Involving Nucleic Acid Patents (Class 435/6.1)
  • Patent number: 11986827
    Abstract: A method includes flowing a first fluid through a first channel of a microfluidic apparatus and flowing a second fluid through a second channel of the microfluidic apparatus. The first fluid comprises biological material and a matrix material and is immiscible with the second fluid. The first and second fluids are combined at a junction to form droplets of the first fluid dispersed in the second fluid in a third channel. Multiple exposures of a droplet in the third channel are captured in a single image, comprising: illuminating a region of the third channel with multiple successive illumination pulses during a single frame of the imaging device; identifying the droplet and determining a velocity or a size of the droplet based on an analysis of the captured exposures; and controlling the flow of the first fluid or second fluid to obtain droplets of a target size or velocity.
    Type: Grant
    Filed: October 11, 2023
    Date of Patent: May 21, 2024
    Assignee: Xilis, Inc.
    Inventors: Bradley Scott Thomas, Timothy A. Miller, David Stafford
  • Patent number: 11987851
    Abstract: The present disclosure relates to oligonucleotide sequences for amplification primers and their use in performing nucleic acid amplifications of HCV, in particular regions that encode the NS3 polypeptide. In some embodiments the primers are used in nested PCR methods for the detection or sequencing of HCV NS3. The oligonucleotide sequences are also provided assembled as kits that can be used to amplify and detect or sequence HCV NS3.
    Type: Grant
    Filed: March 17, 2021
    Date of Patent: May 21, 2024
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventors: Arejas Uzgiris, Sunil Pandit, Lance Palmer
  • Patent number: 11987848
    Abstract: A method of processing a fecal sample from a human subject comprising combining a first portion of a collected fecal sample with a stabilizing buffer that maintains DNA integrity in a fecal sample, and combining a second portion of the sample with a solution that prevents denaturation or degradation of blood proteins found in a fecal sample. Embodiments comprise testing DNA extracted from the first portion of the fecal sample for the presence of a human DNA, and testing the second portion of the fecal sample for the presence of human blood.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: May 21, 2024
    Assignee: Exact Sciences Corporation
    Inventor: Joost Louwagie
  • Patent number: 11987815
    Abstract: The invention provides methods for reprogramming somatic cells to generate multipotent or pluripotent cells. Such methods are useful for a variety of purposes, including treating or preventing a medical condition in an individual. The invention further provides methods for identifying an agent that reprograms somatic cells to a less differentiated state.
    Type: Grant
    Filed: October 28, 2019
    Date of Patent: May 21, 2024
    Assignee: Whitehead Institute for Biomedical Research
    Inventors: Rudolf Jaenisch, Konrad Hochedlinger
  • Patent number: 11981961
    Abstract: Methods for constructing consecutively connected copies of nucleic acid molecules are disclosed. Consecutively connected copies of nucleic acid molecules can be used to perform sequencing of the same nucleic acid molecules several times, improving overall accuracy of sequencing. Connected copies of nucleic acid molecules can be constructed by circularizing nucleic acid molecules, performing rolling circle amplification and debranching with nicking and polymerases comprising 5?-3? exonuclease and/or flap endonuclease activity.
    Type: Grant
    Filed: January 21, 2018
    Date of Patent: May 14, 2024
    Assignee: Vastogen, Inc.
    Inventor: Dimitra Tsavachidou
  • Patent number: 11981896
    Abstract: Compositions of matter comprising RNA silencing molecules capable of mediating cleavage of p21 mRNA are disclosed. Methods of eradicating senescent cells or cancer cells, as well as methods of treating senescence-associated diseases or disorders, cancer, and fibrotic diseases and disorders are also disclosed.
    Type: Grant
    Filed: June 28, 2023
    Date of Patent: May 14, 2024
    Assignee: 1E Therapeutics Ltd.
    Inventors: Noam Pilpel, Yossi Ovadya, Dina Raichlin, Etti Katz-Kadosh, Alaa Knany, Ella Gillis, Noam Borovsky, Anastasia Shapiro, Ido Bachelet
  • Patent number: 11981898
    Abstract: The present disclosure provides compositions and methods for targeted insertion of a gene of interest in the genome of a cell using single-stranded DNA or double-stranded DNA with 3 overhang. Also provided are methods of generating single-stranded DNA or double-stranded DNA with 3? over-hang that can be used for targeted insertion.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: May 14, 2024
    Assignee: APPLIED STEMCELL, INC.
