Support Is A Coated Or Treated Surface Patents (Class 435/402)
  • Patent number: 10538732
    Abstract: A cell isolation method includes: a cell trapping step of allowing a test liquid to pass through a cell trapping filter which has a plurality of through-holes in the thickness direction, thereby trapping isolation target cells contained in the test liquid on one surface of the cell trapping filter; a gel embedding step of introducing a stimulus-responsive hydrogel onto the one surface of the cell trapping filter on which the cells have been trapped in the cell trapping step, thereby embedding the cells in the stimulus-responsive hydrogel; a gel hardening step of applying a stimulus to the stimulus-responsive hydrogel in which the cells are embedded, thereby hardening the stimulus-responsive hydrogel; and a detachment step of detaching the stimulus-responsive hydrogel that was hardened in the gel hardening step from the cell trapping filter.
    Type: Grant
    Filed: October 29, 2015
    Date of Patent: January 21, 2020
    Assignee: National University Corporation Tokyo University of Agriculture and Technology
    Inventors: Tomoko Yoshino, Tsuyoshi Tanaka, Tadashi Matsunaga, Ryo Negishi, Hisashige Kanbara, Seita Nakamura
  • Patent number: 10420820
    Abstract: Provided herein are new compositions and methods to target pharmaceutical agents to pathological areas by utilizing bifunctional fusion polymers or nanoparticles. These fusion polymers and nanoparticles contain two or more domains: (i) sequences that bind to exposed collagenous (XC-) proteins present in pathological areas, including cancerous lesions and (ii) domains that bind to pharmaceutical agents. The drug-binding functionality of these fusion polymers and nanoparticles is based on high-affinity, non-covalent interactions.
    Type: Grant
    Filed: September 29, 2015
    Date of Patent: September 24, 2019
    Assignee: Counterpoint Biomedia LLC
    Inventors: Frederick L. Hall, Erlinda M. Gordon
  • Patent number: 10167501
    Abstract: The present invention relates to methods and apparatuses for amplifying, detecting, and optionally quantifying, nucleic acids. In one aspect the method comprises (a) providing a reaction volume comprising (i) a first electrode comprising an electrochemically-active conducting polymer, a first single-stranded nucleic acid molecule capable of hybridizing to a target nucleic acid, wherein the first nucleic acid molecule is covalently attached to the electrochemically-active conducting polymer, and (ii) a second electrode, (b) providing a reaction mixture to the reaction volume, the reaction mixture comprising a target nucleic acid, a nucleic acid polymerase, a redox couple, and nucleic acid amplification reagents, (c) amplifying the nucleic acid, and (d) measuring the impedance of the first electrode at least once during the nucleic acid amplification reaction.
    Type: Grant
    Filed: June 12, 2015
    Date of Patent: January 1, 2019
    Assignee: AUCKLAND UNISERVICES LIMITED
    Inventors: Nihan Aydemir, Jadranka Travas-Sejdic, Clive William Evans, David Edward Williams
  • Patent number: 10137223
    Abstract: A scaffold comprising an aligned fiber. The invention further relates to a scaffold comprising one or more electrospun fibers wherein a fast Fourier transform (FFT) analysis result of the fibers have adjacent major peaks with about 180? apart from each other. Methods for promoting differentiation of stem cells into osteoblasts, chondrocytes, ligament or tendon, the method comprising culturing the cells on the scaffold or aligned fiber in conditions suitable for the cell differentiation.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: November 27, 2018
    Assignee: LifeNet Health
    Inventors: Michael Francis, Roy Ogle
  • Patent number: 10131874
    Abstract: A cell culture support comprising a substrate, and a dual stimuli responsive block copolymer immobilized on the substrate, wherein the dual stimuli responsive block copolymer is both thermoresponsive and pH responsive. A method of culturing cells comprising the cell culture support having a dual stimuli responsive copolymer immobilized on a substrate, wherein the dual stimuli responsive copolymer is thermoresponsive and pH responsive; and growing the cells on the cell culture support. By lowering the temperature, cells are released from the cell culture support.
