Primate Cell, Per Se Patents (Class 435/363)
  • Patent number: 10150949
    Abstract: The present invention provides a method for producing or detecting cardiomyocytes by extracting/detecting cardiomyocytes from a cell population which includes cardiomyocytes using, as an index, positivity of NCAM1, SSEA3, SSEA4 and/or CD340.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: December 11, 2018
    Assignee: Kyoto University
    Inventors: Shinya Yamanaka, Yoshinori Yoshida, Shunsuke Funakoshi
  • Patent number: 9873862
    Abstract: Various embodiments of the present invention include compositions, materials and methods for maintaining and propagating mammalian mesenchymal stem cells in an undifferentiated state in the absence of feeder cells and applications of the same.
    Type: Grant
    Filed: January 14, 2015
    Date of Patent: January 23, 2018
    Assignees: The Board of Trustees of the University of Arkansas, The United States of America as Represented by the Department of Veterans Affairs
    Inventors: Xiao-Dong Chen, Robert L. Jilka
  • Patent number: 9617511
    Abstract: In some aspects, this invention provides a method of making a bone marrow-derived tissue-specific stem cell proliferation, expansion, isolation and rejuvenation extracellular matrix. In other aspects, this invention provides a method of making a tissue-specific fibroblast-derived stem cell differentiation extracellular matrix. Also provided are methods of using such a cell-derived preservation or differentiation matrices to induce tissue-specific differentiation of pluripotent cells, repair damaged tissue, and treat a subject having a physiologic deficiency using the same.
    Type: Grant
    Filed: September 6, 2011
    Date of Patent: April 11, 2017
    Assignee: The Board of Regents of the University of Texas System
    Inventor: Xiao-Dong Chen
  • Patent number: 9458431
    Abstract: We disclose a particle comprising a matrix coated thereon and having a positive charge, the particle being of a size to allow aggregation of primate or human stem cells attached thereto. The particle may comprise a substantially elongate, cylindrical or rod shaped particle having a longest dimension of between 50 ?m and 400 ?m, such as about 200 ?m. It may have a cross sectional dimension of between 20 ?m and 30 ?m. The particle may comprise a substantially compact or spherical shaped particle having a size of between about 20 ?m and about 120 ?m, for example about 65 ?m. We also disclose a method of propagating primate or human stem cells, the method comprising: providing first and second primate or human stem cells attached to first and second respective particles, allowing the first primate or human stem cell to contact the second primate or human stem cell to form an aggregate of cells and culturing the aggregate to propagate the primate or human stem cells for at least one passage.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: October 4, 2016
    Assignee: Agency for Science, Technology and Research
    Inventors: Steve Oh, Shaul Reuveny, Jian Li, William Richard Nicholas Birch
  • Patent number: 9405958
    Abstract: Provided is a cell analysis method in a cell analysis device D that uses an optical path length image of a cell colony formed of a large number of cells to analyze the cell colony, the method comprising: acquiring the optical path length image of the cell colony by an acquisition unit of the cell analysis device; extracting a circular shape corresponding to a cell nucleus of the cell in the acquired optical path length image by an extraction unit of the cell analysis device extracts; comparing an inner optical path length of the extracted circular shape and an outer optical path length of the extracted circular shape by a comparison unit of the cell analysis device extracts; and analyzing the cell colony based on the comparison result by analysis unit of the cell analysis device.
    Type: Grant
    Filed: February 23, 2012
    Date of Patent: August 2, 2016
    Assignee: HAMAMATSU PHOTONICS K.K.
    Inventors: Norikazu Sugiyama, Tomochika Takeshima, Kouichi Kaneko
  • Patent number: 9365826
    Abstract: Methods and composition for maintenance of cardiomyocytes are provided. For example, in certain aspects methods including culturing the cardiomyocytes in a medium essentially free of serum or containing dialyzed serum to maintain long-term purity. In further aspects, methods for modulation of cardiomyocytes may be provided.
    Type: Grant
    Filed: June 20, 2011
    Date of Patent: June 14, 2016
    Assignee: Cellular Dynamics International, Inc.
