Human Patents (Class 435/366)
  • Patent number: 11965175
    Abstract: Embodiments are described that relate to methods and systems for growing cells in a hollow fiber bioreactor. In embodiments, the cells may be exposed to a number of growth factors including a combination of recombinant growth factors. In other embodiments, the cells may be grown in co-culture with other cells, e.g., hMSC's. In embodiments, the cells may include CD34+ cells.
    Type: Grant
    Filed: May 25, 2017
    Date of Patent: April 23, 2024
    Assignee: Terumo BCT, Inc.
    Inventor: Mark E. Jones
  • Patent number: 11963983
    Abstract: Provided herein is a new method to isolate and expand cardiac progenitor/stem cells from a placenta, which produces a cell population enriched in multipotent functional progenitor/stem cells. Cardiac progenitor/stem cells isolated by this method maintain their self-renewal character in vitro and differentiate into normal cells in myocardium, including cardiomyocytes, endothelial cells, and smooth muscle cells, after transplantation into ischemic hearts. Also provided in this application are substantially pure populations of multipotent cardiac progenitor/stem cells, and their use to treat and prevent diseases and injuries, including those resulting from myocardial infarction. A model for assessing the potential of cardiac stem cells for treatment of myocardial infarction is also provided.
    Type: Grant
    Filed: November 25, 2019
    Date of Patent: April 23, 2024
    Assignee: Icahn School of Medicine at Mount Sinai
    Inventor: Hina W. Chaudhry
  • Patent number: 11920164
    Abstract: A culture medium is disclosed which comprises STAT3 activator, an ERK1/2 inhibitor and an Axin stabilizer, and optionally also a PKC inhibitor. Cell cultures comprising same and uses thereof are also disclosed.
    Type: Grant
    Filed: July 30, 2015
    Date of Patent: March 5, 2024
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Yaqub Hanna, Noa Novershtern, Yoach Rais
  • Patent number: 11913030
    Abstract: The present disclosure provides a method of preparing mimicking angiogenic co-spheroids, including: co-cultring a neural related cell and a cultured cell on hyaluronan-grafted chitosan (CS-HA) substrates to form a co-spheroid of neural related cell/cultured cell, and encapsulating the co-spheroid of neural related cell/cultured cell into a hydrogel to form a mimicking angiogenic co-spheroid. The mimicking angiogenic co-spheroid of the present disclosure can be formed by 3D printing model as a 3D mini-neurovascular unit, which is applicated to a high-throughput angiogenesis screening platform.
    Type: Grant
    Filed: September 5, 2019
    Date of Patent: February 27, 2024
    Assignee: NATIONAL TAIWAN UNIVERSITY
    Inventors: Shan-Hui Hsu, Hao-Wei Han
  • Patent number: 11913022
    Abstract: Human induced pluripotent stem cells (iPSCs) can give rise to multiple cell types and hold great promise in regenerative medicine and disease modeling applications. The Inventors herein developed a reliable two-step protocol to generate human mammary-like organoids from iPSCs. Non-neural ectoderm cell-containing spheres, referred to as mEBs, were first differentiated and enriched from iPSCs using MammoCult medium. Gene expression profile analysis suggested that mammary gland function-associated signaling pathways were hallmarks of 10-d differentiated mEBs. The Inventors generated mammary-like organoids from 10-d mEBs using 3D floating mixed gel culture and a three-stage differentiation procedure. These organoids expressed common breast tissue, luminal, and basal markers, including estrogen receptor, and could be induced to produce milk protein. These results demonstrate that human iPSCs can be directed in vitro toward mammary lineage differentiation.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: February 27, 2024
    Assignee: Cedars-Sinai Medical Center
    Inventors: Ying Qu, Xiaojiang Cui, Dhruv Sareen, Armando E. Giuliano
  • Patent number: 11905510
    Abstract: Harvested stem cells are activated by treating them with an amplitude modulated laser beam having a wavelength lying in the range of 405 to 980 nanometers. The frequency of the laser beam is modulated within a range of 8 to 12 MHz. Using the activated stem cells, tissue can be repaired and regenerated by preparing the unactivated stem cells, treating the unactivated stem cells with an amplitude modulated laser beam having a pre-determined frequency for obtaining activated stem cells, administering the activated stem cells into a body containing the tissue, and using a homing beam to guide the activated stem cells within the body to the location of the tissue.