    Inventors: Lingjie Kong, Alfonso Farruggio, Andrew Hilmer, Padmaja Tummala, Ruby Yanru Tsai
  • Patent number: 11976322
    Abstract: The current document discusses electromechanical sequence detectors that transduce changes in the shape of a shape-change sensor component into an electrical signal from which one or more derived values are generated. In a disclosed implementation, the sequence-detection system comprises a mechanical-change sensor that changes shape when specifically interacting with entities within a target, a shape-to-signal-transduction component that transduces changes in the shape of the mechanical-change sensor into an electrical signal, an analysis subsystem that determines the types of entities within the target using the electrical signal, and a control subsystem that continuously monitors operational characteristics of the sequence-detection system and adjusts sequence-detection system operational parameters.
    Type: Grant
    Filed: September 14, 2018
    Date of Patent: May 7, 2024
    Assignee: ILLUMINA, INC.
    Inventors: Jeffrey G. Mandell, Kevin L. Gunderson, Michael Gregory Keehan, Erin Christine Garcia
  • Patent number: 11977040
    Abstract: Certain disclosed methods include: transmitting an excitation signal into the MUT and transmitting a reference signal to a set of magnitude and phase (M/P) detectors; receiving the response signal; separately comparing a magnitude and phase for each of the excitation signal and the reference signal with corresponding detection ranges for a first one of the M/P detectors; separately comparing a magnitude and phase for each of the response signal and the reference signal with corresponding detection ranges for a second one of the M/P detectors; iteratively adjusting the excitation signal until the response signal has both a magnitude and a phase within the corresponding detection ranges for the second M/P detector; and iteratively adjusting the reference signal until the reference signal has both a magnitude and a phase within the corresponding detection ranges for the first and the second M/P detectors.
    Type: Grant
    Filed: February 15, 2023
    Date of Patent: May 7, 2024
    Assignee: TRANSTECH SYSTEMS, INC.
    Inventors: Adam D. Blot, Manfred Geier, Andrew J. Westcott
  • Patent number: 11970746
    Abstract: A method of processing a fecal sample from a human subject comprising combining a first portion of a collected fecal sample with a stabilizing buffer, combining a second portion of the sample with a solution that prevents denaturation or degradation of blood proteins found in a fecal sample. Embodiments comprise testing nucleic acid extracted from the first portion of the fecal sample for an amount of a human nucleic acid, and testing the second portion of the fecal sample for the presence of human blood.
    Type: Grant
    Filed: March 7, 2023
    Date of Patent: April 30, 2024
    Assignee: Exact Sciences Corporation
    Inventor: Joost Louwagie
  • Patent number: 11971404
    Abstract: The present disclosure provides a system comprising a communication interface and computer for assigning a label to the biomolecule fingerprint, wherein the label corresponds to a biological state. The present disclosure also provides a sensor arrays for detecting biomolecules and methods of use. In some embodiments, the sensor arrays are capable of determining a disease state in a subject.
    Type: Grant
    Filed: December 27, 2022
    Date of Patent: April 30, 2024
    Assignee: THE BRIGHAM AND WOMEN'S HOSPITAL, INC.
    Inventors: Omid Farokhzad, Morteza Mahmoudi, Claudia Corbo
  • Patent number: 11970734
    Abstract: A composition includes a nanopore including first and second sides and an aperture, nucleotides each including an elongated tag, and a first polynucleotide that is complementary to a second polynucleotide. A polymerase can be disposed adjacent to the first side of the nanopore and configured to add nucleotides to the first polynucleotide based on a sequence of the second polynucleotide. A permanent tether can include a head region anchored to the polymerase, a tail region, and an elongated body disposed therebetween that occurs in the aperture of the nanopore. A first moiety can be disposed on the elongated body that binds to the elongated tag of a first nucleotide upon which the polymerase is acting. A reporter region can be disposed on the elongated body that indicates when the first nucleotide is complementary or is not complementary to a next nucleotide in the sequence of the second polynucleotide.
    Type: Grant
    Filed: May 8, 2020
    Date of Patent: April 30, 2024
    Assignee: Illumina, Inc.
    Inventors: Kevin L Gunderson, Jeffrey G. Mandell
  • Patent number: 11965162
    Abstract: In one aspect, compositions are provided for the early diagnosis and treatment of pancreatic ductal adenocarcinoma and include microRNAs, e.g. miR-21 and inhibitors thereof. The treatment compositions can be useful for early detection, and for intercepting developing premalignant pancreatic lesions and other KRAS-driven premalignancies.
