Involving Nucleic Acid Patents (Class 435/6.1)
  • Patent number: 10257997
    Abstract: A novel maize variety designated X13M716 and seed, plants and plant parts thereof are produced by crossing inbred maize varieties. Methods for producing a maize plant by crossing hybrid maize variety X13M716 with another maize plant are disclosed. Methods for producing a maize plant containing in its genetic material one or more traits introgressed into X13M716 through backcrossing or genetic transformation, and to the maize seed, plant and plant part produced thereby are described. Maize variety X13M716, the seed, the plant produced from the seed, and variants, mutants, and minor modifications of maize variety X13M716 are provided. Methods for producing maize varieties derived from maize variety X13M716 and methods of using maize variety X13M716 are disclosed.
    Type: Grant
    Filed: March 19, 2018
    Date of Patent: April 16, 2019
    Assignee: PIONEER HI-BRED INTERNATIONAL, INC.
    Inventors: Brian M Anderson, Mario Rosario Carlone, Jr.
  • Patent number: 10260106
    Abstract: A method for diagnosing and treating prostate cancer in a human subject is provided, the method comprises: a. providing a sample of prostate tissue, blood, or urine from the subject; b. determining the level of expression of SEQ ID NO: 1 and the expression of SEQ ID NO: 5 in the sample, wherein an increased level of expression of SEQ ID NO:1 and a reduced level of expression of SEQ ID NO: 5 in the sample is indicative of a diagnosis that the subject has prostate cancer; and c. administering a therapeutically effective prostate cancer treatment selected from the group consisting of an androgen receptor (AR)-targeted therapy, an antimicrotubule agent, an alkylating agent and an anthracenedione to the subject to treat the prostate cancer in the human subject diagnosed with prostate cancer.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: April 16, 2019
    Assignee: Henry Ford Health System
    Inventors: G. Prem-Veer Reddy, Mani Menon
  • Patent number: 10253317
    Abstract: Disclosed are particles which are introduced into target cells and suppress the expression of specific genes, and a method of manufacturing such particles. More particularly, the present invention relates to DNA-RNA hybrid particles that comprise a DNA strand and an RNA strand that binds to the DNA strand through partial complementary base pairing, in which the DNA strand comprises an aptamer sequence that is able to bind to a target protein produced in a target cell, and the RNA strand comprises an siRNA sequence that binds to a target RNA in the target cell to suppress protein expression from the target RNA. Such hybrid particles are capable of effectively delivering an siRNA therapeutic agent into target cells for the treatment of disease, and have resistance against digestion by in vivo nucleases, DNase and RNase, owing to complementary binding formed between DNA and RNA strands. Also, the present invention relates to a method of manufacturing such DNA-RNA hybrid particles.
    Type: Grant
    Filed: June 30, 2015
    Date of Patent: April 9, 2019
    Assignee: UNIVERSITY OF SEOUL INDUSTRY COOPERATION FOUNDATION
    Inventors: Jong-Bum Lee, Yong-Kuk Park
  • Patent number: 10254243
    Abstract: The present invention concerns an ion sensor based on differential measurement, that by means of at least two ion-sensitive field-effect transistors, compares the concentration of certain ions in a solution to be measured with the concentration of certain ions in a reference solution contained in a micro-reservoir with a micro-channel. To do this, the micro-reservoir and the micro-channel cover at least the gate of one of the ion-sensitive field-effect transistors and make up a unit partially filled with a porous material that covers the entirety of the aforementioned gate and at least the base of the micro-channel.
    Type: Grant
    Filed: July 12, 2016
    Date of Patent: April 9, 2019
    Assignee: CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS (CSIC)
    Inventors: Antonio Baldi Coll, César Fernández Sánchez, Alfredo Cadarso Busto
  • Patent number: 10253318
    Abstract: The present invention relates to methods and compositions for the treatment of diseases, including cancer, infectious diseases and autoimmune diseases. The present invention also relates to methods and compositions for improving immune function. More particularly, the present invention relates to multifunctional molecules that are capable of being delivered to cells of interest for the treatment of diseases and for the improvement in immune function.