    Type: Grant
    Filed: January 12, 2021
    Date of Patent: February 20, 2024
    Inventors: Todd Frank Ovokaitys, John Scott Strachan
  • Patent number: 11905530
    Abstract: Disclosed herein are cell culture compositions, for example, pancreatic cell culture compositions, derived from dedifferentiated human reprogrammed pluripotent stem cells, such as induced pluripotent stem (iPS) cells, and methods for producing and using such cell culture compositions.
    Type: Grant
    Filed: December 18, 2020
    Date of Patent: February 20, 2024
    Assignee: ViaCyte, Inc.
    Inventors: Alan D. Agulnick, Olivia Kelly, Yuki Ohi, Allan Robins, Thomas Schulz
  • Patent number: 11884935
    Abstract: The present invention relates to a method for inducing trans-differentiation of cardiomyocytes based on exosome, and more particularly, to a method for inducing trans-differentiation of a fibroblast into a cardiomyocyte, comprising the steps of: isolating exosomes in a culture medium during a process of differentiating a stem cell into the cardiomyocyte; culturing a fibroblast in a cardiomyocyte reprogramming medium containing the isolated exosomes; and culturing the fibroblast cultured in a cardiomyocyte differentiation medium containing the isolated exosomes.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: January 30, 2024
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Ick Chan Kwon, Sun Hwa Kim, Yoosoo Yang, Hyosuk Kim
  • Patent number: 11865141
    Abstract: The present invention may provide a method for producing induced pluripotency stem cell-derived mesenchymal stem cells (IFN?-iMSC) pretreated with interferon-gamma; induced pluripotency stem cell-derived mesenchymal stem cells pretreated with interferon-gamma prepared by the method; a pharmaceutical composition for preventing or treating skin diseases, and a cosmetic composition for preventing or improving skin diseases, comprising culture thereof or exosome (IFN?-iMSC-exo) isolated therefrom as an active ingredient. When the composition of the present invention is used, it is possible to provide a composition for skin diseases and a stem cell therapeutic agent, which have an improved immunomodulating function over conventional mesenchymal stem cells.
    Type: Grant
    Filed: January 7, 2019
    Date of Patent: January 9, 2024
    Assignees: THE ASAN FOUNDATION, UNIVERSITY OF ULSAN FOUNDATION FOR INDUSTRY COOPERATION
    Inventors: Sue Kim, Jin Ho Yu
  • Patent number: 11834647
    Abstract: The present invention relates to an in vitro immune synapse system and a method of in vitro evaluating immune response using the same. The in vitro immune synapse system includes antigen-presenting cells (APCs) and at least one cell type of several specific T cell subtypes isolated from peripheral blood mononuclear cells (PBMCs), all of which is from a same individual of pigs. When a test sample is co-cultured in the in vitro immune synapse system for a given period, it can be determined that the test sample is immunogenic, immunostimulatory or not according to the immunization-related changes of these cells, thereby potentially replacing some kinds of animal experimentation.
    Type: Grant
    Filed: September 15, 2020
    Date of Patent: December 5, 2023
    Assignee: National Pingtung University of Science and Technology
    Inventors: Hso-Chi Chaung, Wen-Bin Chung, Ann Ying-An Chen, Mei-Li Wu
  • Patent number: 11795436
    Abstract: This application describes liver stem cells (LSC), and differentiated hepatocytes, cholangiocytes, and 3D cellular structures derived therefrom. Methods for producing LSC and mature, differentiated hepatocytes and cholangiocytes in culture are provided. Also provided are cell culture systems and cell culture media for producing a homogenous population of liver stem cells that remain in an undifferentiated state over multiple passages in culture. The LSC and methods are useful for producing homogenous populations of hepatocytes and cholangiocytes for downstream applications. The LSC can be transplanted into subjects to treat liver diseases.
