Incubator Patents (Class 435/303.1)
-
Patent number: 11441115Abstract: When detachment of a cell sheet from a culture dish has started at an unintended timing, immediately detach the cell sheet from the culture dish while preventing generation of wrinkles and the like in the cell sheet. A cell culture device captures an image of cells in the culture dish, and controls a cooling mechanism and a shaking mechanism based on the image so as to shake the cells while cooling them.Type: GrantFiled: March 12, 2019Date of Patent: September 13, 2022Assignees: DAI NIPPON PRINTING CO., LTD., OSAKA UNIVERSITY, TERUMO KABUSHIKI KAISHAInventors: Taro Nagai, Yoshiki Sawa, Shigeru Miyagawa, Kenji Oyama
-
Patent number: 11430927Abstract: A semiconductor light-emitting device includes a semiconductor light-emitting element that emits ultraviolet radiation at a wavelength of not more than 360 nm, a package substrate that houses the semiconductor light-emitting element, a thin film layer that is formed on the package substrate and has a predetermined thickness, and a sealing material made of a silicone resin which is provided on the thin film layer so as to have a lens shape and seals the semiconductor light-emitting element, in which the sealing material forms a contact angle of not less than 15° with the thin film layer.Type: GrantFiled: April 10, 2020Date of Patent: August 30, 2022Assignee: Nikkiso Co., Ltd.Inventors: Shuichiro Yamamoto, Hiroyasu Ichinokura
-
Patent number: 11377653Abstract: The invention relates to a method for extracting DNA, comprising the steps of: providing (400) a lysate (11) in a sample vessel (1), feeding (500) an DNA absorbing substance (15) to the sample vessel (1), closing (700) the sample vessel (1) by means of a wash filter element (3), feeding (600) a wash fluid (12) to the sample vessel (1) through the wash filter element (3), and discharging (700) the wash fluid (12) from the sample vessel (1) through the wash filter element (3). The DNA absorbing substance can be retained from the wash filter element (3).Type: GrantFiled: November 8, 2017Date of Patent: July 5, 2022Assignee: Füll Process SAInventors: Joel Johannes Frank, Thomas Brinz
-
Patent number: 11351553Abstract: Provided is a heating mechanism for a biochemical reaction device, including: a heat-conducting body including: at least one accommodating groove each including a chamber and an opening communicating with the chamber; a clamping hole, in communication with the opening and for inserting a reaction tube; and at least one heat-conducting block, movably disposed in the chamber and having one end connected with an elastic element and another opposite end provided with an abutting portion, the elastic element enabling the abutting portion of the heat-conducting block to protrude from the opening and locate in the clamping hole; and a temperature control element connected to the heat-conducting body for heating and regulating a temperature of the heat-conducting block.Type: GrantFiled: September 19, 2017Date of Patent: June 7, 2022Assignee: GENEREACH BIOTECHNOLOGY CORP.Inventors: Chun-Ming Lee, Ching-Ko Lin, Yun-Lung Tsai, Pei-Yu Lee, Chen Su, Hsiao-Fen Chang, Fu-Chun Li
-
Patent number: 11344886Abstract: A heater for a microfluidic test card is disclosed herein. In a general example embodiment, a test card for analyzing a fluid sample includes at least one substrate layer including a microchannel extending through at least a portion of one of the substrate layers, and a printed substrate layer that is bonded to or printed on one substrate layer of the at least one substrate layer. The printed substrate layer includes a heater printed on the printed substrate layer so as to align with at least a portion of the microchannel. The heater includes two electrodes aligned on opposite sides of the microchannel, and a plurality of heater bars electrically connecting the two electrodes. The plurality of heater bars includes a central heater bar disposed between outer heater bars.Type: GrantFiled: January 24, 2020Date of Patent: May 31, 2022Assignee: FluxErgy, LLCInventors: Ashwin Raghunathan, Steve Lee, Ryan Alan Revilla, Tej Rushikesh Patel
-
Patent number: 11338296Abstract: There is described a variable-temperature reactor for hosting a predetermined reaction therein. The reactor comprises a reaction cell, a heater, and a heat sink. The reaction cell has a reaction volume with thickness Hv and width Wv where Wv>4Hv and is defined by faces with one of the larger area faces of the reaction volume being bounded by an outer wall with thickness Hw. The heater is in contact with the said outer wall. The heater comprises a heat-generating heater element located on the face closer to the reaction volume and a heater support on the opposite face. The heater support is in contact with a heat sink, such that the heater support provides a thermal resistance RT between the heater element and the heat sink. The reactor, when filled with reagents having thermal diffusion coefficient Dv has a diffusion time tv, in the thickness direction, tv=Hv2/Dv. tv is less than the reaction time constant tR.Type: GrantFiled: May 19, 2021Date of Patent: May 24, 2022Assignee: Lex Diagnostics Ltd.Inventors: Justin Buckland, Tom Jellicoe, Alex Stokoe, Amaru Araya-Williams
-
Patent number: 11299702Abstract: The present invention is directed to compositions, tools, methods and devices to culture microorganisms and, in particular, to compositions, tools, methods and devices for the detection of microorganisms in biological samples.Type: GrantFiled: June 11, 2018Date of Patent: April 12, 2022Assignee: Vax-Immune, LLCInventors: Bhairavi Parikh, James Stone