    Inventors: Nathan Meyer, Brad Swanson, Steve Fiene
  • Patent number: 9359590
    Abstract: The present invention concerns methods for deriving and culturing embryonic cells and in particular to methods for maintaining the undifferentiated state of stems cells and cell lines in culture. The invention also concerns cells and cell lines derived by the methods of the invention.
    Type: Grant
    Filed: November 16, 2005
    Date of Patent: June 7, 2016
    Assignee: SYDNEY IVF LIMITED
    Inventors: Teija Tuulikki Peura, Robert Paul Siebrand Jansen
  • Patent number: 9321997
    Abstract: Provided are embryonic stem (ES) cell-derived tissue modeling systems. In particular, systems for the de novo generation of tissue by parallel drug selection of cell types constituting the tissue of interest in one culture of differentiating ES cells is described as well as the use of such systems in transplantation and drug development.
    Type: Grant
    Filed: June 21, 2004
    Date of Patent: April 26, 2016
    Assignee: AXIOGENESIS AG
    Inventors: Eugen Kolossov, Jürgen Hescheler, Heribert Bohlen, Bernd Fleischmann, Wilhelm Röll, Andreas Ehlich, Jessica Königsmann
  • Publication number: 20150150152
    Abstract: This invention relates to the field of biotechnology or genetic engineering. Specifically, this invention relates to the field of gene expression. More specifically, this invention relates to a novel ecdysone receptor/chimeric retinoid X receptor-based inducible gene expression system and methods of modulating gene expression in a host cell for applications such as gene therapy, large-scale production of proteins and antibodies, cell-based high throughput screening assays, functional genomics and regulation of traits in transgenic organisms.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 28, 2015
    Inventors: Marianna Zinovievna KAPITSKAYA, Subba Reddy Palli
  • Patent number: 9040296
    Abstract: The present invention relates to the development and manufacturing of viral vaccines. In particular, the invention relates to the field of industrial production of viral vectors and vaccines, more in particular to the use of avian embryonic stem cells, preferably the EBx® cell line derived from chicken embryonic stem cells, for the production of viral vectors and viruses. The invention is particularly useful for the industrial production of viral vaccines to prevent viral infection of humans and animals.
    Type: Grant
    Filed: March 17, 2012
    Date of Patent: May 26, 2015
    Assignee: Valneva
    Inventors: Majid Mehtali, Patrick Champion-Arnaud, Arnaud Leon
  • Publication number: 20150141289
    Abstract: The invention provides for compositions and methods for identifying and validating modulators of cell fate, such as such as maintenance, cell specification, cell determination, induction of stem cell fate, cell differentiation, cell dedifferentiation, and cell trans-differentiation. The invention relates to reporter nucleic acid constructs, host cells comprising such constructs, and methods using such cells and constructs. The invention relates to methods for making cells comprising one or more reporter nucleic acid constructs using fluorogenic oligonucleotides. The methods relate to high throughput screens.
    Type: Application
    Filed: January 30, 2015
    Publication date: May 21, 2015
    Inventors: Kambiz Shekdar, Dennis J. Sawchuk, Jessica C. Langer
  • Publication number: 20150132846
    Abstract: The present invention relates to methods for production of undifferentiated or differentiated embryonic stem cell aggregate suspension cultures from undifferentiated or differentiated embryonic stem cell single cell suspensions and methods of differentiation thereof.
