Method Of Culturing Cells In Suspension Patents (Class 435/383)
  • Publication number: 20150056702
    Abstract: A method is provided, including adding a phthalide to a stem cell medium to provide a phthalide-containing medium, and then culturing a stem cell using the phthalide-containing medium. The use of a phthalide in a medium for culturing stem cells optionally maintains the pluripotency of stem cells. The phthalide also enhances the generation efficiency of induced pluripotent stem cells to decrease the culture cost.
    Type: Application
    Filed: October 31, 2014
    Publication date: February 26, 2015
    Inventors: SHIH-PING LIU, SHINN-ZONG LIN, HORNG-JYH HARN, YING-JIUN CHIEN, CHIEN-YU HSU, CHENG-HSUAN CHANG
  • Publication number: 20150056701
    Abstract: The present invention relates to a cell culture medium additive comprising a xanthan polysaccharide and a mannan polysaccharide, such as a glucomannan or a galactomannan, that supports the growth of cells in suspension, and to a cell culture medium containing the additive. More particularly, but not exclusively, the present invention relates to a cell culture medium additive that supports the formation of multicellular bodies such as spheroids, and prevents sedimentation of cells without adversely affecting the physical properties of the cell culture medium.
    Type: Application
    Filed: April 2, 2013
    Publication date: February 26, 2015
    Inventor: Anthony Davies
  • Patent number: 8962323
    Abstract: The invention provides a method of isolating dermal stem cells, having the steps of subjecting cells separated from the skin by enzyme treatment to suspension culture, and isolating cells positive for stem cell markers from the cultured cells.
    Type: Grant
    Filed: September 15, 2010
    Date of Patent: February 24, 2015
    Assignee: Shiseido Company, Ltd.
    Inventors: Tsutomu Soma, Haruyo Yamanishi
  • Patent number: 8961962
    Abstract: The present invention relates to methods of promoting the survival of cells by treating the cells with acid ceramidase. A kit for promoting ex vivo cell survival is also disclosed, as is a method of predicting in vitro fertilization outcome of a female subject.
    Type: Grant
    Filed: January 7, 2008
    Date of Patent: February 24, 2015
    Assignee: Mount Sinai School of Medicine
    Inventors: Edward H. Schuchman, Efrat Eliyahu, Nataly Shtraizent, Xingxuan He
  • Patent number: 8951793
    Abstract: Disclosed are methods of isolating and using a population of FOXP3+ regulatory T cells in a variety of preventative and therapeutic approaches to autoimmune diseases, graft-versus-host disease and transplant rejection.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: February 10, 2015
    Assignee: The United States of America, as represented by The Secretary, Department of Health and Human Services
    Inventors: Dat Tran, Ethan M. Shevach
  • Patent number: 8945867
    Abstract: The present invention relates to a process for producing a desired polypeptide using rat cells. Specifically, the present invention relates to a process for producing the polypeptide which comprises culturing rat cells such as YB2/3HL.P2.G11.16Ag.20 (hereinafter referred to as YB2/0), preferably rat cells to which a recombinant DNA comprising DNA encoding a desired polypeptide such as an immunologically functional molecule is introduced, in a medium which does not contain serum (hereinafter referred to as a serum-free medium). Among the desired polypeptides obtained by the process of the present invention, an antibody obtained by using a transformant of YB2/0 has a high antibody-dependent cell-mediated cytotoxic activity (hereinafter sometimes referred to as ADCC activity) and is useful as a pharmaceutical agent.
    Type: Grant
    Filed: February 2, 2009
    Date of Patent: February 3, 2015
    Assignee: Kyowa Hakko Kirin Co., Ltd.