-
Patent number: 11193099Abstract: Provided is a highly reliable temperature adjustment apparatus which uses a temperature adjustment element and quantitatively evaluates the temperature adjustment performance of the temperature adjustment element. The temperature adjustment apparatus is provided with: a temperature adjustment element; one or more temperature detection elements provided near the temperature adjustment element; a calculation unit for calculating the output of the temperature detection element; and a display unit for displaying at least one of a time calculated by the calculation unit as a time at which the temperature adjustment performance of the temperature adjustment is predicted to be below a desired level, the number of operations and the time of current conduction or a warning based on the result of calculation.Type: GrantFiled: July 27, 2016Date of Patent: December 7, 2021Assignee: HITACHI HIGH-TECH CORPORATIONInventors: Wataru Sato, Nobuyuki Isoshima, Kohshi Maeda, Daisuke Morishima
-
Patent number: 11029504Abstract: Disclosed are a window apparatus for obtaining a microscopic image of in vivo breast tissue and a method for using the window apparatus to obtain cell-level and molecular-level microscopic images of in vivo breast tissue while maintaining the biological environment of the in vivo breast tissue. In one embodiment, a window apparatus comprises a first chamber having a ring structure with an open window on the center, and a cover glass disposed on the upper part and breast tissue placed on the lower part; a second chamber having an opening window on the center coupled to the first chamber to support the breast tissue; and a chamber holder for fixing the first and second chambers having a tilting mount placing unit with the tilting mount placed to have the cover glass and an object lens of a confocal microscope system stay parallel to each other.Type: GrantFiled: August 31, 2016Date of Patent: June 8, 2021Assignees: MEDICINAL BIOCONVERGENCE RESEARCH CENTER, KOREA ADVANCED INSTITUTE OF SCIENCE AND TECHNOLOGYInventors: Pil Han Kim, Yeseul Kim, Inwon Park, Sunghoon Kim
-
Patent number: 10967379Abstract: An incubator stand for holding a plurality of incubators in a stacked arrangement, the incubator stand comprising: a stand base; a shaft element upstanding from the stand base; and a plurality of incubator bases rotatably received on the shaft element, each incubator base forming a support for or forming part of an incubator. A stop element is also provided which prevents or limits angular displacement of each incubator base, so that each incubator base can be pivoted out from a stack of said incubator bases to in use access an incubator associated therewith without causing the stack to topple. An incubator docking system and incubator system for transferring incubators between different environmental conditions are also provided.Type: GrantFiled: September 21, 2017Date of Patent: April 6, 2021Assignee: Planer LimitedInventors: Stephen James Butler, Stephen Mark Joseph Wilkins
-
Patent number: 10266801Abstract: According to the present invention, a simple structure can be used to achieve reliable liquid delivery with no residual air, and simple attachment/detachment of a culture vessel, and thus a closed-system cell culture device exhibiting high reliability can be constructed at low cost. In the present invention, a liquid is supplied or discharged while a culture vessel is in an inclined state. The culture vessel is provided with two flow paths, namely an intake flow path and a discharge flow path, which connect a culture chamber and a connection member. Points where the flow paths join with the culture chamber are respectively configured as an intake port and a discharge port. The discharge port is provided in the position nearest to the axis of inclination of the culture vessel. The intake port is provided in a plane projected from a vertical plane including the aforementioned axis of inclination.Type: GrantFiled: December 24, 2014Date of Patent: April 23, 2019Assignee: Hitachi High-Technologies CorporationInventors: Akihiro Shimase, Kazumichi Imai, Eiichiro Takada, Sadamitsu Aso
-
Patent number: 10087410Abstract: In culture vessels for producing biological samples, it is possible to prevent decrease in a temperature at the time of taking out the culture vessels from an automatic culture apparatus and during delivery of the culture vessels which have been taken out from the automatic culture apparatus. This invention includes a culture vessel 201 holding a biological sample therein, a heat storage portion 701 holding the culture vessel, and a heat insulation portion 601 surrounding the heat storage portion. The whole circumference or a part of 609, 610, and 611 of the heat insulation portion 601 is removable depending on an arrangement environment.Type: GrantFiled: March 25, 2013Date of Patent: October 2, 2018Assignee: Hitachi, Ltd.Inventors: Takayuki Nozaki, Guangbin Zhou, Masaharu Kiyama, Taku Nakamura, Shizu Takeda, Ryota Nakajima, Masakazu Sugaya, Koichi Terada
-