    Type: Grant
    Filed: September 12, 2016
    Date of Patent: November 20, 2018
    Assignee: GENERAL ELECTRIC COMPANY
    Inventors: Reginald Donovan Smith, Prameela Susarla, Slawomir Rubinsztajn, Brian David Polizzotti, Anton Beletskii
  • Patent number: 9803173
    Abstract: The subject matter of the present invention is a device for guiding cell migration comprising a substrate having a textured surface intended to be brought into contact with cells, said textured surface having an anisotropic three-dimensional structure consisting of a network of projections inclined relative to the normal to the plane formed by said textured structure, in the direction imparted by said anisotropic structure. The invention also concerns, according to another aspect, a method for guiding cell migration including the bringing into contact of cells with a substrate having a textured surface and an anisotropic three-dimensional structure, said structure consisting of projections inclined as previously described. The device or method according to the invention can in particular be applied in the fields of dermatology, implantology and tissue engineering.
    Type: Grant
    Filed: September 17, 2012
    Date of Patent: October 31, 2017
    Assignees: INSTITUT CURIE, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE—CNRS, SOCIETE DE DEVELOPPEMENT ET DE RECHERCHE INDUSTRIELLE
    Inventors: Mael Le Berre, Matthieu Piel, Yong Chen, Yanjun Liu
  • Patent number: 9743610
    Abstract: A novel maize variety designated X03H024XR and seed, plants and plant parts thereof are produced by crossing inbred maize varieties. Methods for producing a maize plant by crossing hybrid maize variety X03H024XR with another maize plant are disclosed. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X03H024XR through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. This invention relates to the maize variety X03H024XR, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X03H024XR. This invention further relates to methods for producing maize varieties derived from maize variety X03H024XR.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 29, 2017
    Assignee: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventors: Thomas Craig Kevern, Suzanne Michelle Mickelson, Dina Elijah Severns, David Walter Whitaker
  • Patent number: 9737018
    Abstract: A novel maize variety designated X08D517HR and seed, plants and plant parts thereof are produced by crossing inbred maize varieties. Methods for producing a maize plant by crossing hybrid maize variety X08D517HR with another maize plant are disclosed. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X08D517HR through backcross conversion and/or transformation, and to the maize seed, plant and plant part produced thereby. This invention relates to the maize variety X08D517HR, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X08D517HR. This invention further relates to methods for producing maize varieties derived from maize variety X08D517HR.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: August 22, 2017
    Assignee: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventors: Thomas Craig Kevern, Robert Lee Segebart, David Walter Whitaker
  • Patent number: 9677047
    Abstract: A cell culture microcarrier includes (1) a polystyrene microcarrier base having a remnant of a carboxylic acid group, and (ii) a polypeptide conjugated to the base via the remnant of the carboxylic acid group. The polypeptide may contain a cell adhesive sequence, such as RGD. Cells cultured with such microcarriers exhibit peptide-specific binding to the microcarriers.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: June 13, 2017
    Assignee: Corning Incorporated
    Inventors: Michelle Dawn Fabian, Timothy Edward Myers, Kyle Patrick Snyder, Florence Verrier
  • Patent number: 9527257
    Abstract: Described herein are apparatuses and methods of creating fibers, such as microfibers and nanofibers, which include additives that modify one or more properties of the produced fibers. The methods discussed herein employ centrifugal forces to transform material into fibers. Apparatuses that may be used to create fibers are also described.
    Type: Grant
    Filed: August 6, 2013
    Date of Patent: December 27, 2016
    Assignee: CLARCOR Inc.
    Inventors: Roger Lipton, Stephen Kay, Yogesh Ner
  • Patent number: 9492842
    Abstract: Provided is: a cell culture membrane, which is free from materials derived from living organisms, can easily be industrially mass-produced, exhibits superior long-term storage properties and chemical resistance, has excellent cell adhesion properties and long-term culture properties and is capable of replicating a cell adhesion morphology that is similar to that of collagen derived from living organisms and being used for conventional cell cultivation. Also provided are a cell culture substrate, and a method for manufacturing the cell culture substrate. In the present invention, as a cell adhesion layer, a polymer membrane represented by formula (I) is formed on the base of a cell culture substrate so as to have a membrane thickness equal to or greater than 0.2 ?m (in the formula, R1 and R2 represent a —(CH2)n—NH2 moiety (n is an integer of 1-10 inclusive.) or H, with at least one of R1 and R2 being a —(CH2)n—NH2 moiety. Moreover, l and m are positive integers expressing polymerization degree).
