Using Fungi Patents (Class 435/171)
  • Patent number: 10301588
    Abstract: The present invention relates to a method for degrading DNA in a sample obtained by microbial fermentation or biotransformation, comprising treating the sample with a combination of increased temperature and low pH. It also relates to a method for releasing DNA from a microbial cell, comprising incubating the microbial cell at a temperature of 45° C. to 55° C. for two to ten hours. Finally, the present invention provides a method for producing a product, comprising a step of releasing DNA from a microbial cell and degrading said DNA.
    Type: Grant
    Filed: December 9, 2015
    Date of Patent: May 28, 2019
    Assignee: BASF SE
    Inventors: Birgit Hoff, Stefan Haefner, Weol Kyu Jeong, Edzard Scholten
  • Patent number: 10266812
    Abstract: The present invention provides a novel method for improving microbial laccase production, which relates to the field of microbial fermentation. The present invention is to add ?-carotene and other types of carotenoids, or microorganisms that produce carotenoids, or mixtures comprising carotenoids into a fermentation system during fermentation of Pleurotus ferulae and other higher fungi. The present invention can improve the laccase production 12 times more than before, with the advantages of a simple process and high yield.
    Type: Grant
    Filed: September 19, 2016
    Date of Patent: April 23, 2019
    Assignee: Jiangnan University
    Inventors: Zhongyang Ding, Chaolin Guo, Liting Zhao, Bingxin Lu, Qiong Wang, Lin Peng, Jian Lu, Zhenghua Gu, Guiyang Shi
  • Patent number: 9309545
    Abstract: Biomass (e.g., plant biomass, animal biomass, microbial, and municipal waste biomass) is processed to produce useful products, such as food products and amino acids.
    Type: Grant
    Filed: July 17, 2014
    Date of Patent: April 12, 2016
    Assignee: Xyleco, Inc.
    Inventor: Marshall Medoff
  • Patent number: 9012192
    Abstract: A method of increasing the rate of growth, useful product production, or protein expression of a microorganism includes the step of exposing the microorganism to ultrasound having a frequency greater than about 1 MHz.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 21, 2015
    Assignee: Intelligentnano Inc.
    Inventors: Jie Chen, James Xing, Woon T. Ang
  • Patent number: 8999687
    Abstract: The composite material is comprised of a substrate of discrete particles and a network of interconnected mycelia cells bonding the discrete particles together. The mycelia cells are selected from the group consisting of at least one of Agrocybe brasiliensi, Flammulina velutipes, Hypholomoa capnoides, Hypholoma sublaterium, Morchella angusticeps, Macrolepiota procera and Coprinus comatus. The fungus digests the nutrient material over a period of time sufficient to grow hyphae and to allow the hyphae to form a network of interconnected mycelia cells through and around the discrete particles thereby bonding the discrete particles together to form a self-supporting composite material.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: April 7, 2015
    Assignee: Rensselaer Polytechnic Institute
    Inventors: Eben Bayer, Gavin McIntyre, Burt L. Swersey
  • Patent number: 8993299
    Abstract: The present invention relates to polypeptides having cellobiohydrolase I activity and polynucleotides having a nucleotide sequence which encodes for the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acid constructs as well as methods for producing and using the polypeptides.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: March 31, 2015
    Assignee: Novozymes A/S
    Inventors: Lene Lange, Wenping Wu, Dominique Aubert, Sara Landvik, Kirk Matthew Schnorr, Ib Groth Clausen
  • Publication number: 20150087032
    Abstract: A genetically engineered yeast cell that produces a pyruvate-based metabolite from pyruvate, wherein activity of a mitochondrial pyruvate carrier (MPC) is reduced compared to a parent yeast cell and a method of producing the pyruvate-based metabolite using the yeast cell.