    Type: Grant
    Filed: April 16, 2021
    Date of Patent: April 23, 2024
    Assignee: The Johns Hopkins University
    Inventors: Elizabeth A. Jaffee, Nina Chu, Jacquelyn Winifred Zimmerman
  • Patent number: 11965901
    Abstract: A management system including a processor, the processor is configured to acquire an image obtained by imaging an outer surface of each of plural sample containers and a boundary container, the sample container containing a sample and in which subject information of a subject from whom the sample is collected is given to the outer surface, the boundary container in which group boundary information indicating a boundary between plural groups of subjects is given to the outer surface, recognize the subject information and the group boundary information based on the image, and associate a test result related to the sample contained in each of the sample containers with a test order which includes the subject information and in which the group is divided corresponding to the group boundary information, based on a result of the recognition and the test order.
    Type: Grant
    Filed: July 12, 2021
    Date of Patent: April 23, 2024
    Assignee: FUJIFILM CORPORATION
    Inventors: Yoshihiro Seto, Haruyasu Nakatsugawa
  • Patent number: 11959126
    Abstract: The present technology provides for an apparatus for detecting polynucleotides in samples, particularly from biological samples. The technology more particularly relates to microfluidic systems that carry out PCR on nucleotides of interest within microfluidic channels, and detect those nucleotides. The apparatus includes a microfluidic cartridge that is configured to accept a plurality of samples, and which can carry out PCR on each sample individually, or a group of, or all of the plurality of samples simultaneously.
    Type: Grant
    Filed: October 7, 2021
    Date of Patent: April 16, 2024
    Assignee: Handylab, Inc.
    Inventors: Kalyan Handique, Sundaresh N. Brahmasandra, Karthik Ganesan, Jeff Williams
  • Patent number: 11959143
    Abstract: Provided herein are methods for miRNA profiling for the diagnosis, prognosis, and management of melanoma and differentiation of melanoma from nevi.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: April 16, 2024
    Assignee: Quest Diagnostics Investments LLC
    Inventors: Kevin Qu, Anthony Sferruzza, Ke Zhang, Yan Liu, Renius Owen
  • Patent number: 11958888
    Abstract: Nucleotide sequences including a micro-dystrophin gene are provided. The micro-dystrophin genes may be operatively linked to a regulatory cassette. Methods of treating a subject having, or at risk of developing, muscular dystrophy, sarcopenia, heart disease, or cachexia are also provided. The methods may include administering a pharmaceutical composition including the micro-dystrophin gene and a delivery vehicle to a subject. Further, the methods may include administering the pharmaceutical composition a subject having Duchenne muscular dystrophy or Becker muscular dystrophy.
    Type: Grant
    Filed: October 4, 2019
    Date of Patent: April 16, 2024
    Assignee: University of Washington
    Inventors: Jeffrey S. Chamberlain, Julian Ramos, Stephen D. Hauschka
  • Patent number: 11957704
    Abstract: The present disclosure provides methods of treating a subject having metabolic disorders and/or cardiovascular diseases, methods of identifying subjects having an increased risk of developing a metabolic disorder and/or a cardiovascular disease, and methods of detecting human Inhibin Subunit Beta E variant nucleic acid molecules and variant polypeptides.
    Type: Grant
    Filed: August 31, 2022
    Date of Patent: April 16, 2024
    Assignee: Regeneron Pharmaceuticals, Inc.
    Inventors: Luca Andrea Lotta, Parsa Akbari, Olukayode Sosina, Manuel Allen Revez Ferreira, Aris Baras
  • Patent number: 11953464
    Abstract: A device for base calling is provided. The device includes a receptacle configured to hold a biosensor having a sample surface holding a plurality of clusters during a sequence of sampling events, an array of sensors sensing information from clusters disposed in corresponding pixel areas of the sample surface during the sampling events and generate sequences of pixel signals and a communication port configured to output the sequences of pixel signals. The device also includes a signal processor coupled to the communication port and configured to receive and process at least one pixel signal in the sequences of pixel signals that mixes light gathered from at least two clusters in a corresponding pixel area, and to base call each of the at least two clusters using the at least one pixel signal.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: April 9, 2024
    Assignee: Illumina, Inc.
    Inventors: Dietrich Dehlinger, Ali Agah, Tracy Helen Fung, Emrah Kostem
  • Patent number: 11952630
    Abstract: There is disclosed a composition of an aqueous solution comprising, consisting or consisting essentially of a flap endonuclease, a bulking agent and an organic buffer, wherein the aqueous solution has an inorganic salt concentration of 5 mM or less and wherein the composition is substantially free of glycerol.