    Inventors: Tatsuya Ogawa, Yoshinobu Konno, Naohisa Akashi, Hiroshi Takasugi, Seiji Sugimoto, Keiichi Yano
  • Patent number: 8945920
    Abstract: The invention concerns a method for culturing cells derived from the adipose tissue and in particular the stromal vascular fraction (SVF) to induce formation of cardiomyocytes, the use of the cells obtained by said culture method to reconstitute an ischemized cardiac zone, in particular following an infarction, as well as a pharmaceutical composition containing said cells. The method for obtaining cardiac cells comprises at least the following steps: a) selecting cardiomyogenic cells from the stromal vascular fraction (SVF); b) culturing the cells selected at step a) in a liquid medium optimized for expanding ex vivo the cardiomyogenic cells; c) maintaining and expanding said cells by successive passes in the liquid medium; and d) obtaining cardiac cells.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: February 3, 2015
    Assignee: Centre National de la Recherche Scientifique
    Inventors: Louis Casteilla, Valérie Planat-Benard, Luc Penicaud, Carine Chanut
  • Patent number: 8945894
    Abstract: A method for directing, enhancing, and accelerating mesenchymal stem cell functions using alternating electric current. Mesenchymal stem cells are preferentially directed to either osteoblast or chondrocyte lineages, but not to the adipocyte lineage. when exposed to alternating electric current.
    Type: Grant
    Filed: September 28, 2012
    Date of Patent: February 3, 2015
    Inventors: Courtney M. Creecy, Rena Bizios
  • Patent number: 8940537
    Abstract: The present disclosure provides methods for maintaining and propagating undifferentiated pluripotent stem cells (SC) in suspension. The methods comprise culturing such SC in a non-adherent culture dish under conditions comprising a basic serum free medium and one or more of a basic medium, a serum replacement, an extra cellular matrix component and a factor supporting expansion of said SC. A specific and preferred culture condition comprise supplementing Neurobasal™ medium with KO serum replacement (KOSR). These conditions allowed for large scale and long term propagation of undifferentiated pluripotent SC. The culture system comprising suspended undifferentiated pluripotent SC were found to have many applications including in methods for directed as well as spontaneous differentiation of the SC into somatic cells. Also disclosed herein is a method of deriving SC, preferably human embryonic SC from human embryos via the formation of cell clusters.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: January 27, 2015
    Assignee: Hadasit Medical Research Services & Development Limited
    Inventors: Benjamin Reubinoff, Debora Steiner
  • Patent number: 8940535
    Abstract: Methods and compositions are provided for isolation of proliferating cells. In particular, the methods enrich stem cells in a mixture of stem cells and non-stem cells, and in some cases the non-stem cells may be differentiated cells. The methods exploit the non-adherent property of stem cells, as opposed to the adherent property of differentiating cells, by serially passaging the suspended cells in liquid media.
    Type: Grant
    Filed: November 4, 2004
    Date of Patent: January 27, 2015
    Assignees: University of Maryland, Baltimore, The United States of America as Represented by the Dept of Veterans Affairs
    Inventors: G. David Trisler, Christopher T. Bever, Jr., James E. Goolsby, Bernard M. Pessac
  • Patent number: 8936939
    Abstract: The invention provides tissue culture system for primary cells (e.g. normal mammalian primary epithelial progenitors). This system includes: a) a serum-free, chemically defined cell culture media; and, b) methods for isolation and in vitro long-term propagation of primary cells (e.g. primary epithelial cells). Primary cells so isolated and cultured can be kept undifferentiated and proliferate for many weeks (>15 weeks) or population doubling (>35 PD) without senescence, or any detectable genetic alterations. Upon changing media/culture conditions, these cells can be induced to differentiate. The invention also provides methods to transform normal primary cells so cultured into “cancer stem cells.” The genetically defined cancer stem cell tumor model mimics the behavior of the disease closely, e.g., the cells are invasive, hormone responsive and metastatic when injected into mice. The tumor cells express genes that are specific to cancer stem cells identified in patient samples.
    Type: Grant
    Filed: July 23, 2012
    Date of Patent: January 20, 2015
    Assignees: Whitehead Institute for Biomedical Research, The Brigham and Women's Hospital, Inc.
    Inventors: Tan A. Ince, Robert A. Weinberg
  • Patent number: 8927281
    Abstract: The present invention relates to compounds and compositions for expanding the number of CD34+ cells for transplantation. The invention further relates to a cell population comprising expanded hematopoietic stem cells (HSCs) and its use in autologous or allogeneic transplantation for the treatment of patients with inherited immunodeficient and autoimmune diseases and diverse hematopoietic disorders to reconstitute the hematopoietic cell lineages and immune system defense.