    Type: Grant
    Filed: May 4, 2020
    Date of Patent: October 24, 2023
    Assignees: Agency for Science, Technology and Research, National University of Singapore
    Inventors: Yuanyu Hu, Huck Hui Ng, Yock Young Dan
  • Patent number: 11767507
    Abstract: Enhanced methods for the generation of medial ganglionic eminence (MGE) cells from pluripotent stem cells are provided that involve an additional step of contacting the cells with an activator of FGF8 signaling while differentiating Pax6+ cells progenitor cells into MGE cells with an activator of sonic hedgehog, and optionally a Wnt inhibitor. The activator of FGF8 signaling shifts the differentiation of the population of cells to NKX2.1+ MGE cells, rather than to CopuTFII+ caudal ganglionic eminence (CGE) cells. Methods for treatment of neurological disorders, such as epilepsy, by transplant of MGE cells, or GABAergic interneurons derived from human pluripotent stem cells, into a subject in need of treatment are also provided. Human pluripotent stem cell derived MGE cells when transplanted successfully suppress spontaneous seizures, e.g. in epilepsy.
    Type: Grant
    Filed: November 5, 2014
    Date of Patent: September 26, 2023
    Assignee: The McLean Hospital Corporation
    Inventor: Sangmi Chung
  • Patent number: 11759530
    Abstract: Provided herein are, inter alia, methods useful for delivering nucleic acids and kinase inhibitors to a cell. The methods provided herein include the delivery of therapeutic nucleic acids to cancer cells by contacting a cancer cell with a kinase inhibitor and a therapeutic nucleic acid. The methods provided herein are therefore, inter alia, useful for the treatment of cancer.
    Type: Grant
    Filed: November 17, 2015
    Date of Patent: September 19, 2023
    Assignee: City of Hope
    Inventors: Cy Aaron Stein, Daniela Castanotto, David Horne
  • Patent number: 11752176
    Abstract: Provided herein are methods and compositions comprising cardiomyocytes and epicardial cells for the treatment of cardiac disease.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: September 12, 2023
    Assignees: University of Washington, Cambridge Enterprise Limited
    Inventors: Charles E. Murry, Sanjay Sinha, Johannes Bargehr
  • Patent number: 11725174
    Abstract: Provided is a cell culture apparatus including a culture vessel that stores a cell suspension containing cells; a first filter part that has a first filter membrane that performs membrane separation treatment on the cell suspension extracted from the culture vessel; a first circulation flow path that allows components blocked by the first filter membrane to return to the culture vessel; a second filter part that has a second filter membrane that performs membrane separation treatment on components of the cell suspension permeated through the first filter membrane; a second circulation flow path that allows components permeated through the second filter membrane to return to the culture vessel; and a recovery flow path that recovers components blocked by the second filter membrane. In the cell culture apparatus, an average hole diameter of the first filter membrane is 20 ?m or smaller, and 0<B/A?0.
    Type: Grant
    Filed: July 2, 2019
    Date of Patent: August 15, 2023
    Assignee: FUJIFILM CORPORATION
    Inventors: Shinichi Nakai, Yoichi Nagai, Nobuyuki Haraguchi, Shigehisa Sugiyama
  • Patent number: 11708562
    Abstract: The present invention provides methods to promote the differentiation of pluripotent stem cells. In particular, the present invention provides an improved method for the formation of pancreatic endoderm, pancreatic hormone expressing cells and pancreatic hormone secreting cells. The present invention also provides methods to promote the differentiation of pluripotent stem cells without the use of a feeder cell layer.
    Type: Grant
    Filed: October 10, 2019
    Date of Patent: July 25, 2023
    Assignee: Janssen Biotech, Inc.
    Inventors: Alireza Rezania, Jean Xu
  • Patent number: 11684574
    Abstract: Provided herein is a drug delivery device and composition, such as a particle, comprising conditioned medium. Also provided herein is a method of preparing polymeric particles for release of conditioned medium. Further, a tissue growth scaffold comprising particles for release of conditioned medium is provided.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: June 27, 2023
    Assignees: University of Pittsburgh—Of the Commonwealth System of Higher Education, Svstem of Higher Education 1tts
    Inventors: Morgan Virginia Fedorchak, Jeffrey Krawiec, Steven R. Little, Katherine Lorentz, David A. Vorp, Justin Weinbaum
  • Patent number: 11660317
    Abstract: The present application relates to methods and compositions for treating diseased or damaged cardiac tissue comprising regenerative cells harvested from donor cardiac tissue. In one embodiment, regenerative cells are harvested from an allogeneic source and after administration result in increased viability and/or functional improvement of damaged or diseased cardiac tissue.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: May 30, 2023
    Assignee: The Johns Hopkins University
    Inventor: Eduardo Marban
  • Patent number: 11660318
    Abstract: Provided herein are novel methods and composition utilizing adipose tissue-derived stromal stem cells for treating fistulae.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: May 30, 2023
    Assignee: Takeda Pharmaceutical Company Limited
    Inventors: María Gema Fernández Miguel, Manuel Ángel González De La Pena, Rosa Ana García Castro, Mariano García Arranz, Damián García Olmo
  • Patent number: 11655449
    Abstract: The present invention includes a method of preparing differentiated endodermal cells comprising growing human pluripotent stem cells (hPSC) under serum free conditions for 3 days on a layer of fibronectin or a gelatinous protein layer in the presence of high activin/TGF-? with a GSK3 inhibitor and a PI3K/mTORC inhibitor in a basal differentiation medium; adding a knock out serum replacement to the media starting on day 4 through day 7; and harvesting the endodermal cells grown therein.