    Type: Application
    Filed: November 24, 2014
    Publication date: May 14, 2015
    Inventor: Thomas C. Schulz
  • Publication number: 20150132845
    Abstract: Devices, systems, and methods for continuous cell culture and other reactions are generally described. In some embodiments, chambers (e.g., cell growth chambers) including at least a portion of a wall formed of a flexible member are provided. A retaining structure can be incorporated outside and proximate to the chamber such that when liquid is added to the chamber, the flexible member is consistently and predictably deformed, and a consistent volume of liquid is added. The flexible member can be formed of, in some embodiments, a gas-permeable medium. In some embodiments, reaction chambers can be arranged in a fluidic loop, and a bypass channel can be used to introduce and/or extract fluid from the loop without affecting loop operation.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 14, 2015
    Applicant: Massachusetts Institute of Technology
    Inventors: Rajeev Jagga Ram, Kevin Shao-Kwan Lee
  • Patent number: 9029145
    Abstract: The present invention provides an isolated population of chondrocyte precursor cells wherein 1% or less of the cells express Oct4, Nanog and/or TRA-1-60, 7% or less of the cells express no collagen II, collagen X, CD105 or Stro-1 and 85% or more of the cells express CBFA1, methods for preparing such cells and uses of chondrocyte cells derived from said precursor cells.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: May 12, 2015
    Assignee: The University Court of the University of Edinburgh
    Inventors: Brendon Stewart Noble, David Matthew Pier
  • Publication number: 20150125951
    Abstract: The present invention relates to a mutant human alpha-synuclein with increased toxicity compared to wild-type alpha-synuclein, or a homologue thereof, wherein the mutant alpha-synuclein or homologue thereof comprises at least one amino acid substitution selected from the group consisting of a substitution at the alanine at position 56 (A56), at the alanine at position 76 (A76), at the methionine at position 127 (M127) and/or at the valine at position 118 (V118), as defined in the claims. Further, the invention relates to a polynucleotide encoding the mutant alpha-synuclein or homologue thereof, or an expression vector comprising said polynucleotide, a cell comprising the polynucleotide or expression vector, as defined in the claims. Also, a non-human animal comprising the cell of the invention is provided, as defined in the claims. Finally, the invention provides methods for identifying a substance that prevents or reduces toxicity of alpha-synuclein, as defined in the claims.
    Type: Application
    Filed: July 8, 2014
    Publication date: May 7, 2015
    Inventors: Markus ZWECKSTETTER, Pinar KARPINAR, Christian GRIESINGER
  • Patent number: 9017661
    Abstract: The present invention involves the use of transcription factors including Tbx5, Mef2C, Hand2, myocardin and Gata4 to reprogram cardiac fibroblasts into cardiomyocytes, both in vitro and in vivo. Such methods find particular use in the treatment of patients post-myocardial infarction to prevent or limit scarring and to promote myocardial repair.
    Type: Grant
    Filed: February 22, 2012
    Date of Patent: April 28, 2015
    Assignee: The Board of Regents of the University of Texas System
    Inventors: Young-Jae Nam, Kunhua Song, Eric N. Olson
  • Patent number: 9011840
    Abstract: Inflammatory cytokines e.g. IFN-?, serve as initiating stimuli for mesenchymal stem cell (MSC) immunosuppresive activity in vivo. Other inflammatory cytokines, such as TNF alpha, the molecule hemoxygenase I, and TLR ligation of MSC, may also provide such a response. Activated MSC's promote tissue regeneration in conditions such as aging, where regeneration is impaired. Wound healing in aged mammals was enhanced by restoring tensile strength to the levels of younger mammals. Activated MSCs were useful in treating wounds in diabetic primates.
    Type: Grant
    Filed: May 30, 2012
    Date of Patent: April 21, 2015
    Assignee: The Board of Trustees of the University of Illinois
    Inventors: Amelia Bartholomew, Simon Lee, Erzsebet Szilagyi
  • Publication number: 20150105290
    Abstract: The present invention relates to molecular approaches to the production of nucleic acid sequences, which comprises the genome of infectious hepatitis C virus. In particular, the invention provides nucleic acid sequences which comprise the genomes of infectious hepatitis C viruses of either genotype 3a (strain S52) or genotype 4a (strain ED43). The invention therefore relates to the use of the nucleic acid sequences and polypeptides encoded by all or part of the sequences in the development of vaccines and diagnostic assays for HCV and in the development of screening assays for the identification of antiviral agents for HCV. The invention therefore also relates to the use of viral particles derived from laboratory animals infected with S52 and ED43 viruses.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 16, 2015
    Inventors: Judith M. Gottwein, Troels Kasper Hoyer Scheel, Robert Purcell, Jens Bukh
  • Patent number: 8993318
    Abstract: The use of interferon induced transmembrane protein 1, 2, or 3 (IFITM1, 2, or 3) as a viral restriction factor, and methods of using the same to produce virus, transgenic animals expressing exogenous IFITM1, 2, or 3, and methods of treating or inhibiting viral infections by targeting a gene identified herein.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: March 31, 2015
    Assignees: The Brigham and Women's Hospital, Inc., The General Hospital Corporation
    Inventors: Abraham Brass, Stephen Elledge
  • Publication number: 20150079122
    Abstract: A vaccine composition and method of vaccination are provided useful for immunizing a subject against a rotavirus. The vaccines include rotavirus strains CDC-9 and CDC-66, fragments thereof, homologues thereof, or combinations thereof. Inventive vaccines may include a fragment of CDC-9, CDC-66, homologues thereof, or combinations thereof. Methods of inducing an immunological response are provided by administering an inventive vaccine.