    Type: Grant
    Filed: October 29, 2009
    Date of Patent: January 6, 2015
    Assignees: IRM LLC, The Scripps Research Institute
    Inventors: Anthony E. Boitano, Michael Cooke, Shifeng Pan, Peter G. Schultz, John Tellew, Yongqin Wan, Xing Wang
  • Patent number: 8921093
    Abstract: The invention relates to an arrangement (a measurement device) for on-line measurements on cells, in particular for measuring soluble analytes and dissolved gases on samples in a sample area.
    Type: Grant
    Filed: July 23, 2007
    Date of Patent: December 30, 2014
    Assignee: BioCer Entwicklungs GmbH
    Inventors: Daniel Seitz, Helmar Mayr, Guenter Ziegler, Winfried Vonau, Frank Gerlach, Sigrun Herrmann
  • Patent number: 8906685
    Abstract: The present disclosure relates general to devices, systems, and methods of using such devices in creating and handling hanging drops of fluid. The present disclosure also relates to cell culture devices, methods and/or systems of using such devices as well as the use of cell culture devices, for example, for research and high throughput screening.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: December 9, 2014
    Assignees: The Regents of The University of Michigan, 3D Biomatrix, Inc.
    Inventors: Shuichi Takayama, Yi-Chung Tung, Amy Yu-Ching Hsiao, Edward Jan
  • Publication number: 20140356336
    Abstract: The object of the invention is to provide a technique of suppressing tumorigenesis in IPS cells and inducing differentiation into target differentiated cells. In use of a statin and a differentiation inducer, iPS cells are differentiated into target differentiated cells, whereby iPS cells can be differentiated into differentiated cells in which tumorigenesis is suppressed.
    Type: Application
    Filed: December 27, 2012
    Publication date: December 4, 2014
    Inventor: Hiroshi Egusa
  • Patent number: 8895300
    Abstract: The present invention relates to methods for production of undifferentiated or differentiated embryonic stem cell aggregate suspension cultures from undifferentiated or differentiated embryonic stem cell single cell suspensions and methods of differentiation thereof.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: November 25, 2014
    Assignee: Viacyte, Inc.
    Inventor: Thomas C Schulz
  • Patent number: 8883502
    Abstract: The invention provides methods for obtaining neural stem cells from a mammalian embryonic or inducible pluripotent stem cell population comprising culturing mammalian embryonic or inducible pluripotent stem cells in a cell culture medium having a leukemia inhibitory factor (LIF), an inhibitor of glycogen synthase kinase 3 (GSK3), and an inhibitor of transforming growth factor ? (TGF-?) under suitable conditions and obtaining isolated neural stem cells therefrom.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: November 11, 2014
    Assignee: The Regents of the University of California
    Inventors: Kang Zhang, Sheng Ding
  • Patent number: 8883504
    Abstract: The object of the present invention is to provide a differentiation inhibiting agent which allows culture of a stem cell or an embryonic stem cell in an undifferentiated state without use of any feeder cell, a method for culturing using the same, a cell culture liquid using the same, and a cell prepared by culturing using this differentiation inhibiting agent. The present invention provides a differentiation inhibiting agent which comprises a low molecular weight compound, especially a tetrahydroisoquinoline derivative, as an active ingredient; a method for safely culturing a stem cell in large scale in undifferentiated state in the absence of feeder cell which comprises culturing a stem cell by using a tetrahydroisoquinoline derivative; a culture liquid for stem cells comprising a tetrahydroisoquinoline derivative; and a cell which is obtained by culture using a tetrahydroisoquinoline derivative as a differentiation inhibiting agent.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: November 11, 2014
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Tomoyuki Miyabayashi, Masashi Yamamoto
  • Publication number: 20140314675
    Abstract: An objective of the present invention is to provide: a cancer stem cell isolated using a cell marker; a substantively homogeneous cancer stem cell population including said cancer stem cell; and a method of preparing said cancer stem cell population. Another objective of the present invention is to provide: a method for separating cancer stem cells with a high proliferative potential and those with a low proliferative potential; a method for inducing cancer stem cells to have a different proliferative potential; and cancer stem cells separated or induced by these separation or induction methods. A further objective of the present invention is to provide: a method of screening for pharmaceuticals using said cancer stem cell or cancer stem cell population; a method for detecting the presence of said cancer stem cell or cancer stem cell population and for identifying or quantifying the same.