    Type: Application
    Filed: July 21, 2014
    Publication date: March 26, 2015
    Inventors: Young-kyoung PARK, Chang-duk Kang, Ji-yoon Song, Ju-young Lee, Seung-hyun Lee, Kwang-myung Cho
  • Patent number: 8986948
    Abstract: The present invention relates to the use of nucleic acid molecules coding for a bacterial xylose isomerase (XI), preferably coming from Clostridium phytofermentans, for reaction/metabolization, particularly fermentation, of recombinant microorganisms of biomaterial containing xylose, and particularly for the production of bioalcohols, particularly bioethanol, by means of xylose fermenting yeasts. The present invention further relates to cells, particularly eukaryotic cells, which are transformed utilizing a nucleic acid expression construct which codes for a xylose isomerase, wherein the expression of the nucleic acid expression construct imparts to the cells the capability to directly isomerize xylose into xylulose. Said cells are preferably utilized for reaction/metabolization, particularly fermentation, of biomaterial containing xylose, and particularly for the production of bioalcohols, particularly bioethanol.
    Type: Grant
    Filed: July 1, 2009
    Date of Patent: March 24, 2015
    Assignee: Lesaffre et Compagnie
    Inventors: Dawid Brat, Eckhard Boles, Marco Keller, Beate Wiedemann
  • Patent number: 8986969
    Abstract: The present invention relates to polypeptides having cellobiohydrolase I activity and polynucleotides having a nucleotide sequence which encodes for the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acid constructs as well as methods for producing and using the polypeptides.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: March 24, 2015
    Assignee: Novozymes A/S
    Inventors: Lene Lange, Wenping Wu, Dominique Aubert, Sara Landvik, Kirk Matthew Schnorr, Ib Groth Clausen
  • Patent number: 8961963
    Abstract: Disclosed is a pharmaceutical natural composition containing both statin compounds (mevinolin and mevinolinic acid) serving as cholesterol biosynthesis inhibitors and coenzyme Q (ubiquinone-10: CoQ10 and ubiquinone-9: CoQ9) compounds which are substances that inhibit factors causing complications such as myalgia involved in long-term use of the statin, prepared using Monascus sp. and natural medicinal substances such as ginseng, mushrooms and cereals.
    Type: Grant
    Filed: December 28, 2009
    Date of Patent: February 24, 2015
    Assignee: Sungshin Women's University Industry-Academic Cooperation Foundation
    Inventor: Young-Hee Pyo
  • Patent number: 8962277
    Abstract: The invention refers to a method of producing a recombinant polypeptide of interest (POI) in a cell culture, comprising genetically engineering a eukaryotic cell line—to specifically cause prolongation of the G2+M cell cycle phase in a pre-culture phase, and—to produce the POI in a producing phase following the pre-culture phase, a high producer cell line and cell culture as well as a method of increasing the yield of a recombinant POI production in a cell culture.
    Type: Grant
    Filed: July 4, 2011
    Date of Patent: February 24, 2015
    Assignee: Univeristät für Bodenkultur Wien
    Inventors: Diethard Mattanovich, Martin Dragosits, Brigitte Gasser, Michael Maurer, Michael Sauer
  • Publication number: 20150037862
    Abstract: The invention provides a general and facile method to obtain secondary metabolites from fungal sources. The invention is based on the discovery that the fungal gene veA and protein encoded thereby regulates the activity of multiple secondary metabolite gene clusters in fungi. Over expression of the gene veA provides increased production of secondary metabolites in engineered cells. In particular, such a method of increasing secondary metabolite production allows the production of improved yields of valuable secondary metabolite products.
    Type: Application
    Filed: September 15, 2014
    Publication date: February 5, 2015
    Inventors: NANCY P. KELLER, SAORI AMAIKE
  • Publication number: 20150031078
    Abstract: The present invention is a Kluyveromyces lactis yeast strain comprising the sequence identified by SEQ ID NO: 1, and methods for the production of sugars (glucose and galactose), ethanol, ?-galactosidase and biomass, in which said Kluyveromyces lactis yeast strain is cultured in the presence of a lactose-containing medium. The lactose-containing medium may be milk, whey, whey resulting from the preparation of butter, whey resulting after casein precipitation, milk permeate, whey permeate, acid whey and YPL culture medium.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 29, 2015
    Applicant: QUEIZUAR, S.L.