    Type: Grant
    Filed: May 17, 2022
    Date of Patent: April 9, 2024
    Assignee: GEN-PROBE INCORPORATED
    Inventors: Patrick Peterson, Tony Luu, Matthias Jost
  • Patent number: 11952616
    Abstract: The disclosure provides methods for processing nucleic acid populations containing different forms (e.g., RNA and DNA, single-stranded or double-stranded) and/or extents of modification (e.g., cytosine methylation, association with proteins). These methods accommodate multiple forms and/or modifications of nucleic acid in a sample, such that sequence information can be obtained for multiple forms. The methods also preserve the identity of multiple forms or modified states through processing and analysis, such that analysis of sequence can be combined with epigenetic analysis.
    Type: Grant
    Filed: December 5, 2022
    Date of Patent: April 9, 2024
    Assignee: Guardant Health, Inc.
    Inventors: Andrew Kennedy, Stefanie Ann Ward Mortimer, Helmy Eltoukhy, AmirAli Talasaz, Diana Abdueva
  • Patent number: 11944676
    Abstract: Generally, the inventive technology relates to novel strategies for disease control in animal systems. Specifically, the inventive technology relates to novel methods, systems and compositions for the biocontrol of pathogens in aquatic systems. Specifically, the invention may comprise novel techniques, systems, and methods for the biocontrol of disease-transmitting pathogens affecting shrimp in aquaculture systems.
    Type: Grant
    Filed: August 7, 2018
    Date of Patent: April 2, 2024
    Assignee: Pebble Labs Inc.
    Inventors: Richard Sayre, Tatiana Vinogradova-Shah, Elena Sineva
  • Patent number: 11946929
    Abstract: The invention generally relates to performing sandwich assays in droplets. In certain embodiments, the invention provides methods for detecting a target analyte that involve forming a compartmentalized portion of fluid including a portion of a sample suspected of containing a target analyte and a sample identifier, a first binding agent having a target identifier, and a second binding agent specific to the target analyte under conditions that produce a complex of the first and second binding agents with the target analyte, separating the complexes, and detecting the complexes, thereby detecting the target analyte.
    Type: Grant
    Filed: July 18, 2023
    Date of Patent: April 2, 2024
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Michael L. Samuels, Darren Roy Link
  • Patent number: 11938187
    Abstract: The syntheses of two phosphoramidite building blocks based on BNSF and BNSMB structures are disclosed. Furthermore, some common molecular intermediates have been designed and linked to the central biphenyl core of the two molecules, resulting in a versatile and cost-effective design. These compounds can be effectively introduced to DNA oligonucleotides via the well-established standard cyanoethylphosphoramidite chemistry on the nucleic acid synthesizer. Fragmentation of these BNSF- and BNSMB-functionalized DNA strands is achieved by both one-photon and two-photon photolysis of photoliable bonds of [2-(2-nitrophenyl)propoxy]carbonyl groups on BNSF and BNSMB molecules respectively, resulting in two short pieces of single-stranded DNAs.
    Type: Grant
    Filed: June 10, 2021
    Date of Patent: March 26, 2024
    Assignee: CITY UNIVERSITY OF HONG KONG
    Inventors: Peggy Pik Kwan Lo, Ling Sum Liu, Dick Yan Tam
  • Patent number: 11941534
    Abstract: A system is provided that includes a bit vector-based distance counter circuitry configured to generate one or more bit vectors encoded with information about potential matches and edits between a read and a reference genome, wherein the read comprises an encoding of a fragment of deoxyribonucleic acid (DNA) encoded via bases G, A, T, C. The system further includes a bit vector-based traceback circuitry configured to divide the reference genome into one or more windows and to use the plurality of bit vectors to generate a traceback output for each of the one or more windows, wherein the traceback output comprises a match, a substitution, an insert, a delete, or a combination thereof, between the read and the one or more windows.
    Type: Grant
    Filed: December 28, 2019
    Date of Patent: March 26, 2024
    Assignee: Intel Corporation
    Inventors: Gurpreet Singh Kalsi, Anant V. Nori, Christopher Justin Hughes, Sreenivas Subramoney, Damla Senol
  • Patent number: 11939622
    Abstract: Disclosed herein include systems, methods, kits, and compositions for labeling nuclear target-associated DNA in a cell. Some embodiments provide digestion compositions comprising a DNA digestion enzyme and a binding reagent capable of specifically binding to the nuclear target. Some embodiments provide conjugates comprising a transposome and a binding reagent capable of specifically binding to a nuclear target. The transposome can comprise a transposase (e.g., Tn5 transposase), a first adaptor having a first 5? overhang, and a second adaptor having a second 5? overhang. The methods can comprise contacting a permeabilized cell comprising a nuclear target associated with dsDNA, such as genomic DNA (gDNA), with the compositions provided herein to generate a plurality of nuclear target-associated dsDNA fragments (e.g., nuclear target-associated gDNA fragments) each comprising the one or two single-stranded overhangs.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: March 26, 2024
    Assignee: Becton, Dickinson and Company
    Inventor: Hye-Won Song
  • Patent number: 11939628
    Abstract: Methods and compositions are provided for identifying any of the presence, location and phasing of methylated and/or hydroxymethylated cytosines in nucleic acids including long stretches of DNA. In some embodiments, the method may comprise reacting a first portion (aliquot) of a nucleic acid sample with a dioxygenase and optionally a glucosyltransferase in a reaction mixture containing the nucleic acid followed by a reaction with a cytidine deaminase to detect and optionally map 5mC in a DNA. Optionally, a second portion can be reacted with glucosyltransferase followed by reaction with a cytidine deaminase to detect and optionally map 5hmC in a DNA.