    Type: Application
    Filed: September 7, 2012
    Publication date: October 23, 2014
    Inventors: Tatsumi Yamazaki, Hisafumi Okabe, Shinta Kobayashi, Takeshi Watanabe, Koichi Matsubara, Atsuhiko Kato, Masami Suzuki
  • Publication number: 20140308695
    Abstract: The present invention concerns bioactive renal cell populations, in particular a B2 cell population comprising an enriched population of tubular cells and wherein the renal cell population is depleted of a B1 cell population, renal cell constructs, and methods of screening test agents using the bioactive renal cell populations.
    Type: Application
    Filed: November 5, 2012
    Publication date: October 16, 2014
    Inventors: Andrew T. Bruce, Russell W. Kelley, Timothy A. Bertram, Sumana Choudhury
  • Patent number: 8859280
    Abstract: A composition and method for in vitro fertilization is provided which uses culture media comprising elevated concentrations of lipoic acid. More specifically, the invention provides culture media for developmental cells having a lipoic acid concentration of 5 ?M to 40 ?M. Culture media that include lipoic acid at concentrations within the identified range are able to provide blastocysts with increased survival, increased cell numbers, increased inner cell masses and/or increased percentage of the total mass made up by the inner cell compared to blastocysts cultured in a control medium.
    Type: Grant
    Filed: August 23, 2013
    Date of Patent: October 14, 2014
    Assignee: Vitrolife Sweden AB
    Inventors: David K Gardner, Mark G Larman, Donald Linck
  • Publication number: 20140295545
    Abstract: A pre-programmed non-feedback continuous feeding method based on mass balance of the substrate in the bioreactor for use in culture growth and maintenance is provided. The disclosed method does not rely on instrument, probe or operator feedback. The method provides an efficient and effective alternative to bolus feeding.
    Type: Application
    Filed: September 14, 2012
    Publication date: October 2, 2014
    Applicant: AMGEN INC.
    Inventors: Henry Lin, Jeremy Bezaire
  • Patent number: 8846396
    Abstract: Method for the isolation, expansion and preservation of cardiac stem cells from human or animal tissue biopsy samples to be employed in cell transplantation and functional repair of the myocardium or other organs. Cells may also be used in gene therapy for treating cardiomyopathies, for treating ischemic heart diseases and for setting in vitro models to study drugs.
    Type: Grant
    Filed: August 22, 2011
    Date of Patent: September 30, 2014
    Assignee: Universita Degli Studi Di Roma “La Sapienza”
    Inventors: Alessandro Giacomello, Elisa Messina, Massimo Battaglia, Giacomo Frati
  • Patent number: 8846399
    Abstract: A multilayered cell culture apparatus for the culturing of cells is disclosed. The cell culture apparatus is defined as an integral structure having a plurality of cell culture chambers in combination with tracheal space(s). The body of the apparatus has imparted therein gas permeable membranes in combination with tracheal spaces that will allow the free flow of gases between the cell culture chambers and the external environment. The flask body also includes an aperture that will allow access to the cell growth chambers by means of a needle or cannula. The size of the apparatus, and location of an optional neck and cap section, allows for its manipulation by standard automated assay equipment, further making the apparatus ideal for high throughput applications.
    Type: Grant
    Filed: May 29, 2013
    Date of Patent: September 30, 2014
    Assignee: Corning Incorporated
    Inventors: Gregory Roger Martin, Allison Jean Tanner
  • Patent number: 8841124
    Abstract: The present invention relates to a method for producing hair microfollicles comprising the steps of: a) providing de novopapillae, b) providing other cell populations selected from the group of fibroblasts, keratinocytes and melanocytes, and co-culturing the de novopapillae with at least one other cell population in non-adherent culture vessels. The present invention relates also to methods of producing de novo papillae usable in said method for producing hair microfollicles.
    Type: Grant
    Filed: March 23, 2009
    Date of Patent: September 23, 2014
    Assignee: Technische Universitat Berlin
    Inventors: Gerd Lindner, Roland Lauster
  • Patent number: 8815585
    Abstract: The invention concerns methods for automated culture of embryonic stem cells (ESCs) such as human ESCs. In some aspects, methods of the invention employ optimized culture media and limited proteolytic treatment of cells to separate cell clusters for expansion. Automated systems for passage and expansion of ESCs are also provided.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: August 26, 2014
    Assignee: Cellular Dynamics International, Inc.