    Inventors: Angel Pereira Rodriguez, Manuel Becerra Fernandez, Maria Isabel Gonzalez Siso, Maria Esperanza Cerdan Villanueva
  • Patent number: 8932825
    Abstract: The present invention relates to host cells having modified lipid-linked oligosaccharides which may be modified further by heterologous expression of a set of glycosyltransferases, sugar transporters and mannosidases to become host-strains for the production of mammalian, e.g., human therapeutic glycoproteins. The process provides an engineered host cell which can be used to express and target any desirable gene(s) involved in glycosylation. Host cells with modified lipid-linked oligosaccharides are created or selected. N-glycans made in the engineered host cells have a GlcNAcMan3GlcNAc2 core structure which may then be modified further by heterologous expression of one or more enzymes, e.g., glycosyl-transferases, sugar transporters and mannosidases, to yield human-like glycoproteins. For the production of therapeutic proteins, this method may be adapted to engineer cell lines in which any desired glycosylation structure may be obtained.
    Type: Grant
    Filed: December 24, 2002
    Date of Patent: January 13, 2015
    Assignee: GlycoFi Inc.
    Inventors: Stefan Wildt, Robert Gordon Miele, Juergen Hermann Nett, Robert C. Davidson
  • Patent number: 8932602
    Abstract: Disclosed herein are compositions comprising an isolated cellulose degrading fungus and pharmaceutical substances produced by the fungus.
    Type: Grant
    Filed: August 11, 2011
    Date of Patent: January 13, 2015
    Assignee: Menon Renewable Products, Inc.
    Inventors: Suresh M. Menon, Samantha S. Orchard, Jessica Badger, Sara Guidi, David Newman, Jagadish C. Sircar, Kashinatham Alisala
  • Publication number: 20140377813
    Abstract: The invention provides a microbial eukaryotic cell capable of utilizing C5 sugars, in particular xylose. Another objective of the invention is to provide an improved protein sequence to enable eukaryotic cells to degrade C5 sugars. The present invention thus provides protein comprising an amino acid sequence having at least 75% identity, preferably 80% identity, most preferably 90% identity, most highly preferably 95% identity to SEQ ID NO. 2 or SEQ ID NO. 8 and having xylose-isomerase activity in a eukaryotic cell.
    Type: Application
    Filed: February 7, 2013
    Publication date: December 25, 2014
    Inventors: Zdravko Dragovic, Christian Gamauf, Christoph Reisinger, Ulrich Kettling
  • Publication number: 20140377303
    Abstract: Disclosed herein are compositions comprising an isolated cellulose degrading fungus and pharmaceutical substances produced by the fungus.
    Type: Application
    Filed: June 19, 2014
    Publication date: December 25, 2014
    Inventors: Suresh Menon, Samantha S. Orchard, Jessica Badger, David Lipson, Sara Guidi, David Newman, Jagadish C. Sircar, Kashinatham Alisala
  • Patent number: 8907165
    Abstract: Mushrooms genetically engineered to produce provitamin A carotenoids including ?-carotene, ?-carotene, ?-carotene, and ?-cryptoxanthin are provided. In some embodiments, mushrooms are transformed with genes that encode enzymes that have phytoene synthase, pyhtoene dehydrogenase and lycopene cyclase activities and function to convert GGPP to one or more provitamin A carotenoids. Mushrooms are transformed using known methods, including Agrobacterium-mediated transformation. Transgenic mushrooms producing provitamin A carotenoids are useful to treat, alleviate, reduce, and/or inhibit one or more symptoms of a disease or disorder associated with vitamin A deficiency (VAD).
    Type: Grant
    Filed: February 11, 2010
    Date of Patent: December 9, 2014
    Assignee: Medicine In Need Corporation
    Inventor: Voranaddha Vacharathit
  • Patent number: 8900832
    Abstract: The present invention relates to a method for the production of fat with a principal application as transportation biofuel or a component or raw material therefor. According to the method, cell masses, cell suspensions and/or liquid phases formed in the production of single cell oil, and/or biomass-containing side streams or microorganism cell masses for another purpose and/or originating from other sources, are contacted with a fat-production capable microorganism and the organism is allowed to produce fat. The resulting fat is recovered or the microorganism mass is passed to a single-cell oil production process. By means of the invention, the organic matter present in the cell mass and side streams of single-cell oil can be re-utilized for the production of the single-cell oil, thereby improving a total fat yield, as well as reducing an organic load of the side streams.