Patent number: 10023834Abstract: A culture apparatus that cultivates a culture, which includes an outer case, an inner case configured with metal plates inside the outer case, a heater outside the inner case, and a door, which opens/closes an opening formed in front faces of the inner cases, includes: shelf rests on which side parts of a bottom plate of a shelf are to be placed, the shelf rests formed by pressing on side plates of the inner case; and a heat transfer sheet attached to an outer surface of at least one of the side plates and configured to transfer heat of the heater to the inner case, the heat transfer sheet including slits, intermittently formed, to bend the sheet to depressions of the outer surface of the side plate at positions corresponding to the shelf rests, after the heat transfer sheet is attached to the outer surface.Type: GrantFiled: March 9, 2016Date of Patent: July 17, 2018Assignee: PHC Holdings CorporationInventor: Tomoyoshi Tokumaru
-
Patent number: 9927605Abstract: A certain material irregularly expressed in an observation area is effectively observed. An observing apparatus includes a first observing unit performing a time lapse shooting of a predetermined observation area, a first discriminating unit discriminating whether or not a first material is expressed in the observation area based on an image obtained by the first observing unit, and a second observing unit starting a time lapse shooting relating to a part where the first material is expressed at a timing when the first material is expressed in the observation area, in which a shooting frequency of the time lapse shooting by the second observing unit is higher than a shooting frequency of the time lapse shooting by the first observing unit.Type: GrantFiled: August 2, 2012Date of Patent: March 27, 2018Assignee: NIKON CORPORATIONInventor: Hiroaki Kii
-
Patent number: 9803168Abstract: An incubator 1 includes a cultivating chamber 4 for cultivating culture in a plurality of containers 3 and a supply device 5 provided outside the cultivating chamber 4 and supplying steam into the cultivating chamber 4 for humidification. The supply device 5 includes a supply chamber 5A in which a tray 42 for reserving water is accommodated and an ultrasonic atomizing device 43 for atomizing water. The water in the tray 42 is easily made into steam by the ultrasonic atomizing device 43, passes through an HEPA filter 45 provided in an opening portion 5B and is supplied into the circulation passage 37 of the cultivating chamber 4.Type: GrantFiled: January 25, 2016Date of Patent: October 31, 2017Assignee: SHIBUYA CORPORATIONInventors: Tetsuya Nishimura, Masaomi Shioya, Katsuki Hashimoto
-
Patent number: 9789459Abstract: A nucleic acid amplification reaction vessel includes a first inner wall, and a second inner wall that is arranged opposite to the first inner wall, in which a distance between the first inner wall and the second inner wall is a length in which a nucleic acid amplification reaction solution comes into contact with both the first inner wall and the second inner wall when the nucleic acid amplification reaction solution is poured.Type: GrantFiled: February 18, 2015Date of Patent: October 17, 2017Assignee: Seiko Epson CorporationInventor: Toshiro Murayama
-
Patent number: 9657259Abstract: The present invention relates to a cell culture flask for culturing a cell using a culture solution, particularly to a cell culture flask for culturing a cell without any contamination, to automatically introduce and discharge the culture solution or gases and to be stacked in turn, and a cell culture device having the same. The present invention provides a cell culture flask comprising a culture space; one or more culture solution inlet ports; one or more culture solution outlet ports; and one or more gas inlet ports, wherein the cell culture flask is made airtight and formed of a transparent material so that a user can see an internal portion of the cell culture flask, and a cell culture device having the same.Type: GrantFiled: May 1, 2015Date of Patent: May 23, 2017Assignee: Corestem Co., Ltd.Inventors: Kyung Suk Kim, Jai Jun Choung
-
Patent number: 9617508Abstract: A culture container includes a first transparent member being capable of keeping a predetermined temperature; a second transparent member facing to the first transparent member; a housing member to which the first transparent member and the second transparent member are adhered forming a culture space being capable of housing a well plate together with the first transparent member and the second transparent member; and a sealing member for sealing a liquid injected into the culture space between the first transparent member and the housing member.Type: GrantFiled: September 16, 2013Date of Patent: April 11, 2017Assignee: Sony CorporationInventors: Eiichi Tanaka, Shinsuke Haga, Shin Hasegawa, Tatsuya Minakawa, Suguru Dowaki, Eriko Matsui
-
Patent number: 9588069Abstract: The present disclosure provides apparatus, systems, and methods for conducting rapid, accurate, and consistent heated amplifications and/or thermal melt analyses.Type: GrantFiled: July 31, 2013Date of Patent: March 7, 2017Assignee: GEN-PROBE INCORPORATEDInventors: David Opalsky, Norbert D. Hagen, Rolf Silbert, Sean Siyao Chiu, Haitao Li
-
Patent number: 9579657Abstract: This disclosure provides a thermocycler system for performing polymerase chain reaction. The thermocycler system can comprise a plurality of bus bars, a microplate, a clamp and a current application device in electrical communication with the bus bars. The clamp is suitable for forming a low resistance electrical connection between the microplate and an individual bus bar of the plurality of bus bars. In some instances, the clamp includes a spring-loaded pivot and a ram. Operation of the clamp forces the microplate into contact with the bus bar, or vice versa, to provide an electrical contact between the microplate and the bus bar. The microplate can comprise a substrate having a metallic material for heating samples, and a barrier layer disposed adjacent to the substrate.Type: GrantFiled: May 23, 2013Date of Patent: February 28, 2017Assignee: BJS IP LTDInventors: Nicholas Burroughs, Richard Lewis, Ian Gunter