    Type: Grant
    Filed: February 22, 2021
    Date of Patent: March 26, 2024
    Assignee: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Theodore B. Davis, Shengxi Guan, Zhiyi Sun, Laurence Ettwiller, Lana Saleh
  • Patent number: 11931737
    Abstract: Disclosed herein are platforms, systems, and methods including a cell culture system that includes a cell culture container comprising a cell culture, the cell culture receiving input cells, a cell imaging subsystem configured to acquire images of the cell culture, a computing subsystem configured to perform a cell culture process on the cell culture according to the images acquired by the cell imaging subsystem, and a cell editing subsystem configured to edit the cell culture to produce output cell products according to the cell culture process.
    Type: Grant
    Filed: September 7, 2022
    Date of Patent: March 19, 2024
    Assignee: CELLINO BIOTECH, INC.
    Inventors: Matthias Wagner, Suvi Aivio, Mariangela Amenduni, Catherine Pilsmaker, Arnaldo Pereira, Ananya Zutshi, Ozge Whiting, George Harb, Steven Nagle, Anthia Toure, Matthew Sullivan, Maya Berlin-Udi, Lukas Vasadi, Alexander Stange, Sangkyun Lee, Stefanie Morgan, Nick Seay, Scott Luro
  • Patent number: 11932846
    Abstract: A system for expressing a chloramphenicol split protein is disclosed. Uses thereof are also disclosed.
    Type: Grant
    Filed: August 8, 2018
    Date of Patent: March 19, 2024
    Assignee: Technology Innovation Momentum Fund (Israel) Limited Partnership
    Inventor: Gali Prag
  • Patent number: 11926824
    Abstract: Methods for diagnosis and treatment of cancers by use of exosomes comprising miRNAs and precursors thereof. For example, in some aspects, a cancer may be diagnosed or evaluated by determining the miRNA content of exosomes in a sample from a subject or by detecting miRNA processing in exosomes.
    Type: Grant
    Filed: March 23, 2020
    Date of Patent: March 12, 2024
    Assignees: Board of Regents, The University of Texas System, Beth Israel Deaconess Medical Center, Inc.
    Inventors: Raghu Kalluri, Sónia Melo
  • Patent number: 11919006
    Abstract: A generic point of care based portable device and method thereof as a platform technology for detecting pathogenic infection via nucleic acid based testing achieving sample-to-result integration, comprising the following interconnected stand-alone modules: a thermal unit for executing piece-wise isothermal reactions in a pre-programmable concomitant fashion without necessitating in-between operative intervention; a colorimetric detection unit seamlessly interfaced with smartphone-app based analytics for detecting the target analyte.
    Type: Grant
    Filed: March 16, 2021
    Date of Patent: March 5, 2024
    Assignee: INDIAN INSTITUTE OF TECHNOLOGY, KHARAGPUR
    Inventors: Nandita Kedia, Sujay Kumar Biswas, Saptarshi Banerjee, Aditya Bandopadhyay, Arindam Mondal, Suman Chakraborty
  • Patent number: 11920181
    Abstract: Some aspects of this disclosure provide strategies, methods, and reagents for determining nuclease target site preferences and specificity of site-specific endonucleases. Some methods provided herein utilize a novel “one-cut” strategy for screening a library of concatemers comprising repeat units of candidate nuclease target sites and constant insert regions to identify library members that can been cut by a nuclease of interest via sequencing of an intact target site adjacent and identical to a cut target site. Some aspects of this disclosure provide strategies, methods, and reagents for selecting a site-specific endonuclease based on determining its target site preferences and specificity. Methods and reagents for determining target site preference and specificity are also provided.
