred to as Pyc), in which the initiation codon is substituted with ATG, a vector including the same, a microorganism transformed with the vector, and a method for producing L-lysine using the same.
    Type: Application
    Filed: December 21, 2012
    Publication date: April 9, 2015
    Inventors: Kwang Ho Lee, Sang Jo Lim, Jun Ok Moon, Jae Woo Jang, Su Jin Park, Sang Hee Park
  • Patent number: 8993279
    Abstract: A method for producing an L-amino acid is described, which is characterized by culturing a Vibrio bacterium capable of producing the L-amino acid in a culture medium to produce and accumulate the L-amino acid in the culture medium and collecting the L-amino acid from the culture medium.
    Type: Grant
    Filed: July 31, 2009
    Date of Patent: March 31, 2015
    Assignee: Ajinomoto Co., Inc.
    Inventors: Yoko Asakura, Ippei Inoue, Hisashi Yasueda
  • Publication number: 20150082493
    Abstract: The present invention relates to GH61 polypeptide variants. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: April 26, 2013
    Publication date: March 19, 2015
    Inventors: Janine Lin, Doreen Bohan, Michelle Maranta, Leslie Beresford, Michael Lamsa, Matt Sweeney, Mark Wogulis, Elizabeth Znameroski, Frank Winther Rasmussen
  • Publication number: 20150056665
    Abstract: A method of producing a chemical includes culturing cells in a culture solution in a fermentor to ferment a feedstock to produce a chemical; supplying the culture solution containing the chemical produced in the culturing to a plurality of separation membrane units arranged in parallel; filtering the culture solution supplied in the supplying to separate a permeate containing the chemical; refluxing a retentate that is not filtered in the filtering to the fermentor; and supplying a gas containing oxygen to the plurality of separation membrane units while a supply amount is changed to at least two different values to perform scrubbing, wherein the supply amount and supply time of the gas containing oxygen supplied in the culturing and the supplying the gas are set so that a kLa value is within a predetermined range from an optimal kLa value for the cells cultured in the culturing.
    Type: Application
    Filed: March 27, 2013
    Publication date: February 26, 2015
    Inventors: Satoko Kanamori, Hideki Sawai, Norihiro Takeuchi
  • Publication number: 20150056666
    Abstract: The invention relates to an isolated polynucleotide having promoter activity, a variant of the promoter of the gap gene coding for glyceraldehyde-3-phosphate dehydrogenase; and to a microorganism which produces and/or secretes a fine chemical, the microorganism including the isolated polynucleotide having promoter activity, which enables various genes to be overexpressed in comparison with the particular starting strain; and to a process for preparing fine chemicals using the microorganism.
    Type: Application
    Filed: November 4, 2014
    Publication date: February 26, 2015
    Applicant: Evonik Degussa GmbH
    Inventors: Alexander RETH, Brigitte Bathe, Stephan Hans, Wilfried Claes
  • Publication number: 20150050703
    Abstract: The present invention relates to a microorganism able to produce L-threonine or L-tryptophan, and to a method for producing L-threonine or L-tryptophan by using same. More specifically, the present invention relates to: recombinant Escherichia coli which is more efficient in producing L-threonine or L-tryptophan by increasing the ability to produce ATP which is used as the most plentiful energy source in cells when producing L-threonine or L-tryptophan; and a method for producing L-threonine or L-tryptophan by using same.
    Type: Application
    Filed: January 7, 2013
    Publication date: February 19, 2015
    Inventors: Ki Yong Cheong, Seok Myung Lee, Young Bin Hwang, Keun Cheol Lee, Kwang Ho Lee
  • Patent number: 8956850
    Abstract: A high flux in conversion of pyruvate to acetolactate was achieved in yeast through expression of acetolactate synthase in the cytosol in conjunction with reduction in pyruvate decarboxylase activity. Additional manipulations to improve flux to acetolactate are reduced pyruvate dehydrogenase activity and reduced glycerol-3-phosphate dehydrogenase activity. Production of compounds having acetolactate as an upstream intermediate benefit from the increased conversion of pruvate to acetolactate in the described strains.
    Type: Grant
    Filed: June 4, 2009
    Date of Patent: February 17, 2015
    Assignee: Butamax Advanced Biofuels LLC
    Inventors: Larry Cameron Anthony, Lori Ann Maggio-Hall
  • Patent number: 8951760
    Abstract: A method for producing an L-amino acid includes culturing a bacterium which belongs to the family Enterobacteriaceae and has an L-amino acid-producing ability in a medium containing a carbon source selected from a fatty acid and an alcohol, and collecting the L-amino acid from the medium. A bacterium which has been subjected to a modification including at least one of enhancement of oxyS gene expression, enhancement of fixABC gene expression, and combination thereof, is used as the bacterium, or a substance that reduces intracellular hydrogen peroxide concentration of the bacterium is added to the medium.