    Type: Application
    Filed: August 18, 2014
    Publication date: March 19, 2015
    Inventors: Baoming Jiang, Roger I. Glass, Yuhuan Wang, Jon Gentsch
  • Patent number: 8981078
    Abstract: An agent for inhibiting translesion DNA replication comprises a non-natural adenine ribose analog represented by those as set forth in FIG. 1.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: March 17, 2015
    Assignee: Case Western Reserve University
    Inventors: Anthony J. Berdis, Irene Lee, Xuemei Zhang
  • Publication number: 20150072353
    Abstract: Analyte sensors, methods for producing and using analyte sensors, methods of detecting and/or measuring analyte activity, detecting pH change, and/or, controlling the concentration of an analyte in a system, are disclosed. Embodiments of the analyte sensors according to the disclosure can provide an accurate and convenient method for characterizing analyte activity, detecting pH change, controlling the concentration of an analyte in a system, and the like, in both in vivo and in vitro environments, in particular in living cell imaging.
    Type: Application
    Filed: August 21, 2014
    Publication date: March 12, 2015
    Inventors: Jenny Jie Yang, Shen Tang
  • Patent number: 8975068
    Abstract: Disclosed herein are methods for controlling stem cell differentiation through the introduction of transgenes having Xic, Tsix, Xite, or Xic flanking region sequences to block differentiation and the removal of the transgenes to allow differentiation. Also disclosed are small RNA molecules and methods for using the small RNA molecules to control stem cell differentiation. Also disclosed are stem cells genetically modified by the introduction of Xic, Tsix, XUe, or Xic flanking region sequences.
    Type: Grant
    Filed: January 24, 2008
    Date of Patent: March 10, 2015
    Assignee: The General Hospital Corporation
    Inventor: Jeannie T. Lee
  • Publication number: 20150064148
    Abstract: The present invention provides a method for improving pancreatic function in a subject in need thereof, the method comprising administering to the subject STRO-1+ cells and/or progeny cells thereof and/or soluble factors derived therefrom. The method of the invention is useful for treating and/or preventing and/or delaying the onset or progression of a disorder resulting from or associated with pancreatic dysfunction, e.g., resulting from abnormal endocrine or exocrine function of the pancreas.
    Type: Application
    Filed: November 7, 2014
    Publication date: March 5, 2015
    Applicant: MESOBLAST, INC.
    Inventors: Silviu Itescu, Ravi Krishnan
  • Publication number: 20150065560
    Abstract: The present invention relates to a one-vector expression system comprising a sequence encoding two polypeptides, such as tyrosine hydroxylase (TH) and GTP-cyclohydrolase 1 (GCH1). The two polypeptides can be should preferentially be expressed at a ratio between 3:1 and 15:1, such as between 3:1 and 7:1. The invention is useful in the treatment of catecholamine deficient disorders, such as dopamine deficient disorders including but not limited to Parkinson's Disease. Moreover, the present invention provides a method to deliver the vector construct in order to limit the increased production of the catecholamine to the cells in need thereof.