    Type: Grant
    Filed: January 27, 2021
    Date of Patent: March 5, 2024
    Assignee: President and Fellows of Harvard College
    Inventors: David R. Liu, Vikram Pattanayak
  • Patent number: 11921103
    Abstract: A sequence of polymer units in a polymer (3), eg. DNA, is estimated from at least one series of measurements related to the polymer, eg. ion current as a function of translocation through a nanopore (1), wherein the value of each measurement is dependent on a k-mer being a group of k polymer units (4). A probabilistic model, especially a hidden Markov model (HMM), is provided, comprising, for a set of possible k-mers: transition weightings representing the chances of transitions from origin k-mers to destination k-mers; and emission weightings in respect of each k-mer that represent the chances of observing given values of measurements for that k-mer. The series of measurements is analysed using an analytical technique, eg. Viterbi decoding, that refers to the model and estimates at least one estimated sequence of polymer units in the polymer based on the likelihood predicted by the model of the series of measurements being produced by sequences of polymer units.
    Type: Grant
    Filed: June 21, 2019
    Date of Patent: March 5, 2024
    Assignee: Oxford Nanopore Technologies PLC
    Inventors: Stuart William Reid, Gavin Harper, Clive Gavin Brown, James Anthony Clarke, Andrew John Heron
  • Patent number: 11920151
    Abstract: Provided are: a composition for DNA double-strand breaks (DSBs), comprising (1) a cytosine deaminase and an inactivated target-specific endonuclease, (2) a guide RNA, and (3) a uracil-specific excision reagent (USER); a method for producing DNA double-strand breaks by means of a cytosine deaminase using the composition; a method for analyzing a DNA nucleic acid sequence to which base editing has been introduced by means of a cytosine deaminase; and a method for identifying (or measuring or detecting) base editing, base editing efficiency at an on-target site, an off-target site, and/or target specificity by means of a cytosine deaminase.
    Type: Grant
    Filed: September 13, 2017
    Date of Patent: March 5, 2024
    Assignees: TOOLGEN INCORPORATED, SEOUL NATIONAL UNIVERSITY R&Db FOUNDATION, INSTITUTE FOR BASIC SCIENCE
    Inventor: Daesik Kim
  • Patent number: 11920201
    Abstract: Provided herein are methods of determining one or more modification(s) of the nucleic acid sequence of at least one nucleic acid and at least one epigenetic alteration of the at least one nucleic acid in a sample of a subject. The sample is derived from a body fluid of the subject. The methods link the one or more modification(s) to a specific cell type.
    Type: Grant
    Filed: January 23, 2018
    Date of Patent: March 5, 2024
    Assignee: Siemens Healthcare GMBH
    Inventors: Carsten Dietrich, Andreas Emanuel Posch
  • Patent number: 11912999
    Abstract: An aptamer-N-heterocyclic-carbene metal complex conjugate (aptamer-NHCM conjugate) or an aptamer-bis-N-heterocyclic-carbene metal complex conjugate (aptamer-bis-NHCM conjugate) includes an aptamer coupled through a hydrolytically stable bond to an N-heterocyclic-carbene metal complex (NHCM) or a bis-N-heterocyclic-carbene metal complex (bis-NHCM). The aptamer-NHCM conjugate is prepared where the chosen aptamer displays selective binding to a cell specific receptor, such that the cytotoxic NHCM can be directed specifically to cells responsible for a target disease (e.g., a specific cancer type). A method of preparing the aptamer-N-heterocyclic-carbene metal complex conjugate involves installing a coupling group to an N-heterocyclic-carbene metal complex that can specifically bond with a functional group on an aptamer; the bond, covalent or non-covalent, is stable hydrolytically in the absence of an environment that promotes intentional cleavage of the bond.
    Type: Grant
    Filed: July 10, 2020
    Date of Patent: February 27, 2024
    Assignee: University of Florida Research Foundation, Inc.
    Inventors: Adam S. Veige, Mary E. Garner, Weijia Niu
  • Patent number: 11896669
    Abstract: Provided herein are branched oligonucleotides exhibiting efficient and specific tissue distribution, cellular uptake, minimum immune response and off-target effects, without formulation.