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: November 15, 2016
    Assignees: KISCO LTD., DAISANKASEI CO., LTD., The University of Tokyo
    Inventors: Yasuo Yoshimoto, Kentaro Kamimae, Yuki Tanabe, Taku Oguni, Takashi Inoue, Tsutomu Mochizuki, Makoto Hirama, Teruo Fujii, Hiroshi Kimura, Hideto Tozawa
  • Patent number: 9428728
    Abstract: A colony (cell mass) proliferated under the undifferentiated state is obtained by using a carrier for cell culture in which two or more of a concavity having a porous body in a surface are arranged on a substrate surface in the form of a matrix, inoculating an undifferentiated cell on at least one concavity of the carrier for culture and carrying out culture.
    Type: Grant
    Filed: November 19, 2007
    Date of Patent: August 30, 2016
    Assignee: COORSTEK KK
    Inventors: Fumihiko Kitagawa, Takafumi Imaizumi, Katsunori Sasaki
  • Patent number: 9220817
    Abstract: The invention is directed to an improved medical device. In particular, the invention is directed to an improved medical device having a coating comprising novel cellular factor-containing solution compositions (referred to herein as CFS compositions), such CFS compositions including conditioned medium compositions obtained from culturing extraembryonic cytokine secreting cells (ECS cells), including Amnion-derived Cellular Cytokine Solution (referred to herein as ACCS) obtained from culturing Amnion-derived Multipotent Progenitor (AMP) cells, dispersed in a polymeric coating material.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: December 29, 2015
    Assignee: STEMNION, INC.
    Inventors: Larry R Brown, George L Sing
  • Patent number: 9187517
    Abstract: The present invention is directed to proteins in which a heparin binding peptide is fused to a growth factor that promotes cell growth and survival. The compound thus formed is bound to the surface of cells which are then administered to damaged tissue. The growth factor is thereby maintained at the site of administration where it promotes repair.
    Type: Grant
    Filed: November 7, 2007
    Date of Patent: November 17, 2015
    Assignee: The Brigham and Women's Hospital, Inc.
    Inventor: Richard Lee
  • Patent number: 9157059
    Abstract: In one aspect, there is provided a cell culturing substrate including: a cell culture surface having a film attached thereto, wherein the film includes one or more plasma polymerized monomers; and a coating on the film-coated surface, the coating deposited from a coating solution comprising one or more extracellular matrix proteins and an aqueous solvent, where the total extracellular matrix protein concentration in the coating solution is about 1 ng/mL to about 1 mg/mL.
    Type: Grant
    Filed: October 9, 2014
    Date of Patent: October 13, 2015
    Assignee: Corning Incorporated
    Inventors: Suparna Sanyal, Deepa Saxena, Susan Xiuqi Qian, Elizabeth Abraham
  • Patent number: 9089523
    Abstract: Tissue fillers derived from decellularized tissues are provided. The tissue fillers can include acellular tissue matrices that have reduced inflammatory responses when implanted in a body. Also provided are methods of making and therapeutic uses for the tissue fillers.
    Type: Grant
    Filed: July 27, 2012
    Date of Patent: July 28, 2015
    Assignee: LifeCell Corporation
    Inventors: Hui Xu, Wenquan Sun, Hua Wan, Rick Owens
  • Patent number: 9068182
    Abstract: A cell culture polysaccharide microcarrier includes (1) a cross-linked polysaccharide microcarrier base having a neutral or negative charge at pH 7, and (ii) a polypeptide conjugated to the base. The polypeptide may contain a cell adhesive sequence, such as RGD. Cells cultured with such microcarriers exhibit peptide-specific binding to the microcarriers.
    Type: Grant
    Filed: July 28, 2010
    Date of Patent: June 30, 2015
    Assignee: Corning Incorporated
    Inventors: Sophie Deshayes, David Henry, Martial Hervy
  • Patent number: 9034648
    Abstract: An object of the present invention is to provide an artificial tissue construct that has means for transporting nutrients, oxygen, waste products, or the like and is viable in vivo. The present invention relates to a tissue construct formed in vitro, which comprises a vascular layer, a basal membrane layer, and a tissue-forming cell layer.
    Type: Grant
    Filed: June 21, 2013
    Date of Patent: May 19, 2015
    Assignee: DAI NIPPON PRINTING CO., LTD.