    Type: Grant
    Filed: June 14, 2017
    Date of Patent: April 9, 2019
    Assignee: CITY OF HOPE
    Inventors: Hua Yu, Marcin Kortylewski, Richard Jove, Piotr Marek Swiderski, John J. Rossi
  • Patent number: 10254230
    Abstract: The present invention relates to nanoparticles in the shape of nanosnowman with a head part and a body part, a preparation method thereof, and a detection method using the same. More particularly, the present invention relates to nanoparticles in the shape of nanosnowman with head and body parts, which can offer platforms for DNA-based assembly of various aligned and unconventional nanostructures and is highly applicable to the detection of DNA and an analyte associated, with the onset and progression of a particular disease, a preparation method thereof, and a detection method using the same.
    Type: Grant
    Filed: November 29, 2016
    Date of Patent: April 9, 2019
    Assignee: SEOUL NATIONAL UNIVERSITY R&DB FOUNDATION
    Inventors: Jwa Min Nam, Jung Hoon Lee, Jeong Wook Oh
  • Patent number: 10246736
    Abstract: Methods and kits for preparing nucleic acid fragments from a sample of purified nucleic acid are provided. Alternatively, chromatin or other long polymers can be sheared with similar methods and kits.
    Type: Grant
    Filed: August 3, 2015
    Date of Patent: April 2, 2019
    Assignee: Life Technologies Corporation
    Inventors: Vladimir I. Bashkirov, Umberto Ulmanella, Robert G. Eason, Bradford J. Taft
  • Patent number: 10240185
    Abstract: Provided are compositions, kits, and methods for the identification of Salmonella. In certain aspects and embodiments, the compositions, kits, and methods may provide improvements in relation to specificity, sensitivity, and speed of detection.
    Type: Grant
    Filed: March 17, 2014
    Date of Patent: March 26, 2019
    Assignee: Gen-Probe Incorporated
    Inventors: Michael R. Reshatoff, Edgar O. Ong, James J. Hogan
  • Patent number: 10240189
    Abstract: Solid support assays using non-standard bases are described. A capture oligonucleotide comprising a molecular recognition sequence is attached to a solid support and hybridized with a target. In some instances, the molecular recognition sequence includes one or more non-standard bases and hybridizes to a complementary tagging sequence of the target oligonucleotide. In other instances, incorporation of a non-standard base (e.g., via PCR or ligation) is used in the assay.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: March 26, 2019
    Assignee: LUMINEX CORPORATION
    Inventors: Jennifer K. Grenier, David J. Marshall, James R. Prudent, Craig S. Richmond, Eric B. Roesch, Christopher W. Scherrer, Christopher B. Sherrill, Jerod L. Ptacin
  • Patent number: 10240188
    Abstract: The presently disclosed subject matter relates to technology and methods for analyzing the structure of nucleic acid molecules, such as RNA molecules. More particularly, the presently disclosed subject matter is directed to methods of compositions for, and computer program products for nucleic acid analysis, such as RNA structure analysis.
    Type: Grant
    Filed: October 7, 2014
    Date of Patent: March 26, 2019
    Assignee: The University of North Carolina at Chapel Hill
    Inventors: Kevin M. Weeks, Nathan Siegfried, Philip Homan, Steven Busan, Oleg V. Favorov
  • Patent number: 10233508
    Abstract: The present disclosure provides methods, compositions and devices for isolating virus particles and/or viral nucleic acids from body samples that were stabilized using a stabilizing composition comprising a formaldehyde releaser agent.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: March 19, 2019
    Assignee: QIAGEN GmbH
    Inventors: Martin Horlitz, Markus Sprenger-Haussels, Annabelle Schubert, Uwe Oelmüller
  • Patent number: 10227659
    Abstract: The invention relates to the identification of genetic signatures and expression profiles that are a part of the Base Excision Repair (BER) pathway, a major DNA repair pathway that modifies base lesions. In one embodiment, the present invention provides a method of determining responsiveness of treatment by BER inhibitors for malignant glioma by determining the presence of a low level of expression of Apex 1, a low level of expression of Apex 2, and a high level of expression of MPG.