    Type: Grant
    Filed: June 3, 2020
    Date of Patent: May 23, 2023
    Assignee: BOARD OF REGENTS, THE UNIVERSITY OF TEXAS SYSTEM
    Inventors: Jeffrey Fair, William Sam Fagg
  • Patent number: 11634683
    Abstract: Non-enzymatic method and milling device for preparing therapeutic cells from adipose tissue comprising: continuously feeding the adipose tissue to the milling device (2); mechanically separating the cells or cell aggregates from adipose tissue moving through the milling device (2) by means of a multiplicity of blades (19) of a rotor (10), wherein the blades (19) are arranged in a spaced arrangement with respect to the overall direction of flow and the blades (19) are moving about an axis of rotation (18), wherein the axis of rotation (18) is provided essentially parallel to said overall direction of flow; continuously withdrawing the processed tissue comprising the separated cells from the milling device (2).
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: April 25, 2023
    Assignee: LIPOREGENA GMBH
    Inventors: Christoph Wurzer, Eleni Priglinger, Heinz Redl
  • Patent number: 11612652
    Abstract: The invention covers the use of certain classes of lipids including cationic lipids in ex-vivo dendritic cell therapies. The cationic lipids enhance antigen uptake, processing and presentation of the processed antigens by dendritic cells to CD8+ and CD4+ T-cells via the MHC classes I and II presentation pathways respectively. Antigen uptake via cationic lipid by dendritic cells result in significant lowering of the population of the immune suppressive regulatory T cells in the tumors and a significant increase of the tumor targeting cytotoxic T-cells. Loss of regulatory T cells and increase of tumor specific cytotoxic cells are conducive to effective elimination of the tumors.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: March 28, 2023
    Assignee: PDS Biotechnology Corporation
    Inventors: Frank Bedu-Addo, Greg Conn, Siva K. Gandhapudi, Martin Ward, Jerold Woodward
  • Patent number: 11590175
    Abstract: Compositions are provided that contain biologically active components of amniotic fluid including growth factors and other proteins, carbohydrates, lipids, and metabolites. The compositions containing biologically active components of amniotic fluid can be useful for a range of therapeutic treatments including joint and soft tissue repair, regulation of skin condition, and for use in organ preservation, such as for use in organ transplant procedures. Advantages of the compositions include that they can be reproducibly produced, without the inherent variability of amniotic fluid from individual donors, and that they are free of fetal waste.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: February 28, 2023
    Assignee: MERAKRIS THERAPEUTICS LLC
    Inventors: Thomas Christopher Broderick, William Samuel Fagg, IV
  • Patent number: 11583557
    Abstract: Novel isolated stem cells derived from pre-term placental tissue and compositions comprising the stem cells are provided as well as use of the compositions for therapy, research and diagnosis. The cells and compositions are useful in treating Myelomeningocele (MCC), spina bifida (SB) or spinal cord injury or paralysis.