    Inventors: Ikuo Morita, Hideyuki Miyake, Hideshi Hattori, Hironori Kobayashi, Yusuke Uno
  • Publication number: 20150125896
    Abstract: Cell binding peptides are provided for binding to cells including urothelial and thyroid follicular cells. The peptides are useful for detection and diagnosis of cancer including bladder and thyroid cancer. A device and method for using the device for capturing cells is provided, the device includes a support having attached cell binding peptide. The support can be a slide and the device can be used for detection and diagnosis of cancer including bladder and thyroid cancer. A kit is provided with instructions for capturing cells and a support with attached cell binding peptide for detection and diagnosis of bladder and thyroid cancer.
    Type: Application
    Filed: October 24, 2014
    Publication date: May 7, 2015
    Inventors: William David Culp, Martyn Kerry Darby, Dalia Isolda Juzumiene, Magdalena Krajewska, Natalia Lygina, Juhua Morrison, Shrikumar Ambujakshan Nair, William Bourchier Siesser, Danuta Wronska
  • Publication number: 20150125957
    Abstract: An elastomeric substrate comprises a surface with regions of heterogeneous rigidity, wherein the regions are formed by exposing the elastomeric substrate to an energy source to form the regions such that the regions include a rigidity pattern comprising spots.
    Type: Application
    Filed: October 24, 2014
    Publication date: May 7, 2015
    Inventors: Manus J.P. Biggs, Ryan Cooper, Jinyu Liao, Teresa Anne Fazio, Carl Fredrik Oskar Dahlberg, Jeffrey William Kysar, Shalom Jonas Wind
  • Patent number: 9023642
    Abstract: A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: May 5, 2015
    Assignee: The University of Houston System
    Inventors: Stanley J. Kleis, Sandra K. Geffert, Steve R. Gonda
  • Publication number: 20150118200
    Abstract: Provided is a matrix for promoting survival and differentiation of cells transplanted thereon, comprising a base matrix and a cell-made matrix thereon. Methods and means for making and using same are also provided. Also provided are conditioned media, related compositions, related methods, and related packaging products.
    Type: Application
    Filed: December 24, 2014
    Publication date: April 30, 2015
    Inventors: Ilene SUGINO, Vamsi GULLAPALLI, Marco ZARBIN
  • Publication number: 20150118729
    Abstract: Disclosed herein are compositions and methods for programming a cell. The compositions include a substrate and a cell adhesion agent. The substrate includes a surface having a micropatterned object and the cell adhesion agent is immobilized within a first area defined by the micropatterned object.
    Type: Application
    Filed: October 29, 2014
    Publication date: April 30, 2015
    Inventors: Kristopher A. Kilian, Junmin Lee, Yanfen Li
  • Patent number: 9012172
    Abstract: The present invention provides high throughput assays for identifying compounds that modulate a contractile function, as well as devices suitable for use in these assays.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: April 21, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Kevin Kit Parker, Adam Walter Feinberg, Patrick W. Alford, Anna Grosberg, Mark D. Brigham, Josue Adrian Goss
  • Publication number: 20150093828
    Abstract: The disclosure provides a cell culturing article. The cell culturing article includes a substrate having a surface, a hydrophilic copolymer layer positioned on the surface of the substrate, and a plurality of peptide chains individually conjugated to a surface of the hydrophilic copolymer layer. The hydrophilic copolymer layer is copolymerized by a plurality of polyvinyl alcohol units, a plurality of polyvinyl alcohol derivative units, and a plurality of units containing at least one carboxyl group. A method for manufacturing the cell culturing article, a method for culturing undifferentiated stem cells and a method for regulating stem cell differentiation are also provided herein.
    Type: Application
    Filed: February 25, 2014
    Publication date: April 2, 2015
    Applicant: National Central University
    Inventors: AKON HIGUCHI, Ta-Chun KAO
  • Publication number: 20150093361
    Abstract: This invention provides disc stem cells, processes for obtaining and culturing disc stein cells, and methods for repairing damaged or diseased disc tissue comprising the use of the disc stem cells of the invention.