-
Patent number: 9558912Abstract: The present invention aims at providing an ion milling apparatus for emitting an ion beam to a sample to process the sample and capable of controlling the temperature of the sample with high accuracy regardless of deformation or the like of the sample being irradiated with the ion beam, and proposes an ion milling apparatus including at least one of a shield holding member for supporting a shield for shielding the sample from the ion beam while exposing a part of the sample to the ion beam; a shifting mechanism for shifting a surface of the sample stand in contact with the sample following deformation of the sample during irradiation with the ion beam, the shifting mechanism having a temperature control mechanism for controlling temperature of at least one of the shield holding member and the sample stand; and a sample holding member disposed between the shield and the sample, the sample holding member deforming following deformation of the sample during irradiation with the ion beam, for example.Type: GrantFiled: April 28, 2014Date of Patent: January 31, 2017Assignee: Hitachi High-Technologies CorporationInventors: Asako Kaneko, Hisayuki Takasu, Hirobumi Mutou, Toru Iwaya, Mami Konomi
-
Patent number: 9492797Abstract: Method of detection for droplet-based assays. In an exemplary method, an open end of a channel network may be placed into an emulsion. Droplets of the emulsion may be driven along a flow path from the open end, through a confluence region where a dilution fluid is introduced into the flow path from at least one dilution inlet channel to increase an average distance between droplets, and through an examination region disposed downstream of the confluence region. Light may be detected from the examination region as droplets pass through. The channel network may include a droplet inlet channel that meets the at least one dilution inlet channel at the confluence region. The droplet inlet channel may form a tapered region that is sized such that droplets leave the tapered region in single file.Type: GrantFiled: January 20, 2014Date of Patent: November 15, 2016Assignee: Bio-Rad Laboratories, Inc.Inventors: Anthony J. Makarewicz, Amy L. Hiddessen
-
Patent number: 9464266Abstract: In order to enable the inside of a constant-temperature device to be sterilized using sterilization gas and prevent contamination during incubation, even when provided with an atmosphere measuring means having a CO2 sensor and an oxygen concentration sensor, a sensor unit (100) is arranged inside or close to an incubation chamber, and the internal atmosphere is measured by sucking-in the atmosphere of the incubation chamber (2) by means of an air-flow generation means (20). Furthermore, high-precision filters (23, 24) are arranged in the flow channel through which the atmosphere within the incubation chamber (2) is taken-in/discharged, preventing bacteria and/or cells from flowing in, and also preventing the diffusion of sterilization gas to the inside of a sensor unit (100) during sterilization.Type: GrantFiled: June 11, 2012Date of Patent: October 11, 2016Assignee: RORZE CORPORATIONInventors: Seishi Yamashita, Tomonori Miwada
-
Patent number: 9115336Abstract: Described are methods, cell growth substrates, and devices that are useful in preparing cell-containing graft materials for administration to patients. Tubular passages can be defined in cell growth substrates to promote distribution of cells into the substrates. Also described are methods and devices for preparing cell-seeded graft compositions, methods and devices for preconditioning cell growth substrates prior to application of cells, and cell seeded grafts having novel substrates, and uses thereof.Type: GrantFiled: May 25, 2011Date of Patent: August 25, 2015Assignees: Muffin Incorporated, Cook Biotech IncorporatedInventors: Michael C. Hiles, Chad E. Johnson, Neal E. Fearnot, Thomas Payne, Ronald Jankowski
-
Patent number: 9040292Abstract: Provided is constant-temperature equipment wherein maintenance is facilitated with the least failure, and highly reliable culturing and testing can be carried out. Mechanical and electrical structures are eliminated from the inside of a temperature-controlled chamber (15) by using a non-contact magnetic arrangement as a drive transmission for a sample table (5) and a sample table drive (6), thus reducing failure and enhancing maintainability. In addition, a conveyor (11) is provided with a pass box to minimize change in atmosphere during conveying. The sample table drive (6) and the conveyor (11) can be attached removably to the temperature-controlled chamber (15) to permit sterilization at high temperature.Type: GrantFiled: June 30, 2009Date of Patent: May 26, 2015Assignee: Rorze CorporationInventor: Seishi Yamashita
-
Patent number: 9040288Abstract: This patent application describes an integrated apparatus for processing polynucleotide-containing samples, and for providing a diagnostic result thereon. The apparatus is configured to receive a microfluidic cartridge that contains reagents and a network for processing a sample. Also described are methods of using the apparatus.Type: GrantFiled: March 26, 2007Date of Patent: May 26, 2015Assignee: HandyLab, Inc.Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Betty Wu, Nikhil Phadke, Gene Parunak, Jeff Williams