    Type: Grant
    Filed: August 16, 2018
    Date of Patent: February 21, 2023
    Assignee: The Regents of the University of California
    Inventors: Aijun Wang, Diana L. Farmer
  • Patent number: 11542612
    Abstract: A hydrogel is formed by a reaction which is induced, in an electrolytic solution, by an electrode product electrochemically generated by electrodes installed in the electrolytic solution. An apparatus including an electrolytic tank with a bottom surface on which a two-dimensional array of working electrodes is provided and a counter electrode installed in the electrolytic tank is prepared. An electrolytic solution containing a dissolved substance that causes electrolytic deposition of a hydrogel is housed in the electrolytic tank. By applying a predetermined voltage to one or more selected working electrodes of the two-dimensional array, a hydrogel with a two-dimensional pattern corresponding to the arrangement of the selected working electrodes is formed.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: January 3, 2023
    Assignees: TOHOKU UNIVERSITY, JAPAN AVIATION ELECTRONICS INDUSTRY, LIMITED
    Inventors: Kosuke Ino, Tomokazu Matsue, Hitoshi Shiku, Mayuko Terauchi, Noriko Taira, Ryota Kunikata, Atsushi Suda
  • Patent number: 11534466
    Abstract: The disclosure relates to stem cells and their therapeutic use in the treatment and/or prevention of pancreatic diseases or disorders. Provided herein are compositions comprising c-kit positive pancreatic stem cells and methods of preparing and using c-kit positive pancreatic stem cells for the treatment and/or prevention of pancreatic diseases or disorders.
    Type: Grant
    Filed: March 7, 2017
    Date of Patent: December 27, 2022
    Assignee: AAL SCIENTIFICS, INC.
    Inventor: Piero Anversa
  • Patent number: 11529396
    Abstract: The invention provides compositions and methods useful for the treatment and prevention of conditions associated with short telomere length.
    Type: Grant
    Filed: August 4, 2015
    Date of Patent: December 20, 2022
    Assignees: FUNDACIÓN DEL SECTOR PÚBLICO ESTATAL CENTRO NACIONAL DL'INVESTIGACIONES ONCOLÓGICAS CARLOS III (F.S.P. CNIO), UNIVERSITAT AUTÓNOMA DE BARCELONA
    Inventors: Maria Bobadilla, Ivan Formentini, Maria Antonia Blasco Marhuenda, Christian Baer, Fàtima Bosch I Tubert
  • Patent number: 11511278
    Abstract: A solid reagent containment unit is formed by a support; a frame body fixed to the support and delimiting internally, together with the support, an analysis volume; a reagent-adhesion structure within the analysis volume; and at least one reagent cavity, which extends within the reagent-adhesion structure. The reagent-adhesion structure is of an adhesion material embossable at temperatures lower by 6-8° C. than its own melting point and has a melting point such as not to interfere with the analysis. The reagent cavity forms a retention wall, laterally surrounding the reagent cavity, and houses dried reagents. The adhesion material is chosen among wax, such as paraffin, a polymer, such as polycaprolactone, a solid fat, such as cocoa butter, and a gel, such as hydrogel or organogel.
    Type: Grant
    Filed: December 19, 2018
    Date of Patent: November 29, 2022
    Assignee: STMICROELECTRONICS S.r.l.
    Inventors: Marco Cereda, Lillo Raia, Alessandro Paolo Bramanti
  • Patent number: 11491485
    Abstract: The present application relates to a microfluidic system and its method for use for the separation of motile sperm from immotile sperm or motile bacteria from immotile bacteria. The system includes a housing having a first end, and a second end, with a passage connecting the first and second ends. There is an inlet at the first end of the housing for charging fluids into the passage and an outlet at the second end of said housing for discharging fluids from the passage. There are one or more corrals within the passage, each of the corrals including a closed side and a partially open side. The closed side of the corrals is closer to the first end than the partially open side, with the closed side and partially open side defining between them a confinement region suitable for retaining motile sperm or motile bacteria.
    Type: Grant
    Filed: April 3, 2019
    Date of Patent: November 8, 2022
    Assignee: CORNELL UNIVERSITY
    Inventors: Alireza Abbaspourrad, Meisam Zaferani, Soon Hon Cheong
  • Patent number: 11464808
    Abstract: A tissue construct is provided that comprises a pancreas derived microvessel fragment and a pancreatic islet cell. The pancreas derived microvessel fragment and the pancreatic islet cell can be incorporated into a biocompatible medium. Tissue constructs can be comprised of other cells, such as stem cells, combined with the pancreas derived microvascular fragment. Methods for isolating microvessel fragments from a pancreas are also provided and include enzymatic digestion of pancreatic tissue and separation of microvessel fragments from endocrine and exocrine tissue. Methods for treating diabetes are further provided and include administration of the tissue constructs.