    Type: Grant
    Filed: March 31, 2017
    Date of Patent: March 12, 2019
    Assignees: Dignity Health, The Translational Genomics Research Institute
    Inventors: Shwetal V. Mehta, Michael E. Berens, Harshil Dineshkumar Dhruv
  • Patent number: 10227655
    Abstract: Methods and kits for qualifying the analysis of cell free DNA in e.g. plasma and serum samples are provided, based on the identification of contaminating DNA from B lymphocytes. Quantitative PCR (qPCR) can be used to detecting or determining the level of clonally rearranged immunoglobulin heavy-chain (IGH) genes, immunoglobulin kappa chain (IGK) genes, or immunoglobulin lambda-chain (IGL) genes, or a combination of any thereof. Samples identified as containing contaminating DNA can thus be identified and excluded or corrected, improving the accuracy of cf DNA determinations as a diagnostic, prognostic and treatment monitoring tool.
    Type: Grant
    Filed: October 29, 2014
    Date of Patent: March 12, 2019
    Assignee: REGION SYDDANMARK
    Inventor: Niels Pallisgaard
  • Patent number: 10227584
    Abstract: This disclosure relates to analyzing the end-to-end sequence and the relative distributions in heterogeneous mixtures of polynucleotides and methods and enabling reagents related thereto. In certain embodiments this method relates to the complete full length sequencing and quantitative profiling of mRNAs present in the transcriptomes of cells or tissues of but not limited to, higher multicellular organisms that possess interrupted genes subject to complex post-transcriptional RNA processing.
    Type: Grant
    Filed: February 17, 2014
    Date of Patent: March 12, 2019
    Assignees: Emory University, The Johns Hopkins University
    Inventors: Mark C. Emerick, William S. Agnew
  • Patent number: 10227641
    Abstract: Methods and compositions are provided for improving specificity during amplification of a target DNA sequence. The methods and compositions rely upon the use of an RNase H enzyme, a polymerase, and RNase H enzyme-sensitive, blocked-cleavable oligonucleotide primers in the amplification reactions, wherein the reaction mixtures include either an optimized final concentration of a divalent metal salt comprising 2.0 mM or less of free Mg++ cation and/or an optimized final concentration of a non-ionic detergent comprising at least about 0.001% polyethylene glycol hexadecyl ether.
    Type: Grant
    Filed: December 2, 2013
    Date of Patent: March 12, 2019
    Assignee: INTEGRATED DNA TECHNOLOGIES, INC.
    Inventors: Joseph Alan Walder, Mark Aaron Behlke, Scott D. Rose, Joseph R. Dobosy, Susan M. Rupp
  • Patent number: 10227646
    Abstract: A method for identifying any of the presence, location and phasing of modified cytosines (C) in long stretches of nucleic acids is provided. In some embodiments, the method may comprise (a) reacting a first portion of a nucleic acid sample containing at least one C and/or at least one modified C with a DNA glucosyltransferase and a cytidine deaminase to produce a first product and/or reacting a second portion of the sample with a dioxygenase, optionally a DNA glucosyltransferase and a cytidine deaminase to produce a second product and; (b) comparing the sequences from the first and optionally the second product obtained in (a), or amplification products thereof, with each other and/or an untreated reference sequence to determine which Cs in the initial nucleic acid fragment are modified. A modified TET methylcytosine dioxygenase with improved efficiency compared to unmodified TET2 at converting methylcytosine to carboxymethylcytosine is also provided.