-
Patent number: 9040291Abstract: Constant-temperature equipment wherein mechanical and electrical structures are eliminated from the inside of a temperature-controlled chamber (15) by using a non-contact magnetic arrangement as a drive transmission for a sample table (5) and a sample table drive mechanism (6), thus reducing failure and enhancing maintainability. In addition, a conveyance mechanism (11) is provided with a pass box adjacent which sliding shielding plates (9) are stacked vertically, and the shielding plates (9) are linked with the conveyance mechanism (11) by an engaging mechanism provided in the conveyance mechanism (11) to allow the plates to be opened and closed by a travel mechanism (12), thus simplifying the structure and minimizing change in atmosphere during conveying. The sample table drive mechanism (6) and the conveyance mechanism (11) can be attached removably to the temperature-controlled chamber (15) to permit sterilization at high temperature.Type: GrantFiled: June 30, 2009Date of Patent: May 26, 2015Assignee: Rorze CorporationInventor: Seishi Yamashita
-
Publication number: 20150140570Abstract: An incubator including a container having an interior chamber capable of receiving a sample holder having samples, a lower heated surface disposed within the interior chamber of the container, and a movement mechanism coupled to the container and the lower heated surface. In one embodiment, the movement mechanism is configured to move the lower heated surface to a position in which the lower heated surface essentially contacts the sample holder. A method of rapidly heating and incubating a sample for biochemical or immunological testing is further disclosed.Type: ApplicationFiled: May 28, 2013Publication date: May 21, 2015Inventors: Haojun Fu, Daniel M. Mueth, Sergio O. Guevara, Neil Rosenbaum
-
Patent number: 9034635Abstract: A thermocycler apparatus and method for rapidly performing the PCR process employs at least two thermoelectric modules which are in substantial spatial opposition with an interior space present between opposing modules. One or multiple sample vessels are placed in between the modules such that the vessels are subjected to temperature cycling by the modules. The sample vessels have a minimal internal dimension that is substantially perpendicular to the modules that facilitates rapid temperature cycling. In embodiments of the invention the sample vessels may be deformable between: a) a shape having a wide mouth to facilitate filling and removing of sample fluids from the vessel, and b) a shape which is thinner for conforming to the sample cavity or interior space between the thermoelectric modules of the thermocycler for more rapid heat transfer.Type: GrantFiled: February 19, 2009Date of Patent: May 19, 2015Assignee: Streck, Inc.Inventors: Joel R. Termaat, Hendrik J. Viljoen, Scott E. Whitney
-
Publication number: 20150118745Abstract: A cell culture system having a cell culture vessel, a composition controlling fluid storage vessel, a culture fluid composition controlling means having an inlet and an outlet for a cell culture fluid, an inlet-connected fluid feeding circuit from the cell culture vessel to the inlet of the culture fluid composition controlling means, an outlet-connected fluid feeding circuit from the cell culture vessel to the outlet of the culture fluid composition controlling means, a means which perfuses the cell culture fluid from the inlet-connected fluid feeding circuit to the outlet-connected fluid feeding circuit through the culture fluid composition controlling means, and a means which controls the amount of fluid in the cell culture vessel, in which compositions of the cell culture fluid in the cell culture vessel and compositions of the composition controlling fluid in the composition controlling fluid storage vessel can be controlled in a continuous manner.Type: ApplicationFiled: April 24, 2013Publication date: April 30, 2015Applicants: ASAHI KASEI KABUSHIKI KAISHA, TOKYO WOMEN'S MEDICAL UNIVERSITYInventors: Ushio Iwamoto, Michi Sato, Kanako Konishi, Katsuhisa Matsuura, Tatsuya Shimizu, Teruo Okano
-
Patent number: 9012211Abstract: A harvested sample preparation system includes an operation isolator 3 in which aseptic manipulation is executed, a harvested sample preparation personal box 4 which can be connected with the operation isolator 3 and a storage 5 that stores a plurality of harvested sample preparation personal boxes 4. The harvested sample preparation personal box 4 includes a first housing chamber 4Aa and a second housing chamber 4Ab, and a fluid appropriate for cell culturing is supplied to the first housing chamber 4Aa from a fluid supply pipe 16 included by the storage 5 while cooling fluid is supplied to the second housing chamber 4Ab from a cooling fluid supply pipe 18. The harvested sample preparation system that prevents mix-up and cross-contamination with a simple configuration can be provided.Type: GrantFiled: June 22, 2010Date of Patent: April 21, 2015Assignees: Cellseed Inc., Shibuya Kogyo Co., Ltd.Inventors: Manabu Mizutani, Yoshiko Nohmi, Kenji Yoneda
-