    Type: Grant
    Filed: June 7, 2013
    Date of Patent: February 10, 2015
    Assignee: Ajinomoto Co., Inc.
    Inventors: Hidetaka Doi, Yasushi Hoshino, Yuri Masumitsu, Yoshihiro Usuda
  • Publication number: 20150040271
    Abstract: The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: October 20, 2014
    Publication date: February 5, 2015
    Inventors: Suchindra Maiyuran, Randall Kramer, Paul Harris
  • Publication number: 20150031079
    Abstract: The present invention relates to isolated polypeptides having xylanase activity and polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventor: Nikolaj Spodsberg
  • Publication number: 20150031080
    Abstract: The present invention relates to variants of a parent cellobiohydrolase II. The present invention also relates to polynucleotides encoding the variants; nucleic acid constructs, vectors, and host cells comprising the polynucleotides; and methods of using the variants.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventor: Mark Wogulis
  • Publication number: 20150031082
    Abstract: The present invention relates to isolated polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: October 13, 2014
    Publication date: January 29, 2015
    Inventor: Marc Dominique Morant
  • Publication number: 20150017693
    Abstract: The present invention describes a method for producing a useful metabolite using a bacterium of the family Enterobacteriaceae, particularly a bacterium belonging to the genus Escherichia, which has been modified to contain a gene(s) expression system including elements of the LysR-type protein-regulated transcriptional machinery modified in such a way that auto-inducible positive feedback regulation of said system is mediated by a coinducer. The method is suitable for producing branched-chain L-amino acids, particularly L-valine, L-isoleucine and L-leucine; and D-pantothenic acid.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Applicant: AJINOMOTO CO., INC.
    Inventors: Elena Viktorovna Sycheva, Valery Vasilievich Samsonov, Ekaterina Alekseevna Savrasova, Natalia Sergeevna Eremina, Natalia Vladimirovna Geraskina, Natalia Viktorovna Stoynova
  • Patent number: 8932834
    Abstract: A method for producing an L-amino acid which includes the steps of culturing a bacterium belonging to the family Enterobacteriaceae and having an L-amino acid producing ability in a medium to produce and accumulate an L-amino acid in the medium, and collecting the L-amino acid from the medium, wherein the bacterium has been modified so that an activity or activities of one or two or more enzymes of the arginine succinyltransferase pathway, such as arginine succinyltransferase, succinylarginine dihydrolase, succinylornithine aminotransferase, succinylglutamate-semialdehyde dehydrogenase, and succinylglutamate desuccinylase, is/are decreased.
    Type: Grant
    Filed: February 24, 2012
    Date of Patent: January 13, 2015
    Assignee: Ajinomoto Co., Inc.
    Inventors: Hidetaka Doi, Yoshihiro Usuda
  • Publication number: 20150010963
    Abstract: A method for producing a basic substance by fermentation comprising culturing a microorganism having an ability to produce the basic substance in a liquid medium contained in a fermentation tank to produce and accumulate the basic substance in the medium, wherein amount of sulfate and/or chloride ions used as counter ions of the basic substance is reduced by adjusting total ammonia concentration in the medium to be within a specific concentration range during at least a part of the total period of culture process.
    Type: Application
    Filed: September 11, 2014
    Publication date: January 8, 2015
    Applicant: AJINOMOTO CO., INC.
    Inventors: Ryo Takeshita, Shinichi Sugimoto
  • Publication number: 20150010962
    Abstract: A method for producing a basic substance by fermentation comprising culturing a microorganism having an ability to produce the basic substance in a liquid medium contained in a fermentation tank to produce and accumulate the basic substance in the medium, wherein amount of sulfate and/or chloride ions used as counter ions of the basic substance is reduced by adjusting total ammonia concentration in the medium to be within a specific concentration range during at least a part of the total period of culture process.
    Type: Application
    Filed: September 11, 2014
    Publication date: January 8, 2015
    Applicant: AJINOMOTO CO., INC.
    Inventors: Ryo Takeshita, Shinichi Sugimoto
  • Publication number: 20150010958
    Abstract: The present invention provides methods for degrading or converting a cellulosic material using an enzyme composition in the presence of a reducing agent. The present invention also provides methods for producing a fermentation product and methods of fermenting a cellulosic material using an enzyme composition in the presence of a reducing agent.
    Type: Application
    Filed: January 28, 2013
    Publication date: January 8, 2015
    Applicants: Novoztmes A/S, Novozymes Inc.