    Type: Grant
    Filed: April 27, 2018
    Date of Patent: October 11, 2022
    Assignee: University of Louisville Research Foundation
    Inventors: Balamurugan Appakalai, Stuart K. Williams
  • Patent number: 11446332
    Abstract: Provided herein are methods and compositions for dynamically controlling and targeting multiple immunosuppressive mechanisms in cancer. Some aspects provide cells engineered to produce multiple effector molecules, each of which modulates a different immunosuppressive mechanisms of a tumor, as well as methods of using the cells to treat cancer, such as ovarian, breast, or colon cancer.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: September 20, 2022
    Assignee: SENTI BIOSCIENCES, INC.
    Inventors: Timothy Kuan-Ta Lu, Russell Morrison Gordley, Jack Tzu-Chiao Lin, Brian Scott Garrison, Philip Janmin Lee, Alba Gonzalez-Junca, Don-Hong Wang
  • Patent number: 11427805
    Abstract: Disclosed herein are cell cultures comprising dorsal and/or ventral PDX1-positive foregut endoderm cells and methods of producing the same. Also disclosed herein are cell populations comprising substantially purified dorsal and/or ventral PDX1-positive foregut endoderm cells as well as methods for enriching, isolating and purifying dorsal and/or ventral PDX1-positive foregut endoderm cells from other cell types. Methods of identifying differentiation factors capable of promoting the differentiation of dorsal and/or ventral PDX1-positive foregut endoderm cells, are also disclosed.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: August 30, 2022
    Assignee: ViaCyte, Inc.
    Inventors: Kevin Allen D'Amour, Alan D. Agulnick, Susan Eliazer, Emmanuel E. Baetge
  • Patent number: 11419916
    Abstract: This disclosure relates to compositions and methods for recruiting brown adipocytes in vitro and in vivo from brown adipocyte progenitor cells found in human skeletal muscle. Methods for treating metabolic disease are also provided. Additionally, methods for treating hypothermia are provided. In some embodiments, the brown adipocyte recruiter is a human protein or peptide. In other embodiments the brown adipocyte recruiter may be a non-human protein or peptide. In still other embodiments, the brown adipocyte recruiter is a small molecule or natural product.
    Type: Grant
    Filed: February 24, 2015
    Date of Patent: August 23, 2022
    Assignee: ENERGESIS PHARMACEUTICALS, INC.
    Inventor: Olivier D. Boss
  • Patent number: 11382931
    Abstract: Described herein are methods for selecting lymphocytes for adoptive cell therapy based on P-glycoprotein expression and compositions comprising same.
    Type: Grant
    Filed: July 14, 2017
    Date of Patent: July 12, 2022
    Assignee: University of Southern California
    Inventor: Preet M. Chaudhary
  • Patent number: 11369642
    Abstract: The present invention provides a method for lowering blood glucose levels in an animal by transplanting a population of pancreatic endocrine precursor cells into an animal.
    Type: Grant
    Filed: August 13, 2019
    Date of Patent: June 28, 2022
    Assignee: Janssen Biotech, Inc.
    Inventor: Jean Xu
  • Patent number: 11364321
    Abstract: A scaffold-free microtissue is disclosed that includes one or more gold nanostructures linked to a functional moiety, wherein the functional moiety is one or more vasculogenic peptides, one or more anti-inflammatory peptides, one or more antiapoptotic peptides, one or more antinecrotic peptides, one or more antioxidant peptides, one or more oligonucleotides, one or more lipid particles, one or more phospholipid particles, one or more liposomes, one or more nanoliposomes, one or more microRNAs, or one or more siRNAs. The scaffold-free microtissue further includes a plurality of cardiac myocytes or cardiac myoblasts, which are conjugated to the one or more gold nanostructures, wherein the plurality of cardiac myocytes or cardiac myoblasts are arranged in a cluster.
    Type: Grant
    Filed: October 11, 2018
    Date of Patent: June 21, 2022
    Assignees: Arizona Board of Regents on Behalf of Arizona State University, The United States of America as Represented by The Department of Veterans Affairs
    Inventors: Mehdi Nikkhah, Ali Navaei, Raymond Migrino
  • Patent number: 11345891
    Abstract: The present disclosure relates to compositions, nucleic acid constructs, methods and kits thereof for cell induction or reprogramming cells to the dendritic cell state or antigen presenting cell state, based, in part, on the surprisingly effect described herein of novel use and combinations of transcription factors that permit induction or reprogramming of differentiated or undifferentiated cells into dendritic cells or antigen presenting cells. Such compositions, nucleic acid constructs, methods and kits can be used for inducing dendritic cells in vitro, ex vivo, or in vivo, and these induced dendritic cells or antigen presenting cells can be used for immunotherapy applications.