    Type: Grant
    Filed: February 24, 2017
    Date of Patent: March 12, 2019
    Assignee: New England Biolabs, Inc.
    Inventors: Romualdas Vaisvila, Zhiyi Sun, Shengxi Guan, Lana Saleh, Laurence Ettwiller, Theodore B. Davis
  • Patent number: 10222391
    Abstract: A continuous throughput microfluidic system includes an input system configured to provide a sequential stream of sample plugs; a droplet generator arranged in fluid connection with the input system to receive the sequential stream of sample plugs and configured to provide an output stream of droplets; a droplet treatment system arranged in fluid connection with the droplet generator to receive the output stream of droplets in a sequential order and configured to provide a stream of treated droplets in the sequential order; a detection system arranged to obtain detection signals from the treated droplets in the sequential order; a control system configured to communicate with the input system, the droplet generator, and the droplet treatment system; and a data processing and storage system configured to communicate with the control system and the detection system.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: March 5, 2019
    Assignees: The Johns Hopkins University, Pioneer Hi-Bred International, Inc.
    Inventors: Tza-Huei Wang, Tushar Dnyandeo Rane, Helena Claire Zec, Wen-Chy Chu
  • Patent number: 10221419
    Abstract: Methods of treating a wound in a subject are provided comprising administering to the subject an amount of an inhibitor of Fidgetin-like 2. Compositions and pharmaceutical compositions comprising an amount of an inhibitor of Fidgetin-like 2 are also provided. Methods are also provided for identifying an inhibitor of Fidgetin-like 2.
    Type: Grant
    Filed: March 12, 2018
    Date of Patent: March 5, 2019
    Assignee: Albert Einstein College of Medicine, Inc.
    Inventors: David J. Sharp, Rabab Charafeddine
  • Patent number: 10214744
    Abstract: The present invention relates to an RNAi-inducing nucleic acid molecule having a new structure and the use thereof, and more particularly to a novel nucleic acid molecule having a structure comprising a first strand, which is 24-121 nt in length and comprises a region complementary to a target nucleic acid, and a second strand which is 13-21 nt in length and has a region that binds complementarily to the region of the first strand, which is complementary to the target nucleic acid, so that the nucleic acid molecule inhibits the expression of a target gene with increased efficiency, and to a method of inhibiting the expression of a target gene using the nucleic acid molecule. The nucleic acid molecule structure of the present invention increases the efficiency with which the nucleic acid molecule inhibits the target gene.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: February 26, 2019
    Assignee: Sungkyunkwan University Foundation For Corporate Collaboration
    Inventor: Dong Ki Lee
  • Patent number: 10214774
    Abstract: The present invention relates to a novel method for analyzing nucleic acid sequences based on real-time detection of DNA polymerase-catalyzed incorporation of each of the four nucleotide bases, supplied individually and serially in a microfluidic system, to a reaction cell containing a template system comprising a DNA fragment of unknown sequence and an oligonucleotide primer. Incorporation of a nucleotide base into the template system can be detected by any of a variety of methods including but not limited to fluorescence and chemiluminescence detection. Alternatively, microcalorimetic detection of the heat generated by the incorporation of a nucleotide into the extending template system using thermopile, thermistor and refractive index measurements can be used to detect extension reactions.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: February 26, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Peter Williams, Daniel J. B. Williams, Linda Bloom, Thomas J. Taylor
  • Patent number: 10215758
    Abstract: The present disclosure provides analyte-specific binding reagents conjugated with a platinum-containing moiety, e.g., cisplatin, and methods, compositions, and kits for their production and use in assays for analyte detection.