    Inventors: Hongzhi Huang, Yun Wang, Wei Li, Feng Xu, Ani Tejirian
  • Publication number: 20150004656
    Abstract: The present invention relates to isolated polypeptides having cellulolytic enhancing activity and isolated polynucleotides encoding the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: September 15, 2014
    Publication date: January 1, 2015
    Inventors: Lan Tang, Ye Liu, Junxin Duan, Yu Zhang, Christian Joergensen, Randall Kramer
  • Publication number: 20140377814
    Abstract: The present invention relates to a method for biologically treating carbon dioxide using the sulfur-oxidizing chemolithoautotroph Sulfurovum lithotrophicum 42BKT. The method of the present invention may enable carbon dioxide to be fixed or converted in high-concentration and high-pressure conditions which do not allow the biological photosynthetic conversion of microalgae or the like, and may exhibit high efficiency in the fixation of carbon dioxide as compared to existing methods for biologically treating carbon dioxide using microalgae. Further, the method of the present invention may use a gas mixture without a process of separating nitrogen and other gases, thus simplifying the process of the fixation or conversion of carbon diode.
    Type: Application
    Filed: September 20, 2012
    Publication date: December 25, 2014
    Inventors: Chang Ha Lee, Ik Sung Ahn, Hyuk Sung Kwon, Jae Hyuk Lee
  • Publication number: 20140377816
    Abstract: The present invention relates to microorganisms of corynebacterium which can utilize xylose and to a method for producing L-lysine using same. More particularly, the present invention relates to microorganisms of corynebacterium which are modified, in which genes encoding xylose isomerase and xylulokinase which are xylose synthases are introduced to express the xylose synthase. The present invention also relates to a method for producing L-lysine, comprising a step of culturing the modified microorganisms of corynebacterium using xylose as a carbon source, and recovering L-lysine from the culture.
    Type: Application
    Filed: January 10, 2013
    Publication date: December 25, 2014
    Inventors: So Yeon Rah, Lan Huh, Chang Gyeom Kim, Kwang Ho Lee, Jun Ok Moon, Kyung Han Lee, Jin Seok Sung, Hyung Joon Kim
  • Publication number: 20140356916
    Abstract: Recombinant microorganisms with deregulated succinyl-CoA synthetase activity, as well as the uses for producing lysine, ?-lysine, cadaverine or N-acetylcadaverine thereby are provided. Recombinant polypeptides comprising an amino acid sequence being at least 80% identical to SEQ ID NO: 51 or 53 are also provided. The method of producing fine chemicals using said recombinant microorganisms, in particular the method of producing lysine, or derivatives thereof, such as ?-lysine, cadaverine or N-acetylcadaverine is further provided.
    Type: Application
    Filed: December 14, 2012
    Publication date: December 4, 2014
    Applicant: BASF SE
    Inventors: Christoph Wittmann, Stefanie Kind, Judith Becker
  • Publication number: 20140356915
    Abstract: Processes are described for fractionating lignocellulosic biomass into cellulose, hemicellulose, and lignin, comprising fractionating lignocellulosic biomass in the presence of a solvent for lignin (such as ethanol), a hydrolysis catalyst (such as sulfur dioxide), and water, to produce a liquor containing hemicellulose, cellulose-rich solids, and lignin; hydrolyzing the hemicellulose to produce hemicellulosic monomers; saccharifying the cellulose-rich solids to produce glucose; recovering the hemicellulosic monomers and the glucose, separately or in a combined stream, as fermentable sugars; and fermenting the fermentable sugars to a fermentation product having a higher normal boiling point than water. Process integration of mass and/or energy is disclosed in many specific embodiments. The fermentation product may include an organic acid, an alcohol, a diol, or combinations thereof.
    Type: Application
    Filed: May 23, 2014
    Publication date: December 4, 2014
    Applicant: API Intellectual Property Holdings, LLC
    Inventors: Theodora RETSINA, Vesa PYLKKANEN, Ryan P. O'CONNOR
  • Publication number: 20140356518
    Abstract: The present invention relates to a method for producing highly-concentrated L-amino acid and riboflavin simultaneously, and a microorganism for simultaneously producing L-amino acid and riboflavin. Specifically, the present invention relates to a modified microorganism for producing L-lysine or L-threonine, and riboflavin simultaneously, wherein the microorganism belonging to Corynebacterium sp. capable of producing L-lysine or L-threonine is modified by enhancing the activity of an enzyme family expressed by a rib operon which contains riboflavin biosynthesis gene family. Also, the present invention relates to a method for the simultaneous production of L-lysine or L-threonine, and riboflavin using the modified microorganism, and relates to a formulation or granular formulation, feed, and feed additive, containing L-lysine or L-threonine, and riboflavin produced from a culture medium of the modified microorganism.