    Type: Application
    Filed: February 14, 2012
    Publication date: April 2, 2015
    Applicant: DISCGENICS
    Inventors: Valery Kukekov, Umar Akbar, Christopher Duntsch
  • Publication number: 20150087063
    Abstract: The present invention relates to a method of obtaining high purity stem cells from tissue, comprising: providing an impurity-containing cell mass obtained from a tissue; providing a filter device which comprises a cylinder structure, wherein the cylinder structure comprise an inlet and an outlet below and a content configured inside the cylinder structure between the inlet and the outlet; culturing the impurity-free cell mass on a polymeric film, wherein target stem cells of the impurity-free cell mass conjugate into a spheroid cell population; collecting the spheroid cell population from the polymeric film to obtain high purity target stem cells. According to the method of the present invention, stem cells can be rapidly and easily obtained from tissue. Only a small amount of tissue sample is required and the stem cells obtained can be readily used in clinical applications such as autotransplantation without the requirement of in vitro amplification.
    Type: Application
    Filed: September 23, 2014
    Publication date: March 26, 2015
    Inventors: Shan-Hui Hsu, Guo-Shiang Huang, Niann-Tzyy Dai, Lien-Guo Dai
  • Publication number: 20150087057
    Abstract: There is provided a method for culturing a stem cell in vitro. The method comprises providing a substrate surface coated with a coating comprising a molecule having a catechol moiety or a polymer thereof; and growing a stem cell on said coated substrate surface in a growth medium.
    Type: Application
    Filed: April 22, 2013
    Publication date: March 26, 2015
    Inventors: Daniele Zink, Ming Ni, Karthikeyan Narayanan, Karthikeyan Kandasamy, Andrew C.A. Wan, Jackie Y. Ying
  • Publication number: 20150087004
    Abstract: Device for 3D cell culture using an extracellular matrix including a substrate having at least one interior chamber, at least one opening providing access to the interior chamber for introduction of an extracellular matrix, and at least one channel disposed through at least a portion of the extra cellular matrix.
    Type: Application
    Filed: July 17, 2014
    Publication date: March 26, 2015
    Applicant: The Trustees of the University of Pennsylvania
    Inventors: Christopher S. Chen, Duc-Huy T. Nguyen, Sarah C. Stapleton, Michael T. Yang
  • Publication number: 20150079143
    Abstract: Methods of making a biologically active three-dimensional scaffold capable of supporting growth and differentiation of a cell are described. Biologically active three-dimensional scaffold made by the methods of the invention and an engineered tissue made from the scaffolds are described. Fibers of desired porosity can be obtained from non-structural ECM by lyophilization and/or electrospinning which can be useful for numerous tissue engineering applications requiring complex scaffolds, such as wound healing, artificial skin (burns), soft tissue replacement/repair and spinal cord injury.
    Type: Application
    Filed: November 18, 2014
    Publication date: March 19, 2015
    Inventors: Peter I. Lelkes, Mengyan Li, Anat Perets, Honesto Poblete, Philip Lazarovici
  • Publication number: 20150072430
    Abstract: A structure for use in cell and tissue culturing and in other surface and interface applications. The structure comprises a first material layer defining one or more surface features therein disposed randomly or in a pattern, the one or more surface features having the same or different sizes and cross sectional shapes, a second material layer disposed in or on the one or more surface features, a microstructure disposed in or on the one or more surface features and at least partially embedded and immobile within the second material layer, the microstructure presenting a curvature and a stiffness value and protruding above an upper surface of the second material, a size of the microstructure between 1 nanometer and 10 millimeters, and the structure for use in cell and tissue culturing and in other surface and interface applications wherein a cell grows on the microstructure.
    Type: Application
    Filed: August 11, 2014
    Publication date: March 12, 2015
    Inventor: Shengyuan Yang
  • Publication number: 20150050733
    Abstract: Methods for reprogramming cells by culturing the cells under a condition that allows formation of a three-dimensional cell aggregate are provided. The cells and cell aggregates obtained using the methods are also provided.