    Inventors: Nathaniel Beardsley, Veit Bergendahl, Megan Fitzgerald, Christine Daigh
  • Patent number: 8815597
    Abstract: The present invention provides a baglike container for centrifugation that is mounted in a centrifuge to thereby allow centrifugation of a dispersion liquid accommodated therein. The baglike container for centrifugation is less likely to tear or break as a result of centrifugation by disposing a container wall surface of the baglike container so as to apply centrifugal force perpendicular to the container wall surface.
    Type: Grant
    Filed: August 23, 2007
    Date of Patent: August 26, 2014
    Assignee: Takara Bio Inc.
    Inventors: Hideto Chono, Junichi Mineno, Kazutoh Takesako, Takao Yoshida, Takashi Morimura, Kenji Sakai, Shin-ichi Yamada, Noritsugu Yabe, Yuko Taguchi
  • Patent number: 8802434
    Abstract: The protein NM23 is disclosed as an agent for the maintenance of undifferentiated biological cells in culture. The NM23 protein may act as a survival factor for such cultured cells, or to prevent the differentiation and maturation of the cultured cells. The use of NM23 protein is applicable to culture of stem and/or progenitor cells, and particularly to such cells cultured and adapted for therapeutic use. The invention provides methods, media and media supplements for use in the culture of biological cells, and further provides methods of preparing biological cells for therapeutic use, as well as methods of therapy utilising biological cells and medicaments comprising biological cells adapted for therapeutic use.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: August 12, 2014
    Assignee: The University of Birmingham
    Inventor: Christopher Martin Bunce
  • Patent number: 8795530
    Abstract: The present invention relates to methods and systems for optimization of dilution of a viscous starting material to isolate and/or concentrate the product of interest from the starting source material such that the process minimizes the volume of diluent and the total volume of the waste stream generated during the process as well as maximizing the yield of desired product. The system employs cross-flow filtration modules with sub-channels that are equidistant to the inlet and outlet of said modules and such modules are characterized by optimal channel height, optimal transmembrane pressure, etc., which are selected in order to achieve the best combination of product quality and production yield.
    Type: Grant
    Filed: January 21, 2010
    Date of Patent: August 5, 2014
    Assignee: Smartflow Technologies, Inc.
    Inventors: Henry B. Kopf, James A. Kacmar
  • Patent number: 8785117
    Abstract: A bioartificial liver system is described that incorporates a cell reservoir and hepatocyte spheroids to both increase the number of and longevity of cells in the system. Additional methods are also described for forming spheroid aggregates from isolated hepatocytes.
    Type: Grant
    Filed: November 21, 2006
    Date of Patent: July 22, 2014
    Assignee: Mayo Foundation for Medical Education and Research
    Inventor: Scott L Nyberg
  • Patent number: 8785194
    Abstract: The present invention provides a cell culture medium formulation that supports the in vitro cultivation, particularly in suspension, of mammalian cells, particularly epithelial cells and fibroblast cells, and methods for cultivating mammalian cells in suspension in vitro using these media. The media comprise a basal medium and a polyanionic or polyanionic compound, preferably a polysulfonated or polysulfated compound, and more preferably dextran sulfate. The present invention also provides chemically defined, protein-free eukaryotic cell culture media comprising an iron chelate and zinc, which is capable of supporting the growth (and particularly the high-density growth of mammalian cells) in suspension culture, increasing the level of expression of recombinant protein in cultured cells, and/or increasing virus production in cultured cells.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: July 22, 2014
    Assignee: Life Technologies Corporation
    Inventors: Stephen Gorfien, Richard Fike, Glenn Godwin, Joyce Dzimian, David A. Epstein, Dale Gruber, Don McClure, Paul Price
  • Patent number: 8778680
    Abstract: A method of differentiating adult stem cells, such as those derived from a teratocarcinoma cell line, the Ntera2/D1 clone (NT2). The developed cells exhibit a stable neurotransmitter phenotype without the required use of growth factors or retinoic acid in differentiation process, which may be difficult to completely remove during commercial production. An identification of specific neurotransmitters is possible in these differentiated NT2-derived neurons (NT2-N) after 30 days in culture or 30 days survival in vivo. The invention includes a method to stably differentiate neuronal stem/precursor cells to a neuronal phenotype for use in cell replacement therapy for neurodegenerative disease, stroke or spinal cord injury. At least four different types of neurons are produced from this method of differentiation: dopaminergic, cholinergic, GABAergic and glutaminergic.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: July 15, 2014
    Assignee: University of South Florida
    Inventors: Samuel Saporta, Elise Spencer, Rania Shamekh
  • Patent number: 8771701
    Abstract: The present invention relates to a method of eliciting a cytotoxic T lymphocyte response to an antigen in an animal, the method comprising pulsing mannose receptor-bearing antigen presenting cells in vitro or ex vivo with a conjugate comprising an antigen and a carbohydrate polymer comprising mannose, wherein said carbohydrate polymer is a fully oxidized carbohydrate polymer comprising free aldehydes; and administering the pulsed antigen presenting cells to an animal.