    Type: Grant
    Filed: September 4, 2020
    Date of Patent: February 13, 2024
    Assignee: UNIVERSITY OF MASSACHUSETTS
    Inventors: Anastasia Khvorova, Matthew Hassler, Julia Alterman, Bruno Miguel da Cruz Godinho
  • Patent number: 11898129
    Abstract: A pressure regulator module for a chip-based microfluidic platform is provided. The module includes a microfluidic channel for passing flowable material from the inlet region through the outlet region and into a downstream compartment; one or more microvalves fluidly connected to the microfluidic channel and upstream of the outlet region; and one or more reservoirs fluidly connected to the microvalves, for receiving flowable material diverted by the microvalves, where a flow of flowable material passing from the inlet region toward the downstream compartment is at least partially diverted by the microvalves into the reservoirs as a result of a pressure increase in the microfluidic channel. In some versions, the microvalves are capillary burst valves. A microfluidic chip containing the module and a method of using the module are provided.
    Type: Grant
    Filed: October 1, 2021
    Date of Patent: February 13, 2024
    Assignee: The Regents of the University of California
    Inventors: Abraham P. Lee, Xiaolin Wang, Duc Phan, Christopher C. W. Hughes, Steven C. George
  • Patent number: 11901041
    Abstract: In certain aspects, methods of the invention involve performing modification state specific enzymatic reaction of nucleic acid in a sample, determining a value associated with efficiency of the modification state specific enzymatic reaction based on a control, determining an amount of target nucleic acid in the sample, and normalizing the amount of target nucleic acid based on the efficiency value. Based on the normalized amount of target nucleic acid, the method further includes determining whether the normalized amount of target nucleic acid is indicative of a condition.
    Type: Grant
    Filed: October 3, 2014
    Date of Patent: February 13, 2024
    Assignee: Bio-Rad Laboratories, Inc.
    Inventors: Michael Samuels, Jeffrey Olson, Darren R. Link
  • Patent number: 11891632
    Abstract: A DNA polymerase in which a mutation is induced at a specific amino acid position to increase gene mutation specificity, a nucleic acid sequence encoding the polymerase, a vector comprising the nucleic acid sequence, and a host cell transformed with the vector are disclosed. Provided are a method for in vitro detecting one or more gene mutations or SNPs in one or more templates by using a DNA polymerase having increased gene mutation specificity, a composition for detecting a gene mutation or SNP comprising the DNA polymerase, and a PCR kit comprising said composition. Furthermore, provided are a PCR buffer composition for increasing the activity of a DNA polymerase having increased gene mutation specificity and a PCR kit for detecting a gene mutation or SNP comprising the PCR buffer composition and/or the DNA polymerase having increased gene mutation specificity.
    Type: Grant
    Filed: May 31, 2018
    Date of Patent: February 6, 2024
    Assignee: GENECAST CO., LTD
    Inventors: Byung Chul Lee, Il Hyun Park, Huy Ho Lee
  • Patent number: 11884921
    Abstract: The present disclosure relates to compositions of matter and assay methods used to detect one or more target nucleic acids of interest in a sample. The compositions and methods provide signal boost upon detection of target nucleic acids of interest in less than one minute and in some instances instantaneously at ambient temperatures down to 16° C. or less, without amplification of the target nucleic acids yet allowing for massive multiplexing, high accuracy and minimal non-specific signal generation.
    Type: Grant
    Filed: December 9, 2022
    Date of Patent: January 30, 2024
    Assignee: VedaBio, Inc.
    Inventors: Anurup Ganguli, Ashish Pandey, Ariana Mostafa, Jacob Berger
  • Patent number: 11884963
    Abstract: Provided are methods of depleting a target nucleic acid from an initial collection of nucleic acids. Aspects of the methods include contacting the initial collection with a nucleic acid guided nuclease specific for the target nucleic acid in a manner sufficient to deplete the target nucleic acid from the initial collection. Depending on a given application, depletion of a target nucleic acid may vary, e.g., where depleting may include cleaving a target nucleic acid in, or selectively separating a target nucleic acid from, the initial collection of nucleic acids. Also provided are compositions and kits for practicing embodiments of the methods.
    Type: Grant
    Filed: April 20, 2021
    Date of Patent: January 30, 2024
    Assignee: Takara Bio USA, Inc.
    Inventors: Andrew Alan Farmer, Craig Betts, Nathalie Bolduc
  • Patent number: 11878991
    Abstract: Provided herein are methods and compositions for synthesizing 5?Capped RNAs wherein the initiating capped oligonucleotide primers have the general form m7 Gppp[N2?Ome]n[N]m wherein m7G is N7-methylated guanosine or any guanosine analog, N is any natural, modified or unnatural nucleoside, “n” can be any integer from 0 to 4 and “m” can be an integer from 1 to 9.