    Type: Grant
    Filed: June 24, 2010
    Date of Patent: December 2, 2014
    Assignee: Neste Oil Oyj
    Inventors: Heidi Kahelin, Simo Laakso, Ossi Pastinen, Miia Mujunen, Tarja Suomalainen
  • Publication number: 20140349870
    Abstract: A chemo-mechano-chemical (C1-M-C2) system includes a base supporting an actuatable structure, said structure comprising a functionalized portion and being embedded in an environmentally responsive gel capable of volume change in response to an environmental stimulus; a first fluid layer disposed over the base and in contact with the actuatable structure, said first fluid layer comprising the environmentally responsive gel; and a second fluid layer in contact with the actuatable structure, wherein the layers are positioned such that the functionalized portion is in contact with the second layer in a first relaxed state and in contact with the first layer in a second actuated state and wherein the functionalized portion interacts with at least one of the layers to provide a chemical or physical response.
    Type: Application
    Filed: May 2, 2014
    Publication date: November 27, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Joanna AIZENBERG, Ximin HE, Michael AIZENBERG
  • Patent number: 8889374
    Abstract: The present invention relates to recombinant factor H and variants and conjugates thereof and methods of their production, as well as uses and methods of treatment involving the materials.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: November 18, 2014
    Assignee: University Court of the University of Edinburgh
    Inventors: Christoph Schmidt, Paul N. Barlow, Anna Richards
  • Patent number: 8871492
    Abstract: A fat-soluble fraction extracted from the fruiting body of Hericium erinaceum is demonstrated to inhibit the neuronal toxicity of amyloid beta-peptide (A?) and induce the synthesis of nerve growth factor (NGF), and has great potential as an active ingredient for pharmaceutical products, health food products, food products and/or beverages to prevent and/or treat dementia, especially Alzheimer-type dementia. This invention is to provide the bioactive fraction and its preparation method.
    Type: Grant
    Filed: May 2, 2008
    Date of Patent: October 28, 2014
    Inventors: Cun Zhuang, Hirokazu Kawagishi, Luyong Zhang, Hideo Anzai
  • Patent number: 8859261
    Abstract: Provided herein are compositions and methods for the heterologous production of acetyl-CoA-derived isoprenoids in a host cell. In some embodiments, the host cell is genetically modified to comprise a heterologous nucleotide sequence encoding an acetaldehyde dehydrogenase, acetylating (ADA, E.C. 1.2.1.10) and an MEV pathway comprising an NADH-using HMG-CoA reductase. In some embodiments, the host cell is genetically modified to comprise a heterologous nucleotide sequence encoding an ADA and an MEV pathway comprising an acetoacetyl-CoA synthase. In some embodiments, the genetically modified host cell further comprises one or more heterologous nucleotide sequences encoding a phosphoketolase and a phosphotransacetylase. In some embodiments, the genetically modified host cell further comprises a functional disruption of the native PDH-bypass. The compositions and methods described herein provide an energy-efficient yet redox balanced route for the heterologous production of acetyl-CoA-derived isoprenoids.
    Type: Grant
    Filed: October 24, 2013
    Date of Patent: October 14, 2014
    Assignee: Amyris, Inc.
    Inventors: Timothy Stevens Gardner, Kristy Michelle Hawkins, Adam Leon Meadows, Annie Ening Tsong, Yoseph Tsegaye
  • Patent number: 8859228
    Abstract: The invention relates to a novel method for the production of ?-carotene from submerged cultures of mucoral fungi such as Blakeslea, Choanephora or Phycomyces by adding lectin to the culture medium and performing pH control once fermentation has started. The method involves ?-carotene recovery stage that makes it possible to simplify the process, optimize yields and increase purification of the product.
    Type: Grant
    Filed: July 18, 2001
    Date of Patent: October 14, 2014
    Assignee: DSM IP Assets B.V.
    Inventors: Javier Costa Perez, Antonio Estrella Castro, Ana Teresa Marcos Rodriguez, J. Emiliano Gonzalez De Prado, Enrique R. Peiro Cezon, Alfonso Collados De La Vieja, Manuel Esteban Morales
  • Patent number: 8852907
    Abstract: The efficient production of ethanol from low-cost biomass (e.g., corn, sugar beets, sugar cane, switchgrass and/or paper) has become increasingly important in making ethanol competitive with gasoline and decreasing the United States' dependence on foreign oil. For example, to reduce the cost of transporting biomass to ethanol production facilities, mobile systems for producing ethanol from biomass are provided. Also provided are small-scale ethanol production facilities. For example, instead of transporting biomass to the production facility, the facility is transported to the biomass or is located nearby the source of the biomass. The ethanol production facilities or components thereof may be transported via land, water, or air. Production of other products, such as hydrocarbons, natural gas, hydrogen gas, plastics, polymers, and proteins, can also be made by the methods and facilities. Any product described herein can be made in finished form or un-finished form and moved, e.g., to a fixed facility, e.g.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: October 7, 2014
    Assignee: Xyleco, Inc.