    Type: Application
    Filed: March 13, 2012
    Publication date: February 19, 2015
    Applicant: INSTITUTE OF GENETICS AND DEVELOPMENTAL BIOLOGY, CHINESE ACADEMY OF SCIENCES
    Inventors: Guannan Su, Yannan Zhao, Jianshu Wei, Bing Chen, Zhifeng Xiao, Jianwu Dai
  • Publication number: 20150050737
    Abstract: A polypeptide including: (1) a first region containing at least one selected from the group consisting of an amino acid sequence represented by CSYYQSC (SEQ ID NO:1) and an amino acid sequence represented by RGD; and (2) a second region containing (2-i) an amino acid sequence represented by PRPSLAKKQRFRHRNRKGYRSQRGHSRGRNQN (SEQ ID NO:2), (2-ii) an amino acid sequence having an identity of not less than 50% to the amino acid sequence represented by SEQ ID NO:2 and having an adsorption ability to a cultivation container, or (2-iii) an amino acid sequence that is the amino acid sequence represented by SEQ ID NO:2 in which from 1 to 30 amino acid residues are added, substituted, or deleted, and has an adsorption ability to a cultivation container, in which the polypeptide includes from 40 to 450 amino acid residues.
    Type: Application
    Filed: October 30, 2014
    Publication date: February 19, 2015
    Applicant: FUJIFILM CORPORATION
    Inventors: Yuta MURAKAMI, Rie IWATA, Yoshihide IWAKI, Tasuku SASAKI
  • Patent number: 8956868
    Abstract: The present invention provides a method for producing iPS cells, comprising reacting cells with at least one connexin inhibitor and at least one TGF? signaling inhibitor; iPS cells comprising at least one connexin inhibitor; an iPS cell inducer comprising at least one inhibitor selected from the group consisting of connexin inhibitors and TGF? signaling inhibitors; a medium for inducing iPS cells, comprising at least one inhibitor selected from the group consisting of connexin inhibitors and TGF? signaling inhibitors; and a kit for inducing iPS cells, comprising at least one inhibitor selected from the group consisting of connexin inhibitors and TGF? signaling inhibitors.
    Type: Grant
    Filed: December 27, 2011
    Date of Patent: February 17, 2015
    Assignee: LSIP, LLC
    Inventors: Tetsuro Takamatsu, Ping Dai
  • Patent number: 8956871
    Abstract: The disclosure provides a cell culture system and a serum-free method for cultivating cells. The cell culture system includes a substratum, wherein the substratum has a surface. A polymer is disposed on the surface of the substratum, wherein the polymer is prepared by polymerizing a first monomer with a second monomer. The first monomer has a structure as represented by Formula (I), and the second monomer has a structure as represented by Formula (II): wherein, R1 is hydrogen or methyl; R2 is methyl, ethyl, or —CH2CH2OCH3; R3 is hydrogen or methyl; and, R4 is hydrogen, —CH2CH2OCOCHCHCOOH, —CH2CH2OCOCH2CH2COOH, or —CH2CH2COOH.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: February 17, 2015
    Assignee: Industrial Technology Research Institute
    Inventors: Pei-Ju Lin, Guilhem Tourniaire, Yi-Chen Chen, Kathryn Swindells, Bin-Ru She, Hsiang-Chun Hsu, Chih-Ching Liao, Su-Yo Lin
  • Publication number: 20150044770
    Abstract: The present invention relates to a method for selective cell attachment/detachment, cell patternization and cell harvesting by means of near infrared rays. More particularly, conducting polymers or metal oxides having exothermic characteristics upon irradiation of near infrared light is used as a cell culture scaffold, thus selectively attaching/detaching cells without an enzyme treatment. The scaffold has an effect of promoting proliferation or differentiation of stem cells, and therefore, can be used as a stem cell culture scaffold. The scaffold enables cell attachment/detachment without temporal or spatial restrictions, thus enabling cell patternization.
    Type: Application
    Filed: April 12, 2013
    Publication date: February 12, 2015
    Applicant: Industry-Academic Cooperation Foundation Yonsei University
    Inventors: Eun Kyung Kim, Hyun Ok Kim, Jung Mok You, Jeong Hun Kim, Tea Hoon Park, Byeon Gwan Kim, June Seok Heo, Han Soo Kim
  • Patent number: 8951800
    Abstract: This disclosure provides an improved system for culturing human pluripotent stem cells. Traditionally, pluripotent stem cells are cultured on a layer of feeder cells (such as mouse embryonic fibroblasts) to prevent them from differentiating. In the system described here, the role of feeder cells is replaced by components added to the culture environment that support rapid proliferation without differentiation. Effective features are a suitable support structure for the cells, and an effective medium that can be added fresh to the culture without being preconditioned by another cell type. Culturing human embryonic stem cells in fresh medium according to this invention causes the cells to expand surprisingly rapidly, while retaining the ability to differentiate into cells representing all three embryonic germ layers. This new culture system allows for bulk proliferation of pPS cells for commercial production of important products for use in drug screening and human therapy.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: February 10, 2015
    Assignee: Asterias Biotherapeutics, Inc.