    Type: Application
    Filed: April 1, 2014
    Publication date: March 5, 2015
    Inventors: Tomas Björklund, Anders Björklund, Deniz Kirik
  • Publication number: 20150056698
    Abstract: A purified preparation of primate embryonic stem cells is disclosed. This preparation is characterized by the following cell surface markers: SSEA-1 (?); SSEA-4 (+); TRA-1-60 (+); TRA-1-81 (+); and alkaline phosphatase (+). In a particularly advantageous embodiment, the cells of the preparation are human embryonic stem cells, have normal karyotypes, and continue to proliferate in an undifferentiated state after continuous culture for eleven months. The embryonic stem cell lines also retain the ability, throughout the culture, to form trophoblast and to differentiate into all tissues derived from all three embryonic germ layers (endoderm, mesoderm and ectoderm). A method for isolating a primate embryonic stem cell line is also disclosed.
    Type: Application
    Filed: May 19, 2014
    Publication date: February 26, 2015
    Inventor: James A. Thomson
  • Publication number: 20150056225
    Abstract: The invention provides isolated primate cells preferably human cells that comprise a genetically engineered disruption in a human leukocyte antigen (HLA) class II-related gene, which results in deficiency in MHC class II expression and function. This invention also provides isolated cells further comprising a genetically engineered disruption in a beta-2 microglobulin (B2M) gene, which results in HLA class I/class II deficiency. Also provided are the method of using the cells for transplantation and treating a disease condition.
    Type: Application
    Filed: March 15, 2013
    Publication date: February 26, 2015
    Inventor: David W. Russell
  • Publication number: 20150050298
    Abstract: A method for suppressing an immune response is provided. The method involves administration of isolated lymphoid tissue-derived suppressive stromal cells (LSSC) to a subject in need of such treatment in an amount effective to suppress the immune response in the subject. The invention also involves a method to isolate LSSC by digesting lymphoid tissue fragments using a combination of an enzyme mix and agitation and then collecting the LSSC. Pharmaceutical preparations comprising LSSC are also provided.
    Type: Application
    Filed: March 13, 2013
    Publication date: February 19, 2015
    Inventors: Anne Fletcher, Shannon J. Turley, Biju Parekkadan
  • Publication number: 20150050211
    Abstract: Provided herein are methods to generate and screen peptides that exhibit drug like stabilities in vitro and in vivo. By selecting for enzyme resistance, Applicants are able to derive peptides that are not only stable to a broad spectrum of proteases, but also stable to other drug processing enzymes such as cytochrome P450s. This approach provides a general method to the rapid development of highly stable peptides for therapeutic development and diagnosis. The peptides are further modified for oral bioavailability.
    Type: Application
    Filed: August 31, 2012
    Publication date: February 19, 2015
    Applicant: University of Souththern California
    Inventors: Stephen V. Fiacco, Terry T. Takahashi, Richard W. Roberts
  • Publication number: 20150044170
    Abstract: The present invention relates generally to the use of recombinant adeno-associated viruses (rAAV) for gene delivery and more specifically to the use of rAAV to deliver genes encoding human immunodeficiency virus entry inhibitors to target cells in mammals.
    Type: Application
    Filed: April 9, 2014
    Publication date: February 12, 2015
    Applicant: NATIONWIDE CHILDREN'S HOSPITAL, INC.
    Inventors: Philip R. Johnson, JR., Kelly Reed Clark
  • Publication number: 20150044178
    Abstract: The present invention provides a method for the normalized culturing of corneal endothelial cells. More specifically, the present invention provides a culture-normalizing-agent of a corneal endothelial cell, comprising a fibrosis inhibitor. In detail, the present invention provides a culture-normalizing agent comprising a transforming growth factor (TGF) ? signal inhibitor. The present invention also provides a culture medium for culturing a corneal endothelial cell normally, which comprises the culture-normalizing agent according to the present invention and corneal endothelium culture components. The present invention also provides a method for culturing a corneal endothelial cell normally, comprising the step of culturing a corneal endothelial cell using the culture-normalizing agent according to the present invention or the culture medium according to the present invention.