    Inventor: Marshall Medoff
  • Patent number: 8846343
    Abstract: Provided is a novel high-expression promoter, namely a GAL1 promoter, derived from Kluyveromyces marxianus. Also provided are the following, characterized by the use of the provided high-expression promoter; a recombinant polynucleotide containing said high-expression promoter; a vector containing said recombinant polynucleotide; a transformant obtained by introducing said recombinant polynucleotide or vector into yeast; a method using said transformant for high expression of a target gene; and a method using said transformant to manufacture the gene product of a target gene.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: September 30, 2014
    Assignee: Yamaguchi University
    Inventors: Rinji Akada, Hisashi Hoshida, Masamitsu Ide
  • Publication number: 20140287475
    Abstract: The present invention relates to methods for reducing or eliminating the expression of a target gene in a filamentous fungal strain, comprising: (a) inserting into the genome of the filamentous fungal strain a double-stranded transcribable nucleic acid construct comprising a first nucleotide sequence comprising a promoter operably linked to a homologous coding region of the target gene and a second nucleotide sequence comprising the homologous coding region, or a portion thereof, of the target gene, wherein the first and second nucleotide sequences are complementary to each other and the second nucleotide sequence is in reverse orientation relative to the first nucleotide sequence; and (b) inducing production of an interfering RNA encoded by the double-stranded transcribable nucleic acid construct by cultivating the filamentous fungal strain under conditions conducive for production of the interfering RNA; wherein the interfering RNA interacts with RNA transcripts of the target gene to reduce or eliminate exp
    Type: Application
    Filed: April 17, 2014
    Publication date: September 25, 2014
    Applicants: Novozymes A/S, Novozymes, Inc.
    Inventors: Howard Brody, Suchindra Maiyuran, Hiroaki Udagawa
  • Patent number: 8841101
    Abstract: Biomass (e.g., plant biomass, animal biomass, microbial, and municipal waste biomass) is processed to produce useful products, such as food products and amino acids.
    Type: Grant
    Filed: December 6, 2011
    Date of Patent: September 23, 2014
    Assignee: Xyleco, Inc.
    Inventor: Marshall Medoff
  • Patent number: 8835142
    Abstract: Biomass (e.g., plant biomass, animal biomass, microbial, and municipal waste biomass) is processed to produce useful products, such as food products and amino acids.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: September 16, 2014
    Assignee: Xyleco, Inc.
    Inventor: Marshall Medoff
  • Patent number: 8822189
    Abstract: Thermostable enzyme technology for algal bioconversion The present invention relates to thermostable enzyme systems suitable for use in the production of biofuels and bio-products from algae, and to a method of producing energy feedstocks, stocks, specifically (i) fermentable sugars and (ii) lipid fractions from algae, for the production of biofuels such as bioethanol, biobutanol and bio-oils or biodiesel, as well as other value-added biomolecules (e.g. proteins, peptides, oils, pigments, nucleic acids).
    Type: Grant
    Filed: February 8, 2011
    Date of Patent: September 2, 2014
    Assignees: AER Sustainable Energy Limited, National University of Ireland
    Inventors: Patrick Murray, Sara Fernandes, Maria Tuohy
  • Patent number: 8802408
    Abstract: The present invention relates to a process for preparing a nutritional, therapeutic or organoleptic product by growing non-recombinant yeast under aerobic conditions, in a medium that includes crude glycerol, as one possible carbon source to produce a yeast product. The yeast product can be processed to obtain such nutritional, therapeutic or organoleptic products as yeast paste, yeast metabolites, carbohydrates, proteins, functional proteins, nucleotides, yeast autolysates, yeast extract, yeast cell walls, beta-glucans, mannans or a product derived from a mineralized yeast product.