    Inventors: Ramkumar Mandalam, Chunhui Xu, Joseph D. Gold, Melissa K. Carpenter
  • Patent number: 8951799
    Abstract: The present disclosure is directed to the development of compositions, such as extracellular matrices, and processes for using the same, that both maintain stem cells in vitro pluripotency and enable self-renewal. In this regard, it has been discovered that when pluripotent mouse and human embryonic stem cells are cultured on plates coated with recombinant laminin-10 (laminin-511) or their functional domains, in the absence of differentiation inhibitors or feeder cells, the embryonic stem cells proliferated and maintained their pluripotency.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: February 10, 2015
    Assignee: BioLamina AB
    Inventors: Anna Domogatskaya, Sergey Rodin, Karl Tryggvason
  • Patent number: 8940478
    Abstract: Methods for forming cell arrays of multiple cell samples arranged substantially in a monolayer on a single substrate particularly suited for diagnostic analysis are disclosed. The cell arrays are formed with a high-speed dispensing apparatus capable of dispensing small volumes in precise, complex patterns. Also disclosed are substrates upon which cell arrays may be formed, and methods for conducting diagnostic analyzes on the formed cell arrays.
    Type: Grant
    Filed: December 3, 2012
    Date of Patent: January 27, 2015
    Assignees: Accupath Diagnostic Laboratories, Inc., Biodot, Inc.
    Inventors: Mathew Moore, Miriam Reyes, David Baunoch, Thomas C. Tisone, Brendan O'Farrell
  • Publication number: 20150024494
    Abstract: In one aspect, there is provided a cell culturing substrate including: a cell culture surface having a film attached thereto, wherein the film includes one or more plasma polymerized monomers; and a coating on the film-coated surface, the coating deposited from a coating solution comprising one or more extracellular matrix proteins and an aqueous solvent, where the total extracellular matrix protein concentration in the coating solution is about 1 ng/mL to about 1 mg/mL.
    Type: Application
    Filed: October 9, 2014
    Publication date: January 22, 2015
    Inventors: SUPARNA SANYAL, DEEPA SAXENA, SUSAN XIUQI QIAN, ELIZABETH ABRAHAM
  • Publication number: 20150024424
    Abstract: The present invention relates generally to the field of tissue engineering and in particular to the production of tissue films or cell matrices, which can be used as a living tissue substitute or an artificial tissue construct in tissue repair or replacement.
    Type: Application
    Filed: June 8, 2012
    Publication date: January 22, 2015
    Applicant: NATIONAL UNIVERSITY OF IRELAND, GALWAY
    Inventors: Dimitrios Zeugolis, Abhigyan Satyam
  • Patent number: 8936650
    Abstract: Described is a scaffold that is strong enough to resist forces that exist inside a body, while possessing biocompatible surfaces. The scaffold is formed of a layer of mesh (e.g., Stainless Steel or Nitinol) that is tightly enclosed by a multi-layer biological matrix. The biological matrix can include three layers, such a first layer (smooth muscle cells) formed directly on the metal mesh, a second layer (fibroblast/myofibroblast cells) formed on the first layer, and a third layer (endothelial cells) formed on the second layer. The scaffold can be formed to operate as a variety of tissues, such as a heart valve or a vascular graft. For example, the mesh and corresponding biological matrix can be formed as leaflets, such that the scaffold is operable as a tissue heart valve.
    Type: Grant
    Filed: March 22, 2012
    Date of Patent: January 20, 2015
    Assignee: The Regents of the University of California
    Inventors: Seyedhamed Alavi, Arash Kheradvar
  • Patent number: 8932583
    Abstract: A device that includes a scaffold composition and a bioactive composition with the bioactive composition being incorporated into or coated onto the scaffold composition such that the scaffold composition and/or a bioactive composition controls egress of a resident cell or progeny thereof. The devices mediate active recruitment, modification, and release of host cells from the material.