    Type: Application
    Filed: December 27, 2012
    Publication date: February 12, 2015
    Applicants: KYOTO PREFECTURAL PUBLIC UNIVERSITY CORPORATION, SENJU PHARMACEUTICAL CO., LTD., THE DOSHISHA
    Inventors: Shigeru Kinoshita, Noriko Koizumi, Naoki Okumura
  • Publication number: 20150030573
    Abstract: Methods are described for the delivery of one or more small interfering RNAs (siRNAs) to a eukaryotic cell using a bacterium. Methods are also described for using this bacterium to regulate gene expression in eukaryotic cells using RNA interference, and methods for treating an inflammatory disease or disorder. The bacterium includes one or more siRNAs or one or more DNA molecules encoding one or more siRNAs. Vectors are also described for use with the bacteria of the invention for causing RNA interference in eukaryotic cells.
    Type: Application
    Filed: October 26, 2013
    Publication date: January 29, 2015
    Applicant: BETH ISRAEL DEACONESS MEDICAL CENTER
    Inventors: Johannes H. Fruehauf, Ching J. Li
  • Publication number: 20150017718
    Abstract: The present invention relates to a method for inducing cardiac differentiation of a pluripotent stem cell, which comprises the steps of (1) culturing a pluripotent stem cell in a medium containing one or more WNT signaling activators, and (2) culturing a cell produced in the step (1) in a medium containing one or more WNT signaling inhibitor.
    Type: Application
    Filed: January 25, 2013
    Publication date: January 15, 2015
    Inventors: Norio Nakatsuji, Itsunari Minami, Motonari Uesugi, Kazuhiro Aiba
  • Publication number: 20150017138
    Abstract: Methods are described for the delivery of one or more small interfering RNAs (siRNAs) to a eukaryotic cell using a bacterium. Methods are also described for using this bacterium to regulate gene expression in eukaryotic cells using RNA interference, and methods for treating an inflammatory disease or disorder. The bacterium includes one or more siRNAs or one or more DNA molecules encoding one or more siRNAs. Vectors are also described for use with the bacteria of the invention for causing RNA interference in eukaryotic cells.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 15, 2015
    Inventors: Johannes H. Fruehauf, Chiang J. Li
  • Publication number: 20150010514
    Abstract: The present invention relates to the field of stem cell biology, in particular the lineage specific differentiation of pluripotent or multipotent stem cells, which can include, but is not limited to, human embryonic stem cells (hESC) in addition to nonembryonic human induced pluripotent stem cells (hiPSC), somatic stem cells, stem cells from patients with a disease, or any other cell capable of lineage specific differentiation. Specifically described are methods to direct the lineage specific differentiation of hESC and/or hiPSC into floor plate midbrain progenitor cells and then further into large populations of midbrain fate FOXA2+LMX1A+TH+ dopamine (DA) neurons using novel culture conditions.
    Type: Application
    Filed: November 2, 2012
    Publication date: January 8, 2015
    Inventors: Lorenz Studer, Jae-Won Shim, Sonja Kriks
  • Publication number: 20150010593
    Abstract: The present invention provides genetically modified cells useful for viral replication and the production of viral vaccines.
    Type: Application
    Filed: January 10, 2013
    Publication date: January 8, 2015
    Inventors: Marciela Degrace, Nir Hacohen, Sagi Shapira, Liguo Wu
  • Patent number: 8927276
    Abstract: The present invention relates to a simplified process, which is shorter in time, for propagation of proliferating cells, such as e.g. progenitor or stem cells, by means of a biphasic culturing system having a differentiation supporting component and a proliferation supporting component, and to the use of the stem cell cultures obtained in this way for cell therapy purposes. The present invention invention describes a method, which is highly efficient to prime stem or progenitor cells to differentiation using non-attachment matrices and differentiation supporting component. The cells produced therefrom may be used to treat a variety of neurodegenerative disorders.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: January 6, 2015
    Assignee: Cellin Technologies OUE
    Inventors: Kaia Palm, Toomas Neuman
  • Publication number: 20150005369
    Abstract: Disclosed are methods of gene delivery using capsid-modified recombinant adeno-associated viral (rAAV) vectors. Exemplary methods are provided employing vectors that have altered affinity for heparin or heparin sulfate, as well as vectors, expression systems, and rAAV virions that lack functional VP2 protein expression, but are nevertheless, fully virulent. Also provided by the invention are methods employing the rAAV vector-based compositions, virus particles, host cells, and pharmaceutical formulations in the expression of selected therapeutic proteins, polypeptides, peptides, antisense oligonucleotides and/or ribozymes in selected mammals, including organs, tissues, and human host cells.