    Type: Grant
    Filed: January 16, 2009
    Date of Patent: August 12, 2014
    Assignee: Bio Processing Australia Pty Ltd.
    Inventors: Robin Fieldhouse, Donald Finlay MacLennan, David Graham MacLennan, Mary Elizabeth MacLennan
  • Patent number: 8802409
    Abstract: Oleaginous yeast strains are used to hydrolyze biomass (e.g. wheat straw) that has been pretreated using dilute acid, in order to produce lipids. The lipids may be used as feedstock for producing biofuels.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: August 12, 2014
    Assignee: Washington State University
    Inventors: Xiaochen Yu, Yubin Zheng, Shulin Chen
  • Publication number: 20140206058
    Abstract: Systems and methods for improving stillage are disclosed. Stillage may include either whole stillage or thin stillage. The system includes taking the stillage and placing it within a bioreactor with an inoculation of fungi. The fungi may include any of Aspergillus niger, Phanerochaete chrysosporium and Yarrowia lipolytica. The fungi and stillage broth is then subjected to fermentation which removes solubles and particulates from the stillage. The fungi generate a biomass material that may be collected and dried for use as a nutritional supplement or other purpose. The remaining liquid is a clarified, treated stillage suitable for a variety of downstream applications, including being used as a backset in an ethanol production facility.
    Type: Application
    Filed: March 8, 2012
    Publication date: July 24, 2014
    Applicant: POET RESEARCH, INC.
    Inventors: Jacob P. Tewalt, Stephen M. Lewis, Jason Alan Bootsma
  • Patent number: 8765404
    Abstract: Some aspects of this invention relate to methods useful for the conversion of a carbon source to a biofuel or biofuel precursor using engineered microbes. Some aspects of this invention relate to the discovery of a key regulator of lipid metabolism in microbes. Some aspects of this invention relate to engineered microbes for biofuel or biofuel precursor production.
    Type: Grant
    Filed: March 2, 2011
    Date of Patent: July 1, 2014
    Assignee: Massachusetts Institute of Technology
    Inventors: Gregory Stephanopoulos, Syed Hussain Imam Abidi
  • Patent number: 8759049
    Abstract: The present invention relates to a method for producing a fermentation product from a sugar hydrolysate. The method comprises fermenting the sugar hydrolysate in a fermentation system with yeast to produce a fermentation broth comprising a fermentation product; introducing acid and an oxidant, such as chlorine dioxide, to the fermentation system so as to expose microbial contaminants in the fermentation system at one or more stages to chlorine dioxide and a pH of less than 3.0; and recovering the fermentation product. In one example of the invention, a yeast slurry obtained from a yeast recycle step is treated with acid and the oxidant.
    Type: Grant
    Filed: February 22, 2011
    Date of Patent: June 24, 2014
    Assignee: Iogen Energy Corporation
    Inventors: Gary M. Pigeau, Jan-Maarten A. Geertman
  • Patent number: 8753844
    Abstract: Methods, compositions, and systems for overproducing ligninolytic enzymes from the basidiomycetous fungus are described herein. As described, the method can include incubating a fungal strain of Cerrena unicolor IBB 303 in a fermentation system having growth medium which includes lignocellulosic material and then cultivating the fungal strain in the fermentation system under conditions wherein the fungus expresses the ligninolytic enzymes. In some cases, the lignocellulosic material is mandarin peel, ethanol production residue, walnut pericarp, wheat bran, wheat straw, or banana peel.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: June 17, 2014
    Assignee: The Regents of The University of California
    Inventors: Vladimir Elisashvili, Eva Kachlishvili, Tamas Torok
  • Patent number: 8748141
    Abstract: The present invention relates to methods for producing high levels of alcohol during fermentation of plant material, and to the high alcohol beer produced. The method can include fractionating the plant material. The present invention also relates to methods for producing high protein distiller's dried grain from fermentation of plant material, and to the high protein distiller's dried grain produced. The method can include drying a co-product by ring drying, flash drying, or fluid bed drying. The present invention further relates to reduced stack emissions from drying distillation products from the production of ethanol.
    Type: Grant
    Filed: March 25, 2013
    Date of Patent: June 10, 2014
    Assignee: Poet Research, Inc.