    Type: Grant
    Filed: November 17, 2006
    Date of Patent: July 8, 2014
    Assignee: MacFarlane Burnet Institute for Medical Research and Public Health Ltd
    Inventors: Ian F. C. McKenzie, Vasso Apostolopoulos, Geoffrey A. Pietersz
  • Patent number: 8772030
    Abstract: Method for the isolation, expansion and preservation of cardiac stem cells from human or animal tissue biopsy samples to be employed in cell transplantation and functional repair of the myocardium or other organs. Cells may also be used in gene therapy for treating cardiomyopathies, for treating ischemic heart diseases and for setting in vitro models to study drugs.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: July 8, 2014
    Assignee: Universita Degli Studi di Roma “La Sapienza”
    Inventors: Alessandro Giacomello, Elisa Messina, Massimo Battaglia, Giacomo Frati
  • Patent number: 8772571
    Abstract: The present disclosure provides compositions and methods for increasing bone growth and/or enhancing wound healing, for example, fracture repair. The disclosure provides recombinant nucleic acids useful for promoting bone growth. For example, the disclosure provides recombinant nucleic acids that encode a fibroblast growth factor-2 (FGF-2) analog. The disclosure also provides vectors and cells incorporating these nucleic acids, as well as FGF-2 analogs encode by them. The disclosure also provides a mouse system of bone marrow transplantation and methods for producing as well as methods for using the system. Methods for inducing division and/or inducing differentiation of a hematopoietic stem cell are also provided, as are methods for enhancing bone growth and/or wound repair (for example, fracture repair).
    Type: Grant
    Filed: September 10, 2010
    Date of Patent: July 8, 2014
    Assignees: The United States of America as represented by the Department of Veterans Affairs, Loma Linda University
    Inventors: Kin-Hing William Lau, David J. Baylink, Susan L. Hall, Shin-Tai Chen, Subburaman Mohan
  • Publication number: 20140179561
    Abstract: The present disclosure relates general to devices, systems, and methods of using such devices in creating and handling hanging drops of fluid. The present disclosure also relates to cell culture devices, methods and/or systems of using such devices as well as the use of cell culture devices, for example, for research and high throughput screening.
    Type: Application
    Filed: February 25, 2014
    Publication date: June 26, 2014
    Applicants: 3D BIOMATRIX, INC., THE REGENTS OF THE UNIVERSITY OF MICHIGAN
    Inventors: Shuichi Takayama, Yi-Chung Tung, Amy Yu-Ching Hsiao, Edward Jan
  • Publication number: 20140178394
    Abstract: The invention relates to antigen peptide derived from the Nectin4 and its use for preventing and treating cancer.