    Type: Grant
    Filed: April 5, 2018
    Date of Patent: May 31, 2022
    Assignee: Asgard Therapeutics AB
    Inventors: Carlos Filipe Ribeiro Lemos Pereira, Cristiana Ferreira Pires, Fabio Alexandre Fiuza Rosa
  • Patent number: 11339371
    Abstract: Provided in the present invention is a method for inducing pluripotent stem cells to differentiate into ventricular myocytes in vitro, which is achieved by maintaining, amplifying and culturing pluripotent stem cells in vitro, adding a substance capable of activating the Smad1/5/8 signaling pathway directly or indirectly into the culture medium when pluripotent stem cells are in the middle stage of myocardial differentiation, i.e. the period of differentiating into cardiac muscle cells from mesoderm cells or myocardial precursor cells, which enables stem cells to differentiate into ventricular myocytes directionally.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: May 24, 2022
    Assignee: INSTITUTE OF BIOPHYSICS, CHINESE ACADEMY OF SCIENCES
    Inventor: Yue Ma
  • Patent number: 11318225
    Abstract: Thin parylene C membranes having smooth front sides and ultrathin regions (e.g., 0.01 ?m to 5 ?m thick) interspersed with thicker regions are disclosed. The back sides of the membranes can be rough compared with the smooth front sides. The membranes can be used in vitro to grow monolayers of cells in a laboratory or in vivo as surgically implantable growth layers, such as to replace the Bruch's membrane in the eye. The thin regions of parylene are semipermeable to allow for proteins in serum to pass through, and the thick regions give mechanical support for handling by a surgeon. The smooth front side allows for monolayer cell growth, and the rough back side helps prevents cells from attaching there.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: May 3, 2022
    Assignees: California Institute of Technology, University of Southern California
    Inventors: Yu-Chong Tai, Bo Lu, Mark Humayun
  • Patent number: 11299749
    Abstract: Disclosed is an expression regulatory system for cell-specific transcription (expression) of a protein of interest, for example a cell cycle inducer that reactivates proliferation in adult or neonatal cardiomyocytes or insulin-producing beta cells. The expression regulatory system comprises a first nucleic acid that encodes a microRNA recognition element that specifically binds a target cell miR, and a translation suppressor protein; and a second nucleic acid that comprises a suppressor protein interaction motif that binds the translation suppressor protein, and a gene that encodes a protein of interest. When a cell of interest is co-transfected with the first and second nucleic acids of the system, the protein of interest expressed in a cell-specific fashion.
    Type: Grant
    Filed: March 15, 2019
    Date of Patent: April 12, 2022
    Assignee: ICAHN SCHOOL OF MEDICINE AT MOUNT SINAI
    Inventors: Lior Zangi, Ajit Magadum
  • Patent number: 11299714
    Abstract: A cardiac organoid containing 3-D matter of adult human heart tissue.
    Type: Grant
    Filed: May 11, 2016
    Date of Patent: April 12, 2022
    Assignee: The Trustees of Columbia University in The City of New York
    Inventors: Gordana Vunjak-Novakovic, Keith Yeager, Kacey Ronaldson, Stephen Ma, Timothy Chen
  • Patent number: 11291756
    Abstract: A method for separating cells in a biofluid includes pretreating the biofluid by introducing an additive comprising a cell activator, flowing the pretreated biofluid through a microfluidic separation channel, and applying acoustic energy to the microfluidic separation channel to accumulate target cells in a primary stream and non-target cells in a secondary stream. A system for microfluidic cell separation capable of separating target cells from non-target cells in a biofluid includes at least one microfluidic separation channel, a source of biofluid, a source of additive comprising a cell activator, and at least one acoustic transducer coupled to the microfluidic separation channel.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: April 5, 2022
    Assignee: THE CHARLES STARK DRAPER LABORATORY, INC.