    Inventors: Stephen M. Lewis, Shon Erron Van Hulzen
  • Publication number: 20140154769
    Abstract: A production system includes a structure configured to house a light-activated biological pathway. The production system further includes an optical filter attached to the structure. The optical filter is configured to receive light, to reflect a first portion of the received light, and to transmit a second portion of the received light, wherein the first portion has a different wavelength from the second portion. The production system is further configured to position the light-activated biological pathway to receive the second portion of the receive light.
    Type: Application
    Filed: December 3, 2013
    Publication date: June 5, 2014
    Applicant: Wave Tech, LLC
    Inventors: Matteo del Ninno, Jacob A. Bertrand
  • Patent number: 8735137
    Abstract: Disclosed herein are transformed Yarrowia lipolytica comprising an exogenous polynucleotide encoding a polypeptide having sucrose invertase activity. Also disclosed are methods of using the transformed Y. lipolytica.
    Type: Grant
    Filed: November 15, 2011
    Date of Patent: May 27, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventors: Seung-Pyo Hong, John E. Seip, Quinn Qun Zhu
  • Patent number: 8735563
    Abstract: The present invention relates to isolated polynucleotides having promoter activity the juse of the isolated polynucleotides for the procuction of a polypeptide. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the polynucleotides as well as methods of producing a desired polypeptide using the polypeptide having promoter activity.
    Type: Grant
    Filed: June 23, 2011
    Date of Patent: May 27, 2014
    Assignee: Novozymes A/S
    Inventors: Hiroshi Teramoto, Hiroaki Udagawa
  • Publication number: 20140141473
    Abstract: Yeast cell belonging to the genus Saccharomyces having introduced into its genome at least one xylA gene and at least one of each of araA, araB and araD genes and that is capable of consuming a mixed sugar mixture comprising glucose, xylose and arabinose, wherein the cell co-consumes glucose and arabinose, has genetic variations obtained during adaptive evolution and has a specific xylose consumption rate in the presence of glucose that is 0.25 g xylose/h, g DM or more.
    Type: Application
    Filed: April 20, 2012
    Publication date: May 22, 2014
    Applicant: DSM IP ASSETS B.V.
    Inventors: Paul Klaassen, Bianca Elisabeth Maria Gielesen, Gijsberdina Pieternella Van Suylekom, Panagiotis Sarantinopoulos, Wilbert Herman Marie Heijne, Aldo Greeve
  • Publication number: 20140127257
    Abstract: The invention relates to a method for producing a dermatologically active yeast extract, comprising the following steps: providing a preculture of the yeast cells, culturing the cells for at least fifteen minutes at a pH of 1.8-4, harvesting the cells and lysing the cells, and a yeast extract produced thereby and products comprising said yeast extract.
    Type: Application
    Filed: June 14, 2012
    Publication date: May 8, 2014
    Applicant: EVONIK DEGUSSA GMBH
    Inventors: Yvonne Schiemann, Mike Farwick, Thomas Haas, Mirja Wessel
  • Patent number: 8715979
    Abstract: It is an object of the present invention to provide a method of adjusting productivity of enzymes, in particular, amylolytic enzymes, plant fiber degradation enzymes and proteolytic enzymes in a filamentous fungus culture product, by controlling releasing rate of nutrients from the culture raw material into the culture system when a filamentous fungus culture product is produced by culturing filamentous fungi in liquid medium containing as the culture raw material at least one selected from the group consisting of cereals, beans, tubers, amaranthus and quinoa.
    Type: Grant
    Filed: September 5, 2006
    Date of Patent: May 6, 2014
    Assignee: Asahi Breweries, Ltd.
    Inventors: Toshikazu Sugimoto, Hiroshi Shoji
  • Patent number: 8715716
    Abstract: This invention provides methods and compositions for producing reduced cholesterol animal foodstuffs and products by feeding livestock and other food-producing animals with feed supplemented with microbial cultures containing hypocholesterolemic compounds produced by microorganisms comprising said microbial cultures. The invention provides low cholesterol poultry, eggs, meat, whole milk, and dairy products.
    Type: Grant
    Filed: May 29, 2002
    Date of Patent: May 6, 2014
    Assignee: Jinis Biopharmaceuticals Co.