    Type: Application
    Filed: May 31, 2012
    Publication date: June 26, 2014
    Applicants: UNIVERSITE D'AIX MARSEILLE, INSERM (Insititut Nationa de la Sante et de la Rec Recherche Medicals), INSTITUT JEAN PAOLI & IRENE CALMETTES
    Inventors: Marc Lopez, Daniel Olive
  • Patent number: 8748180
    Abstract: A microfluidic device for culturing cells, termed a microscale cell culture analog (?CCA), is provided. The microfluidic device allows multiple cell or tissue types to be cultured in a physiologically relevant environment, facilitates high-throughput operation and can be used for drug discovery. The microfluidic device uses gravity-induced fluidic flow, eliminating the need for a pump and preventing formation of air bubbles. Reciprocating motion between a pair of connected reservoirs is used to effect the gravity-induced flow in microfluidic channels. Bacterial contamination is reduced and high throughput enabled by eliminating a pump. The microfluidic device integrates a pharmacokinetic-pharmacodynamic (PK-PD) model to enable PK-PD analyses on-chip. This combined in vitro/in silico system enables prediction of drug toxicity in a more realistic manner than conventional in vitro systems.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: June 10, 2014
    Assignee: Cornell University
    Inventors: Michael L. Shuler, Jong Hwan Sung
  • Publication number: 20140154802
    Abstract: The present invention relates to cell culture methods and compositions that are essentially serum-free and comprise a basal salt nutrient solution and an ErbB3 ligand.
    Type: Application
    Filed: February 10, 2014
    Publication date: June 5, 2014
    Applicant: Viacyte, Inc.
    Inventors: Allan J. Robins, Thomas C. Schulz
  • Patent number: 8741644
    Abstract: The present invention relates to a method for producing human mast cells from human pluripotent stem cells. More particularly, the present invention provides a method for producing human mast cells from human pluripotent stem cells, comprising the steps of: (a) culturing human pluripotent stem cells under a condition suitable for promoting differentiation of the human pluripotent stem cells into hematopoietic progenitor cells expressing CD34; and (b) culturing the cells obtained in step (a) in the presence of hematopoietic factors comprising thrombopoietin (TPO) and Flt3 ligand.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: June 3, 2014
    Assignee: Kyoto University
    Inventors: Tatsutoshi Nakahata, Kohichiro Tsuji, Feng Ma
  • Publication number: 20140141514
    Abstract: Provided are a microfluidic platform for cell culturing and a cell culturing method using the same. By applying a structure of a compartment which surrounds at least a portion of an annular reservoir and moving cells to be cultured to a site adjacent to a microchannel via rotation, a probability of observing cells that grew after culturing may increase and a probability of causing cells, particularly neurons, to grow so as to correspond to a signal transfer direction may increase.
    Type: Application
    Filed: July 3, 2012
    Publication date: May 22, 2014
    Applicant: UNIVERSITY OF ULSAN FOUNDATION FOR INDUSTRY COOPERATION
    Inventors: Seung Yong Yoon, Se Gyeong Joo, Ha Lim Song, Dong Hou Kim
  • Patent number: 8728814
    Abstract: Disclosed is an agent for improving at least one activity selected from the group consisting of the growth activity, adhesion activity and extension activity of mesenchymal stem cells, which comprises laminin-5 as an active ingredient. A method of culturing mesenchymal stem cells; a method of isolating mesenchymal stem cells; and a medium, vessel or sheet for use in culturing mesenchymal stem cells are also provided.
    Type: Grant
    Filed: August 17, 2006
    Date of Patent: May 20, 2014
    Assignee: Oriental Yeast Co., Ltd.
    Inventors: Kaoru Miyazaki, Junko Hashimoto, Yoshinobu Kariya
  • Patent number: 8728815
    Abstract: This invention relates to methods of inducing differential stress resistance in a subject with cancer by starving the subject for a short term, administering a cell growth inhibitor to the subject, or reducing the caloric or glucose intake by the subject. The induced differential stress resistance results in improved resistance to cytotoxicity in normal cells, which, in turn, reduces cytotoxic side-effects due to chemotherapy, as well as improved effectiveness of chemotherapeutic agents.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: May 20, 2014
    Assignee: University of Southern California
    Inventor: Valter Longo
  • Patent number: 8722850
    Abstract: There is described a group of novel self-assembling peptides (SAPs), comprising biotinylated and unbiotinylated sequences, hybrid peptide-peptoid sequences, branched sequences for a total of 48 tested motifs, showing a heterogeneous ensemble of spontaneously self-assembled structures at the nano- and microscale, ranging from short tabular fibers to twisted ribbons, nanotubes and hierarchical self-assembled micrometer-long sheets. Specifically, the SAPs according to the present invention which initially spontaneous assemble, surprisingly form stable solid scaffolds upon exposure to neutral pH buffer. Further these SAPs allow adhesion, proliferation and differentiation of murine and human neural stem cells and have self-healing propensity. They also did not exert toxic effects in the central nervous system, can stop bleeding and foster nervous regeneration.