    Type: Grant
    Filed: November 6, 2020
    Date of Patent: January 23, 2024
    Assignee: TriLink BioTechnologies, LLC
    Inventors: Richard I. Hogrefe, Alexandre Lebedev, Anton P. McCaffrey, Dongwon Shin
  • Patent number: 11879126
    Abstract: Provided herein are examples of mRNA treatment nanoparticles and methods of using them to treat a patient. An mRNA treatment nanoparticle may include one or more mRNAs encoding a tumor-specific antigen and an immunomodulatory agent; and a delivery vehicle molecule encapsulating the one or more mRNAs.
    Type: Grant
    Filed: October 20, 2022
    Date of Patent: January 23, 2024
    Assignee: Nutcracker Therapeutics, Inc.
    Inventors: Samuel Deutsch, Daniel Frimannsson, Nicole Fay, Colin McKinlay, Ole Haabeth
  • Patent number: 11873493
    Abstract: This invention relates to compounds, compositions, and methods useful for reducing Glycolate Oxidase (HAO1) target RNA and protein levels via use of dsRNAs, e.g., Dicer substrate siRNA (DsiRNA) agents.
    Type: Grant
    Filed: January 25, 2021
    Date of Patent: January 16, 2024
    Assignee: Dicerna Pharmaceuticals, Inc.
    Inventors: Bob D. Brown, Henryk T. Dudek
  • Patent number: 11872290
    Abstract: The present invention relates to a bicistronic expression vector for silencing a gene specifically in astrocytes and neurons, comprising two expression cassettes comprising a first and a second silencer sequence, respectively, wherein the expression of said first silencer sequence within astrocytes is regulated by an astrocyte-specific promoter and the expression of said second silencer sequence within neurons is regulated by a neuron-specific promoter. In a preferred embodiment, said first and second silencer sequences are SOD1 silencer sequences. Pharmaceutical composition comprising said bicistronic vector and the use of the same in the treatment of motoneuron diseases are further described.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: January 16, 2024
    Assignee: Ecole Polytechnique Federale De Lausanne (EPFL)
    Inventors: Julianne Aebischer, Bernard Schneider, Cylia Rochat
  • Patent number: 11873483
    Abstract: The disclosure provides methods and compositions useful for labeling of target molecules with origin-specific nucleic acid identifiers (for example, barcodes), which can be used subsequently to identify, quantify, or otherwise characterize a feature or activity of target molecules originating from a particular discreet volume. Such target molecules can include polypeptides expressed by cells, in which nucleic acid molecules encoding the polypeptides are labeled with the same, or matched, origin-specific nucleic acid identifiers.
    Type: Grant
    Filed: March 11, 2016
    Date of Patent: January 16, 2024
    Assignees: The Broad Institute, Inc., ÉCOLE SUPERIEURE DE PHYSIQUE ET DE CHIMIE INDUSTRIELLES DE LA VILLE DE PARIS (ESPCI PARIS TECH)
    Inventors: Robert Nicol, Andrew David Griffiths, Baptiste Saudemont, Timothy V. Kirk
  • Patent number: 11866780
    Abstract: The present invention relates to the field of molecular biology, and more specifically to methods for reducing the complexity of a nucleic acid sample.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: January 9, 2024
    Assignee: Illumina Cambridge Limited
    Inventor: Jonathan Mark Boutell
  • Patent number: 11866467
    Abstract: The present invention concerns a structurally distinct immunosuppressive mimic of TGF-? that is a potent inducer of murine and human regulatory T cells and provides a therapeutic agent for the treatment of inflammatory disorders. Disclosed herein is a novel parasite TGF-? mimic which fully replicates the biological and functional properties of TGF-?, including binding to mammalian TGF-? receptors and inducing Foxp3+ Treg in both murine and human CD4+ T cells. This TGF-? mimic shares no homology to mammalian TGF-? or other members of the TGF-? family, but s distinctly related to the component control protein (CCP) superfamily.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: January 9, 2024
    Assignees: THE UNIVERSITY COURT OF THE UNIVERSITY OF GLASGOW, THE UNIVERSITY OF EDINBURGH
    Inventors: Richard Maizels, Danielle Smyth, Henry McSorley
  • Patent number: 11862329
    Abstract: A pathogen detection and display system is configured to discover and display the location of substances of interest, particularly pathogens that can spread infection. The detection and display system can be used in healthcare facilities on surfaces, medical equipment and devices, patients, and staff, for example.
    Type: Grant
    Filed: July 7, 2020
    Date of Patent: January 2, 2024
    Assignee: Cardeya Corporation
    Inventors: Charles R. Sperry, Lawrence J. Pillote, Vincent A. Piucci, Dennis F. McNamara, Jr., James M. Wilson, III, Lisa Ruth Stowe, Brett M. Sitzlar, Barbara A. Piucci, David C. Chase