    Type: Application
    Filed: July 8, 2014
    Publication date: January 1, 2015
    Inventors: Nicholas Muzyczka, Shaun R. Opie, Kenneth H. Warrington
  • Patent number: 8921103
    Abstract: Compositions and methods for creating a laminar construct for tissue-engineered dermal equivalent are provided. One composition provided herein comprises a hydrogel matrix comprising two or more hydrogels layers and a population of stem cells. Associated methods are also provided.
    Type: Grant
    Filed: August 27, 2010
    Date of Patent: December 30, 2014
    Assignee: Board of Regents, The University of Texas System
    Inventors: Laura Suggs, Shanmugasundaram Natesan, Ge Zhang, Robert J. Christy, Thomas Walters
  • Publication number: 20140377296
    Abstract: The invention provides an isolated H3 equine influenza A virus, as well as methods of preparing and using the virus, and genes or proteins thereof.
    Type: Application
    Filed: April 17, 2014
    Publication date: December 25, 2014
    Applicant: Wisconsin Alumni Research Foundation
    Inventors: Christopher W. Olsen, Gabriele A. Landolt, Alexander I. Karasin
  • Publication number: 20140377803
    Abstract: The present invention relates to a cell for producing a secreted protein comprising a polynucleotide comprising a nucleic acid sequence encoding a fast cycling cdc42 mutant and a polynucleotide comprising a nucleic acid sequence encoding a secreted protein. It also relates to a method for producing said cell and to a method for producing a secreted protein using said cell.
    Type: Application
    Filed: May 14, 2012
    Publication date: December 25, 2014
    Applicant: PROBIOGEN AG
    Inventors: Volker Sandig, Karsten Winkler, Henning Von Horsten, Thomas Rose
  • Publication number: 20140370601
    Abstract: Described herein is the finding that increasing the frequency of Zscan4 activation in mouse ES cells not only enhances, but also maintains their developmental potency in long-term cell culture. Particularly disclosed herein is the finding that the constitutive presence of Zscan4-ERT2, even in the absence of its usual activator tamoxifen, can increase the frequency of endogenous Zscan4 activation in ES cells, resulting in the increase of developmental potency of the ES cells. Accordingly, provided herein are Zscan4-ERT2 fusion proteins and nucleic acid molecules and vectors encoding Zscan4-ERT2 fusion proteins. Further provided are methods of prolonging and/or enhancing stem cell plmipotency using the disclosed Zscan4-ERT2 nucleic acid molecules and fusion proteins.
    Type: Application
    Filed: March 21, 2012
    Publication date: December 18, 2014
    Inventors: Minoru S.H. Ko, Tomokazu Amano
  • Patent number: 8900860
    Abstract: The present invention relates to a novel method for expanding mesenchymal stem cells (MSCs) in low-density and hypoxic condition as compared to normal air conditions traditionally used in cell culture. The present method provides rapid and efficient expansion of human MSCs without losing cellular proliferation and stem cell properties, including increase in proliferation, decrease in senescence, and increase in differentiation potential both in vitro and in vivo. The expanded MSCs by the present method may maintain normal karyotyping, and will not form tumor when transplanted into mammal.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: December 2, 2014
    Assignee: National Yang-Ming University
    Inventor: Shih-Chieh Hung
  • Patent number: 8895300
    Abstract: The present invention relates to methods for production of undifferentiated or differentiated embryonic stem cell aggregate suspension cultures from undifferentiated or differentiated embryonic stem cell single cell suspensions and methods of differentiation thereof.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: November 25, 2014
    Assignee: Viacyte, Inc.
    Inventor: Thomas C Schulz
  • Publication number: 20140341864
    Abstract: The invention provides a method for producing a retinal tissue by (1) subjecting pluripotent stem cells to floating culture in a serum-free medium containing a substance inhibiting the Wnt signal pathway to form an aggregate of pluripotent stem cells, (2) subjecting the aggregate to floating culture in a serum-free medium containing a basement membrane preparation, and then (3) subjecting the aggregate to floating culture in a serum-containing medium. The invention also provides a method for producing an optic-cup-like structure, a method for producing a retinal pigment epithelium, and a method for producing a retinal layer-specific neural cell.