    Type: Grant
    Filed: April 19, 2011
    Date of Patent: May 13, 2014
    Assignee: Universita' Degli Studi di Milano Bicocca
    Inventors: Angelo Luigi Vescovi, Fabrizio Gelain
  • Publication number: 20140120066
    Abstract: Provided herein are compositions and methods for isolating and culturing cardiac progenitor cells, and for improved transplantation.
    Type: Application
    Filed: September 26, 2013
    Publication date: May 1, 2014
    Applicant: Regents of the University of California
    Inventors: Yerem Yeghiazarians, Jianqin Ye, Andrew Boyle, Kevin E. Healy, Amit K. Jha
  • Publication number: 20140120176
    Abstract: The invention relates to solutions carrying high levels of oxygen, e.g. to aqueous solutions having an oxygen concentration of at least 30 mg/L, especially at least 70 mg/L, and to uses thereof. The aqueous solutions contain colloidal minerals which help stabilise the high oxygen levels. The super-oxygenated fluids may be used to affect the viability, growth and maintenance of cells, tissues and organs.
    Type: Application
    Filed: April 16, 2012
    Publication date: May 1, 2014
    Inventors: Michael Thorp, Mahmood Amiry-Moghaddam, Jan Økern, Laura Maria Azzurra Camassa
  • Patent number: 8709808
    Abstract: Disclosed herein are bioreactors including a first sheet and a second sheet, wherein the second sheet is disposed adjacent to the first sheet, and the first and second sheets are sealed along a first longitudinal edge, a second longitudinal edge, a first horizontal edge, a second horizontal edge, and at least one intermediate horizontal seal, thereby forming at least two chambers for holding fluid in series along a vertical axis, wherein each of the two or more chambers is oriented at an angle relative to the vertical axis, and at least one of the chambers is oriented at an angle greater than 0°, and wherein there is at least one opening in each of the first horizontal edge, the second horizontal edge, and intermediate horizontal seal(s); Also disclosed are methods of culturing cells including circulating a suspension of cells in a disclosed bioreactor.
    Type: Grant
    Filed: November 18, 2010
    Date of Patent: April 29, 2014
    Assignee: The Arizona Board of Regents
    Inventors: Joel L. Cuello, Joseph W. Ley
  • Patent number: 8709806
    Abstract: Methods are provided for inducing non-pluripotent cells to become pluripotent. Methods also include identifying and isolating induced pluripotent (iPS) cells and uses thereof. Compositions and kits for carrying out the subject methods are also provided.
    Type: Grant
    Filed: December 28, 2010
    Date of Patent: April 29, 2014
    Assignee: Academia Sinica
    Inventors: Han-Chung Wu, Tung-Ying Lu, Cheng-Fu Kao, John Yu, Ruei-Min Lu, Mei-Ying Liao, Hung-Chih Kuo
  • Publication number: 20140106348
    Abstract: The present invention provides a culture method of cells and/or tissues including culturing cells and/or tissues in a suspended state by using a medium composition wherein indeterminate structures are formed in a liquid medium, the structures are uniformly dispersed in the solution and substantially retain the cells and/or tissues without substantially increasing the viscosity of the solution, thus affording an effect of preventing sedimentation thereof, and the like.
    Type: Application
    Filed: July 24, 2013
    Publication date: April 17, 2014
    Inventors: Taito NISHINO, Tatsuro KANAKI, Ayako OTANI, Koichiro SARUHASHI, Misayo Tomura, Takehisa IWAMA, Masato HORIKAWA, Norio NAKATSUJI, Tomomi OTSUJI
  • Publication number: 20140106452
    Abstract: Disclosed are intra-culture perfusion methods applied to standard cell culture disposables using three-dimensional cell culture scaffold and synthetic vasculature compositions in high-throughput screening and high-content screening applications, and assay development.
    Type: Application
    Filed: October 10, 2013
    Publication date: April 17, 2014
    Inventor: Jelena Vukasinovic