Patent number: 9012208Abstract: A self-contained apparatus for isolating nucleic acid, cell lysates and cell suspensions from unprocessed samples apparatus, to be used with an instrument, includes at least one input, and: (i) a macrofluidic component, including a chamber for receiving an unprocessed sample from a collection device and at least one filled liquid purification reagent storage reservoir; and (ii) a microfluidic component in communication with the macrofluidic component through at least one microfluidic element, the microfluidic component further comprising at least one nucleic acid purification matrix; and (iii) at least one interface port to a drive mechanism on the instrument for driving said liquid purification reagent, through the microfluidic element and the nucleic acid purification matrix, wherein the only inputs to the apparatus are through the chamber and the interface port to the drive mechanism.Type: GrantFiled: February 3, 2010Date of Patent: April 21, 2015Assignee: NetBio, Inc.Inventors: Richard F. Selden, Eugene Tan
-
Publication number: 20150104859Abstract: A system for fast, accurate and inexpensive thermal cycling is disclosed including a set of thermally conductive plates that are maintained in a fixed spatial relationship to each other, and separated from each other by a thermal insulating space. A hole having a size approximately equal to a size of a desired test sample is formed through the set of thermally conductive plates. The test sample is placed in the hole and moved back and forth between the different temperature plates, to the desired temperature locations for desired time periods, in a pattern that is determined by the user, and repeated as many times as needed for the specific process.Type: ApplicationFiled: October 11, 2013Publication date: April 16, 2015Inventor: Benjamin Albert Suhl
-
Patent number: 8993237Abstract: A thermal cycling device for performing nucleic acid amplification on a plurality of biological samples positioned in a sample well tray. The thermal cycling device includes a sample block assembly, an optical detection system, and a sample well tray holder configured to hold the sample well tray. The sample block assembly is adapted for translation between a first position permitting the movement of the sample well tray into alignment with sample block assembly, and a second position, upward relative to the first position, where the sample block assembly contacts the sample well tray. A method of performing nucleic acid amplification on a plurality of biological samples positioned in a sample well tray in a thermal cycling device is also provided.Type: GrantFiled: September 28, 2011Date of Patent: March 31, 2015Assignee: Applied Biosystems, LLCInventor: Donald R. Sandell
-
Patent number: 8986982Abstract: A thermal cycle system and method suitable for mass production of DNA comprising a temperature control body having at least two sectors. Each sector has at least one heater, cooler, or other means for changing temperature. A path traverses the sectors in a cyclical fashion. In use, a piece of tubing or other means for conveying is placed along the path and a reaction mixture is pumped or otherwise moved along the path such that the reaction mixture is repetitively heated or cooled to varying temperatures as the reaction mixture cyclically traverses the sectors. The reaction mixture thereby reacts to form a product. In particular, polymerase chain reaction reactants may continuously be pumped through the tubing to amplify DNA. The temperature control body is preferably a single aluminum cylinder with a grooved channel circling around its exterior surface, and preferably has wedge-shaped or pie-shaped sectors separated by a thermal barrier.Type: GrantFiled: September 19, 2012Date of Patent: March 24, 2015Assignee: Marshall University Research CorporationInventors: Derek A. Gregg, Elizabeth E. Murray, Michael L. Norton, Justin T. Swick, Herbert Tesser
-
Publication number: 20150072390Abstract: A system for fermentation of biomass is disclosed. The system comprises a method for producing a fermentation product in a fermentation system from biomass that has been pre-treated and separated into a first component and a second component. The method comprises the steps of supplying the first component to the fermentation system; providing an ethanologen to the fermentation system; maintaining the first component and ethanologen in the fermentation system; and recovering the fermentation product from the fermentation system. A fermentation system configured to produce a fermentation product from biomass that has been pre-treated and separated into a first component and a second component is disclosed. The system comprises a first vessel configured to receive the first component and an ethanologen and a second vessel configured to propagate the ethanologen for supply to the first vessel. A biorefinery for producing a fermentation product from biomass is also disclosed.Type: ApplicationFiled: August 21, 2014Publication date: March 12, 2015Inventors: Neelakantam V. Narendranath, David Charles Carlson
-
Publication number: 20150072401Abstract: In a closed system culture vessel to be used in an automated culture apparatus, some of the ports perform both liquid supply and gas supply functions. Culture medium is thereby made to flow always in one direction. The culture vessel is also configured so that, in the complete culture medium exchange process and the effluent recovery process for analyzing culture medium components, waste liquid medium does not get mixed into fresh culture medium.Type: ApplicationFiled: March 29, 2012Publication date: March 12, 2015Inventors: Takayuki Nozaki, Guangbin Zhou, Ryota Nakajima, Shizu Matsuoka, Toyoshige Kobayashi, Naoko Senda
-