    Type: Grant
    Filed: November 28, 2011
    Date of Patent: January 13, 2015
    Assignees: President and Fellows of Harvard College, Regents of the University of Michigan
    Inventors: David J. Mooney, Eduardo Alexandre Barros e Silva, Elliot Earl Hill, Jr.
  • Publication number: 20150010607
    Abstract: The invention relates to methods of preparing a bone matrix solution, a bone matrix implant, and variants thereof. The invention also relates to methods of cell culture using the same. The invention further relates to bone matrix scaffolds comprising one or more bone matrix nanofibers, methods of preparing, and methods of use thereof. The invention also relates to methods of culturing cells and promoting differentiation of stem cells using the same.
    Type: Application
    Filed: February 7, 2013
    Publication date: January 8, 2015
    Inventors: Michael Francis, Roy Ogle
  • Publication number: 20150010919
    Abstract: A highly tunable bioscaffold is provided, as well as a method of manufacture of the bioscaffold and methods of use of the bioscaffold, for example for drug testing, cell propagation and for optimizing growth of a cell type, for example corneal endothelial cells.
    Type: Application
    Filed: January 31, 2013
    Publication date: January 8, 2015
    Inventors: Adam Walter Feinberg, James L. Funderburgh, Rachelle Simko
  • Patent number: 8927276
    Abstract: The present invention relates to a simplified process, which is shorter in time, for propagation of proliferating cells, such as e.g. progenitor or stem cells, by means of a biphasic culturing system having a differentiation supporting component and a proliferation supporting component, and to the use of the stem cell cultures obtained in this way for cell therapy purposes. The present invention invention describes a method, which is highly efficient to prime stem or progenitor cells to differentiation using non-attachment matrices and differentiation supporting component. The cells produced therefrom may be used to treat a variety of neurodegenerative disorders.
    Type: Grant
    Filed: February 17, 2010
    Date of Patent: January 6, 2015
    Assignee: Cellin Technologies OUE
    Inventors: Kaia Palm, Toomas Neuman
  • Patent number: 8927283
    Abstract: Methods for treating surfaces of polymeric substrates (as used in medical implants) with inert plasmas to promote the growth of bioentities (such as cells) on these surfaces is disclosed. The treated surfaces are subsequently exposed to an environment to form functionalities associated with enhanced growth of the bioentity on the surface. For example, the substrate may be exposed to the ambient environment. The bioentity may then be deposited on the modified surface. This inert plasma treatment and exposure to a suitable environment does not degrade the implants, and thus improved implants are created. Also, due to the specific functional groups at the modified surface, high cell densities are achieved.
    Type: Grant
    Filed: November 20, 2007
    Date of Patent: January 6, 2015
    Assignee: The Regents of the University of California
    Inventors: Kyriakos Komvopoulos, Satomi Tajima
  • Patent number: 8916382
    Abstract: In one aspect, there is provided a cell culturing substrate including: a cell culture surface having a film attached thereto, wherein the film includes one or more plasma polymerized monomers; and a coating on the film-coated surface, the coating deposited from a coating solution comprising one or more extracellular matrix proteins and an aqueous solvent, where the total extracellular matrix protein concentration in the coating solution is about 1 ng/mL to about 1 mg/mL.
    Type: Grant
    Filed: May 19, 2014
    Date of Patent: December 23, 2014
    Assignee: Corning Incorporated
    Inventors: Suparna Sanyal, Deepa Saxena, Susan Xiuqi Qian, Elizabeth Abraham
  • Patent number: 8907043
    Abstract: The present invention is directed to polyarylates comprising repeating units having the structure: as well as their preparation and use as cell growth substrates.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: December 9, 2014
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Ken James, Brochini Stephen, Varawut Tangpasuthadol, Joachim B. Kohn
  • Publication number: 20140356954
    Abstract: A masking member contains parallel through-holes, each of the through-holes contains a tilted wall structure; an upper end of the tilted wall structure of one of the through-holes abuts on an upper end of the tilted wall structure of an adjacent one of the through-holes thereby forming a knife-edge ridge at the upper ends. The masking member may in contact with a substrate. Formation in quantity of various different populations of a substance being studied with multiple combinations of distribution form and distribution density may be conducted by dripping a suspension of a single concentration of the substance onto the masking member.
    Type: Application
    Filed: August 18, 2014
    Publication date: December 4, 2014
    Inventors: Koji Ikuta, Masashi Ikeuchi