    Type: Application
    Filed: November 22, 2012
    Publication date: November 20, 2014
    Inventors: Tokushige Nakano, Satoshi Ando, Yoshiki Sasai, Mototsugu Eiraku
  • Publication number: 20140322756
    Abstract: The invention relates to a method of preparing heteromultimeric polypeptides such as bispecific antibodies, bispecific immunoadhesins and antibody-immunoadhesin chimeras. The invention also relates to the heteromultimers prepared using the method. Generally, the method provides a multispecific antibody having a common light chain associated with each heteromeric polypeptide having an antibody binding domain. Additionally the method further involves introducing into the multispecific antibody a specific and complementary interaction at the interface of a first polypeptide and the interface of a second polypeptide, so as to promote heteromultimer formation and hinder homomultimer formation; and/or a free thiol-containing residue at the interface of a first polypeptide and a corresponding free thiol-containing residue in the interface of a second polypeptide, such that a non-naturally occurring disulfide bond is formed between the first and second polypeptide.
    Type: Application
    Filed: December 27, 2013
    Publication date: October 30, 2014
    Applicant: GENENTECH, INC.
    Inventors: W. Robert ARATHOON, Paul J. CARTER, Anne M. MERCHANT, Leonard G. PRESTA
  • Publication number: 20140322812
    Abstract: This invention relates to the field of biotechnology or genetic engineering. Specifically, this invention relates to the field of gene expression. More specifically, this invention relates to novel substitution mutant receptors and their use in a nuclear receptor-based inducible gene expression system and methods of modulating the expression of a gene in a host cell for applications such as gene therapy, large scale production of proteins and antibodies, cell-based high throughput screening assays, functional genomics and regulation of traits in transgenic organisms.
    Type: Application
    Filed: April 24, 2014
    Publication date: October 30, 2014
    Applicant: Intrexon Corporation
    Inventors: Subba Reddy PALLI, Mohan Basavaraju KUMAR
  • Patent number: 8871198
    Abstract: The invention is directed to methods for the treatment of wounds. Such methods utilize novel compositions, including but not limited to amnion-derived multipotent cells (herein referred to as AMP cells), conditioned media derived therefrom (herein referred to as amnion-derived cellular cytokine suspension or ACCS), cell lysates derived therefrom, cell products derived therefrom, each alone or in combination.
    Type: Grant
    Filed: March 14, 2007
    Date of Patent: October 28, 2014
    Assignee: Stemnion, Inc.
    Inventors: Charlotte A Emig, Catherine J Trumpower, Vivienne S Marshall
  • Publication number: 20140315299
    Abstract: The invention provides a fusion protein comprising, from N-terminus to C-terminus: a) a first portion of a Family B G-protein coupled receptor (GPCR) that comprises transmembrane helix (TM)-1, TM2 and TM3 of the GPCR; b) a stable protein domain; and c) a second portion of the GPCR comprising TM4, TM5, TM6 and TM7 of the GPCR. The invention also provides a method of crystallising a GPCR comprising providing the fusion protein of the invention and crystallising it to obtain crystals.
    Type: Application
    Filed: August 9, 2012
    Publication date: October 23, 2014
    Applicant: Heptares Therapeutics Limited
    Inventors: Seyed Ali Jazayeri-Dezfuly, Fiona Hamilton Marshall
  • Publication number: 20140308247
    Abstract: This invention relates to the field of therapeutics. Most specifically, the invention provides methods of generating conditionally expressing one or more proteins under the control of a gene expression modulation, system in the presence of activating ligand and uses for therapeutic purposes in animals. The vector may be provided to treat or prevent disease.
    Type: Application
    Filed: March 2, 2012
    Publication date: October 16, 2014
    Applicant: Intrexon Corporation
    Inventors: Jeremiah F. Roeth, Brandon Cuthbertson, Charles C. Reed, Sunil Chada, William E. Fogler, Fayas Khazi