Publication number: 20150064775Abstract: A random access, high-throughput system and method for preparing a biological sample for polymerase chain reaction (PCR) testing are disclosed. The system includes a nucleic acid isolation/purification apparatus and a PCR apparatus. The nucleic acid isolation/purification apparatus magnetically captures nucleic acid (NA) solids from the biological sample and then suspends the NA in elution buffer solution. The PCR testing apparatus provides multiple cycles of the denaturing, annealing, and elongating thermal cycles. More particularly, the PCR testing apparatus includes a multi-vessel thermal cycler array that has a plurality of single-vessel thermal cyclers that is each individually-thermally-controllable so that adjacent single-vessel thermal cyclers can be heated or cooled to different temperatures corresponding to the different thermal cycles of the respective PCR testing process.Type: ApplicationFiled: October 31, 2014Publication date: March 5, 2015Applicant: Siemens Healthcare Diagnostics Inc.Inventors: Robert Adolfsen, Nicolae Dumitrescu, Michael Avdenko, Dario Svenjak
-
Patent number: 8969050Abstract: Methods of producing renewable materials may include consuming a fermentation feedstock with a fermentation organism to produce a renewable material in fermentation broth; water may then be separated from the feedstock or broth using one or more phase separations, or the renewable material may be concentrated from the feedstock or broth using one or more phase separations. Methods of producing biofuel components may include consuming a lignocellulosic or sugar fermentation feedstock with a fermentation organism to produce either ethanol or butanol in fermentation broth; cooling the feedstock or broth to solidify at least some water therein; and separating the solidified water from the feedstock or broth using a solid-liquid phase separation.Type: GrantFiled: November 21, 2012Date of Patent: March 3, 2015Assignee: BP Corporation North America Inc.Inventors: Glen Austin, Binita X. Bhattacharjee, Leslie W. Bolton, Jacob Borden, Martin E. Carrera, Amit A. Gokhale, Chris Horler, Aidan Hurley, Eric T. Mack
-
Publication number: 20150056692Abstract: The invention describes a novel spouted bed bioreactor system (SBBS) for the removal of Benzene, Toluene, Ethyl-benzene, o-,m-,p-Xylene (BTEX) from a contaminated air stream. Organic-degrading bacteria, Pseudomonas Putida, were immobilized in Polyvinyl Alcohol (PVA) matrices and utilized to degrade the BTEX in a specially-designed bioreactor system. The performance of the reactor system for the continuous biodegradation of BTEX in a contaminated air stream at different conditions was optimized.Type: ApplicationFiled: August 26, 2013Publication date: February 26, 2015Applicant: UNITED ARAB EMIRATES UNIVERSITYInventors: Muftah H. El-Naas, Janice Arriesgado Acio, Ayat El Telib El Tayeb Hassan
-
Patent number: 8962306Abstract: The invention relates to a device for thermal cycling of biological samples, a heat sink used in such a device and a method. The heat sink comprises a base plate designed to fit in a good thermal contact against a generally planar thermoelectric element included in the device, and a plurality of heat transfer elements projecting away from the base plate. According to the invention the heat transfer elements of the heat sink and arranged in a non-parallel configuration with respect to each other for keeping the temperature of the base plate of the heat sink spatially uniform during thermal cycling.Type: GrantFiled: September 8, 2006Date of Patent: February 24, 2015Assignee: Thermo Fisher Scientific OyInventors: David Cohen, Sakari Viitamaki
-
Patent number: 8962308Abstract: Systems and methods for processing and analyzing samples are disclosed. The system may process samples, such as biological fluids, using assay cartridges which can be processed at different processing locations. In some cases, the system can be used for PCR processing. The different processing locations may include a preparation location where samples can be prepared and an analysis location where samples can be analyzed. To assist with the preparation of samples, the system may also include a number of processing stations which may include processing lanes. During the analysis of samples, in some cases, thermal cycler modules and an appropriate optical detection system can be used to detect the presence or absence of certain nucleic acid sequences in the samples. The system can be used to accurately and rapidly process samples.Type: GrantFiled: January 23, 2013Date of Patent: February 24, 2015Assignee: Beckman Coulter, Inc.Inventors: Brian D. Wilson, Sami D. Alaruri, Matthew S. Davis, Matthew D. Erickson, Alan N. Johnson, Garrick A. Maurer, Mark F. Sauerburger, Daniel R. Schmidt, Joshua D. Wiltsie, Thomas M. Stachelek, David L. Yang
-
Patent number: 8962309Abstract: The invention relates to an apparatus for the conversion into biogas of fermentation stillage arising as a waste product of ethanol production. This apparatus comprises a separation unit for the separation of the fermentation stillage into a thin fraction and a thick fraction, at least one biogas reactor for fermenting the thin fraction and/or the thick fraction, and a storage tank. According to a first aspect of the present invention, two biogas reactors are provided, to separate the thin fraction and the thick fraction independently of one another. According to a second aspect of the present invention, a nitrogen sink is provided downstream of the storage tank to provide, from the reactor effluent, process water with low or no nitrogen content which may then be fed to the reactor and/or the bioethanol plant. According to a third aspect the invention is characterized by a combination of a single-stage separation unit and a heavy-duty biogas reactor with a pore-free flow path.Type: GrantFiled: December 17, 2008Date of Patent: February 24, 2015Assignee: Agraferm Technologies AGInventor: Hans Friedmann