    Type: Application
    Filed: October 17, 2012
    Publication date: December 4, 2014
    Inventors: Sang Hee Park, Jun Ok Moon, Sang Jo Lim, Do Hyun Kwon, Kyung Han Lee, Jin Suck Sung, Hyun Joon Kim
  • Publication number: 20140349349
    Abstract: The present invention is related to recombinant host cells comprising: (i) at least one deletion, mutation, and/or substitution in an endogenous gene encoding a polypeptide that converts pyruvate to acetaldehyde, acetyl-phosphate, or acetyl-CoA; and (ii) a heterologous polynucleotide encoding a polypeptide having phosphoketolase activity. The present invention is also related to recombinant host cells further comprising (iii) a heterologous polynucleotide encoding a polypeptide having phosphotransacetylase activity.
    Type: Application
    Filed: July 18, 2014
    Publication date: November 27, 2014
    Inventors: MICHAEL DAUNER, Lori Ann Maggio-Hall, Jean-Francois Tomb
  • Publication number: 20140342408
    Abstract: Provided are isolated polypeptides having xylanase activity, catalytic domains and cellulose binding domains, and polynucleotides encoding the polypeptides, catalytic domains or cellulose binding domains. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides, catalytic domains or cellulose binding domains.
    Type: Application
    Filed: November 22, 2012
    Publication date: November 20, 2014
    Inventors: Yu Zhang, Lan Tang, Junxin Duan, Ye Liu
  • Publication number: 20140335574
    Abstract: A mutant bacterial acetolactate synthase (AHAS I) which is resistant to feedback inhibition by L-valine is described. Also described is a method for producing branched-chain L-amino acids using a bacterium from the Enterobacteriaceae family wherein the L-amino acid productivity of said bacterium is enhanced by the use of the acetolactate synthase (AHAS I) which is resistant to feedback inhibition by L-valine. This acetolactate synthase contains a mutant small subunit encoded by the mutant ilvN gene.
    Type: Application
    Filed: July 17, 2014
    Publication date: November 13, 2014
    Applicant: AJINOMOTO CO., INC.
    Inventors: Elena Viktorovna Sycheva, Vsevolod Aleksandrovich Serebryanyy, Tatyana Abramovna Yampolskaya, Ekaterina Sergeevna Preobrazhenskaya, Natalia Viktorovna Stoynova
  • Patent number: 8883458
    Abstract: The invention relates to a process for preparing L-amino acids by fermenting recombinant microorganisms of the Enterobacteriaceae family, characterized in that a) the desired L-amino acid-producing microorganisms, in which the yjcG-ORF, or nucleotide sequences or alleles encoding the gene product, is/are enhanced, in particular overexpressed, is cultured in a medium under conditions under which the desired L-amino acid is accumulated in the medium or in the cells, and b) the desired L-amino acid is isolated, with, where appropriate, constituents of the fermentation broth, and/or the biomass remaining in its/their entirety or in portions (from ?0 to 100%) in the isolated product or being removed completely.
    Type: Grant
    Filed: January 22, 2010
    Date of Patent: November 11, 2014
    Assignee: Evonik Degussa GmbH
    Inventor: Nicole Dusch
  • Publication number: 20140331364
    Abstract: Provided are isolated polypeptides having beta-glucosidase activity and polynucleotides encoding the polypeptides. Also provided are nucleic acid constructs, vectors and host cells comprising the polynucleotides as well as methods of producing and using the polypeptides.
    Type: Application
    Filed: December 19, 2012
    Publication date: November 6, 2014
    Inventors: Ye Liu, Junxin Duan, Yu Zhang, Lan Tang
  • Publication number: 20140322766
    Abstract: A process for production of C5 and C6 sugar enriched syrups from lignocellulosic biomass and fermentation products therefrom is described. A lignocellulosic biomass is treated with a C1-C2 acid (e.g., acetic acid) with washing thereof with a C1-C2 acid miscible organic solvent, (e.g., ethyl acetate). A soluble hemicellulose and lignin enriched fraction is obtained separately from a cellulose pulp enriched fraction and lignin is removed from the soluble hemicellulose fraction. These fractions contain acylated (e.g., acetylated) cellulose and hemicellulose, which are deacylated by treatment with an alkali and/or with an acetyl esterase enzyme. The deacylated fractions are then digested with suitable cellulolytic and/or hemicellulolytic enzymes, preferably in the presence of non-ionic detergent to yield the C5 and C6 enriched syrups.
    Type: Application
    Filed: May 16, 2014
    Publication date: October 30, 2014
    Applicant: ARCHER DANIELS MIDLAND COMPANY
    Inventors: Wuli Bao, Thomas Binder, Charles Abbas, Lucas Loveless