    Inventors: Seong-Tshool Hong, Hyeon-Jin Kim, Dae-Kwon Lee, Won-Young Yang
  • Patent number: 8715963
    Abstract: Described is a method for increasing the N-glycosylation site occupancy of a therapeutic glycoprotein produced in recombinant host cells modified as described herein and genetically engineered to express the glycoprotein compared to the N-glycosylation site occupancy of the therapeutic glycoprotein produced in a recombinant host cell not modified as described herein. In particular, the method provides recombinant host cells that overexpress a heterologous single-subunit oligosaccharyltransferase, which in particular embodiments is capable of functionally suppressing the lethal phenotype of a mutation of at least one essential protein of the yeast oligosaccharyltransferase (OTase) complex, for example, the Leishmania major STT3D protein, in the presence of expression of the host cell genes encoding the endogenous OTase complex.
    Type: Grant
    Filed: February 23, 2011
    Date of Patent: May 6, 2014
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Natarajan Sethuraman, Byung-Kwon Choi, Bianka Prinz, Michael Meehl, Terrance Stadheim
  • Patent number: 8710205
    Abstract: The present invention relates to a transcription factor found in filamentous fungi, especially in Aspergillii, DNA sequences coding for said factor, its transformation into and expression in fungal host organisms, and the use of said factor in such hosts for increasing the expression of a polypeptide of interest being produced by said host.
    Type: Grant
    Filed: February 20, 2003
    Date of Patent: April 29, 2014
    Assignee: Novozymes A/S
    Inventor: Tove Christensen
  • Patent number: 8703456
    Abstract: The present invention discloses a method for manufacturing red mold dioscorea, and the method comprises the following steps: washing and cutting a fresh dioscorea into pieces with a specific dimension; drying the pieces of the fresh dioscorea for making the dried dioscorea contain a specific water content and a specific sulfur content; adding some water with an appropriate ratio to fresh dioscorea or dried dioscorea; sterilizing the dioscorea; after the dioscorea being cooled down, inoculating the dioscorea with Monascus species; cultivating the dioscorea with an appropriate temperature, an appropriate humidity and an appropriate shacking frequency for an appropriate time period; and drying the cultivated red mold dioscorea with an appropriate water content.
    Type: Grant
    Filed: July 25, 2013
    Date of Patent: April 22, 2014
    Assignee: Sunway Biotech Co., Ltd.
    Inventors: Tzu-Ming Pan, Chun-Lin Lee
  • Patent number: 8691554
    Abstract: The present invention relates to a method for producing a L-arabinose utilizing yeast strain for the production of ethanol, whereby a yeast strain is modified by introducing and expressing araA gene (L-arabinose isomerase), araB gene (L-ribulokinase D121-N) and araD gene (L-ribulose-5-P 4-epimerase) and carrying additional mutations in its genome or overexpressing a TAL1 (transaldolase) gene, enabling it to consume L-arabinose, to use it as the only carbon source, and to produce ethanol, as well as a method for producing ethanol using such a modified strain.
    Type: Grant
    Filed: December 1, 2008
    Date of Patent: April 8, 2014
    Assignee: Scandinavian Technology Group AB
    Inventors: Eckhard Boles, Jessica Becker
  • Patent number: 8691194
    Abstract: Methods of producing lignin peroxidase are provided. Also provided are methods and cosmetic compositions suitable for skin and hair lightening as well as kits and an article-of manufacturing including active ingredients for skin and hair lightening.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: April 8, 2014
    Assignee: R.B.T (Rakuto Bio Technologies) Ltd.
    Inventors: Paula Belinky, Haim Lasser, Carlos Dosoretz
  • Publication number: 20140086878
    Abstract: Disclosed herein is an isolated Muscodor albus strain producing volatile organic compounds such as aristolene, 3-octanone and/or acetic acid ester, as well as cultures of said strain and compositions, metabolites and volatiles derived from said strain or culture as well as methods of obtaining said compositions, metabolites and volatiles and their methods of use for controlling pests. Also disclosed are artificial compositions having the same components and uses as the volatiles derived from the strain. A method for capturing and sampling the volatiles is also disclosed.
    Type: Application
    Filed: March 15, 2013
    Publication date: March 27, 2014
    Applicant: MARRONE BIO INNOVATIONS, INC
    Inventors: Gary Strobel, Vu Phong Bui, Hai Su, Phyllis Himmel, Pamela Marrone, Lijuan Xing