    Inventors: Jason O. Fiering, Kenneth T. Kotz, Nathan Francis Moore
  • Patent number: 11287427
    Abstract: In spite of significant efforts to identify ?-cell-specific markers for ?-cell imaging and purification, progress has been limited. Herein is disclosed a novel biomarker of human pancreatic ?-cells, CD39L3 (also known as ectonucleoside triphosphate diphosphohydrolase-3 (NTPDase3)). Disclosed are compositions and methods for purifying and imaging ?-cell using anti-CD39L3 antibodies.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: March 29, 2022
    Assignees: VANDERBILT UNIVERSITY, THE UNITED STATES AS REPRESENTED BY THE DEPARTMENT OF VETERANS AFFAIRS
    Inventors: Alvin C. Powers, Marcela Brissova, Chunhua Dai, Neil Phillips, Diane Saunders
  • Patent number: 11278573
    Abstract: Compositions and methods are provided for repairing damaged avascular zones, including intervertebral disc, in a patient in need thereof.
    Type: Grant
    Filed: June 14, 2019
    Date of Patent: March 22, 2022
    Assignee: REGENEXX, LLC
    Inventor: Christopher J. Centeno
  • Patent number: 11268059
    Abstract: Apparatuses, systems, and methods are provided for culturing a buoyant target tissue. Embodiments include a first surface configured to culture a first layer of supporting cells, and a second surface configured to culture a second layer of supporting cells. The first layer of supporting cells may be formed on a portion of the first surface and the second layer of supporting cells may be formed on a portion of the second surface. The buoyant target tissue may be added to the first layer of supporting cells. The second layer of supporting cells may be placed on the first layer of supporting cells such that the buoyant target tissue is sandwiched between the first layer of supporting cells and second layer of supporting cells.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: March 8, 2022
    Assignee: EXO CELL, LLC
    Inventors: Frank Ho Pak Lau, Steven Douglas Scahill
  • Patent number: 11254911
    Abstract: Provided herein are isolated neural stem cells. Also provided are methods for treatment of neurodegenerative diseases using suitable preparations comprising the isolated neural stem cells.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: February 22, 2022
    Assignee: ACCELERATED BIOSCIENCES CORP.
    Inventors: Jau-Nan Lee, Tony Tung-Ying Lee, Yuta Lee, Eing-Mei Tsai
  • Patent number: 11220672
    Abstract: The present invention relates to chemically defined and xenogeneic material-free methods for deriving endothelial cells from human pluripotent stem cells. In particular, the present invention provides highly efficient and reproducible methods of obtaining human endothelial cells from human pluripotent stem cells, where endothelial cells derived from the methods provided herein are suitable for clinically relevant therapeutic applications.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: January 11, 2022
    Assignee: Wisconsin Alumni Research Foundation
    Inventors: James A. Thomson, Jue Zhang
  • Patent number: 11207424
    Abstract: This document relates to methods and materials for increasing viral vector infectivity. For example, methods and materials for using spliceosome inhibitors (e.g., U2 snRNP spliceosome inhibitors such as meayamycin B or pladienolide derivative E7107) to increase viral vector (e.g., adeno-associated virus-based vector) infectivity are provided.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: December 28, 2021
    Assignees: Mayo Foundation for Medical Education and Research, University of Pittsburgh—Of the Commonwealth System of Higher Educat
    Inventors: Yasuhiro Ikeda, Claire A. Schreiber, Toshie Sakuma, Sara J. Holditch, Kazunori Koide
  • Patent number: 11203224
    Abstract: Certain aspects and features relate to using an image modifier to generate digital designs and to printing the digital designs on a structure for flooring or other decoration that can more realistically mimic designs found in nature or otherwise provide designers with the freedom to create aesthetic designs more easily. An image modifier can receive an image, such as an image of a naturally occurring view and generate modified designs based on the image. The modified designs can be slight modifications to the image and printed on the structures for flooring such that together the printed structures exhibit the appearance of a design found in nature or a desired appearance by a designer.
    Type: Grant
    Filed: August 30, 2019
    Date of Patent: December 21, 2021
    Assignee: INTERFACE, INC.
    Inventors: Graeme Robert Ripley, John Proctor Bradford
  • Patent number: 11185069
    Abstract: Embodiments of the present invention relate to methods of preparing a cell, tissue, organ or plant for cryopreservation, wherein the method includes contacting the cell, tissue, organ or plant with a composition including sucrose and/or sucralose.
    Type: Grant
    Filed: May 15, 2019
    Date of Patent: November 30, 2021
    Assignee: East Carolina University
    Inventors: Anthony Kennedy, Jean-Luc Scemama, Jitka Virag, Edward R. Pennington