-
Publication number: 20150050725Abstract: The present invention relates to a laboratory incubator, more particularly, a gassing incubator, comprising an outer housing incorporating a door and an inner housing surrounding an internal chamber, which comprises a floor, a ceiling, three side walls and a lateral surface that is capable of being closed by said door or by an additional, inner door, and in which a flow channel is present, which comprises at least one air inlet opening in an end region and at least one air outlet opening in a different end region, wherein said at least one air outlet opening is formed such that effluent air is guided along at least one of the side walls and/or the lateral surface in the peripheral region of the internal chamber, and wherein a water reservoir capable of being heated is disposed within the flow channel such that air flowing in the flow channel is passed across or through said water reservoir.Type: ApplicationFiled: August 7, 2014Publication date: February 19, 2015Inventors: Waldemar Pieczarek, Juergen Andreas Schneider, Hermann Stahl
-
Publication number: 20150044726Abstract: The present disclosure is related to a device for controlling thermal convection velocity of a biochemical reaction. The thermal convection velocity controlling device includes a base body for disposing a tube which is movable, wherein the tube is filled with a buffer of the biochemical reaction; a heating source located at a bottom of the tube or at a side of the tube to heat the buffer; and a flow rate adjusting apparatus for controlling a thermal convection flow direction of the buffer in the tube, whereby the flow rate adjusting apparatus changes a flow velocity and a flow time of the buffer. The present disclosure is also related to a method for controlling thermal convection velocity of a biochemical reaction using the device.Type: ApplicationFiled: March 9, 2012Publication date: February 12, 2015Inventors: Chen Su, Ping-Hua Teng, Chien-Chung Jeng
-
Publication number: 20150037879Abstract: A thermal cycler includes a holder to which a biotip having a longitudinal direction is attached in such a manner that one end portion of the biotip is at a higher level than the other end portion, and that the distance between one end portion of the biotip and the rotational axis is shorter than the distance between the other end portion of the biotip and the rotational axis, a heating unit heats a first end portion of the biotip, a rotating unit rotates the holder, and a controller that controls the rotation speed of the rotating unit. The controller has a first mode a rotation speed at which the magnitude of the centrifugal force acting on the reaction mixture becomes smaller than the gravity, and a second mode a rotation speed at which the magnitude of the centrifugal force acting on the reaction mixture becomes greater than the gravity.Type: ApplicationFiled: October 20, 2014Publication date: February 5, 2015Inventors: Yuji SAITO, Fumio TAKAGI
-
Patent number: 8945486Abstract: A microwell device is provided. The device includes a plate having a upper surface. The upper surface has first and second recesses formed therein. Each recess has an outer periphery. First and second portions of microwells are formed in upper surface of the plate. The first portion of microwells are spaced about the outer periphery of the first recess and the second portion of microwells spaced about the outer periphery of the first recess. A first barrier is about a first portions of the microwells for fluidicly isolating the first portion of the microwells and a second barrier about a second portions of microwells for fluidicly isolating the second portion of the microwells.Type: GrantFiled: March 8, 2013Date of Patent: February 3, 2015Assignee: Wisconsin Alumni Research FoundationInventors: Jay W. Warrick, John Yin, Stephen M. Lindsay
-
Patent number: 8940526Abstract: Devices, containers, and methods are provided for performing biological analysis in a closed environment. Illustrative biological analyzes include nucleic acid amplification and detection and immuno-PCR.Type: GrantFiled: February 12, 2013Date of Patent: January 27, 2015Assignee: BioFire Diagnostics, LLCInventors: Kirk M. Ririe, Michael R. Newswander, Randy P. Rasmussen, Mark Aaron Poritz, Stewart Benjamin Smith, David E. Jones, Gary Clark Kessler
-
Publication number: 20150024474Abstract: The present invention relates to a thermal cycler device for carrying reaction slides for assays with thermal cycling reactions. The thermal cycler device includes a conveyer with a plurality of slide holders for conveying slide plates through more than one temperature zones for thermal cycling reactions.Type: ApplicationFiled: July 17, 2013Publication date: January 22, 2015Inventors: Chung-Fan Chiou, Yung-Chin Lee
-
Publication number: 20150024479Abstract: An apparatus and method for rapid thermal cycling including a thermal diffusivity plate. The thermal diffusivity plate can provide substantial temperature uniformity throughout the thermal block assembly during thermal cycling by a thermoelectric module. An edge heater can provide substantial temperature uniformity throughout the thermal block assembly during thermal cycling.Type: ApplicationFiled: October 10, 2014Publication date: January 22, 2015Inventors: Hon Siu Shin, Jew Kwee Ngui, Chee Kiong Lim, Ching Ong Lau, Lim Hi Tan, Yang Hooi Kee