    Type: Grant
    Filed: August 8, 2016
    Date of Patent: February 26, 2019
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Holden Terry Maecker, Michael Duane Leipold, Henrik Mei
  • Patent number: 10217156
    Abstract: The present disclosure provides a novel approach for shifting or distributing various information (e.g., protocols, analysis methods, sample preparation data, sequencing data, etc.) to a cloud-based network. For example, the techniques relate to a cloud computing environment configured to receive this information from one or more individual sample preparation devices, sequencing devices, and/or computing systems. In turn, the cloud computing environment may generate information for use in the cloud computing environment and/or to provide the generated information to the devices to guide a genomic analysis workflow. Further, the cloud computing environment may be used to facilitate the sharing of sample preparation protocols for use with generic sample preparation cartridges and/or monitoring the popularity of the sample preparation protocols.
    Type: Grant
    Filed: October 3, 2017
    Date of Patent: February 26, 2019
    Assignee: Illumina, Inc.
    Inventors: Min-Jui Richard Shen, Charles Hsuan Lin
  • Patent number: 10208341
    Abstract: The present invention relates to a novel method for analyzing nucleic acid sequences based on real-time detection of DNA polymerase-catalyzed incorporation of each of the four nucleotide bases, supplied individually and serially in a microfluidic system, to a reaction cell containing a template system comprising a DNA fragment of unknown sequence and an oligonucleotide primer. Incorporation of a nucleotide base into the template system can be detected by any of a variety of methods including but not limited to fluorescence and chemiluminescence detection. Alternatively, microcalorimetic detection of the heat generated by the incorporation of a nucleotide into the extending template system using thermopile, thermistor and refractive index measurements can be used to detect extension reactions.
    Type: Grant
    Filed: May 2, 2014
    Date of Patent: February 19, 2019
    Assignee: Life Technologies Corporation
    Inventors: Peter Williams, Daniel J. B. Williams, Linda Bloom, Thomas J. Taylor
  • Patent number: 10208339
    Abstract: Provided herein are systems and methods for whole genome amplification and sequencing. In particular, provided herein are systems and methods for detection of nucleic acid variants (e.g., rare variants) in limited samples.
    Type: Grant
    Filed: February 18, 2016
    Date of Patent: February 19, 2019
    Assignee: TAKARA BIO USA, INC.
    Inventors: Alain-Albert Mir, Thomas David Schaal, Jude Dunne, Maithreyan Srinivasan
  • Patent number: 10201557
    Abstract: Compositions, kits, cells and methods for treating cardiovascular (e.g., myocardial ischemia and heart failure), immunological, and inflammatory diseases or disorders involve the use of the mature and precursor sequences of microRNAs 142-5p, 142-3p, 17-5p, 17-3p, 374, and 20a, and of antisense molecules complementary to these sequences, to manipulate processes relevant to, for example, the cardiac response to stress, including survival signaling, angiogenesis, stem cell differentiation along muscle or vascular lineages, and repression or promotion of cardiac myocyte growth. Also described are methods to treat cardiovascular, immunological and inflammatory diseases by engineering cells containing specific micro-RNAs or antagomirs against specific mRNAs. The engineered cells can then be used to treat patients with such diseases by autologous stem cell therapy.
    Type: Grant
    Filed: February 1, 2016
    Date of Patent: February 12, 2019
    Assignee: UNIVERSITY OF MIAMI
    Inventors: Nanette Bishopric, Salil Sharma
  • Patent number: 10202628
    Abstract: Methods and compositions for synthesizing nucleic acid sequences in an emulsion are provided.
    Type: Grant
    Filed: February 14, 2013
    Date of Patent: February 12, 2019
    Assignee: President and Fellows of Harvard College
    Inventors: George M. Church, Richard C. Terry, Sriram Kosuri, Di Zhang
  • Patent number: 10203335
    Abstract: Provided are methods for labeling transfer RNA comprising replacing the uracil component of a dihydrouridine of said transfer RNA with a fluorophore. The disclosed methods may comprise fluorescent labeling of natural tRNAs (i.e., tRNAs that have been synthesized in a cell, for example, in a bacterium, a yeast cell, or a vertebrate cell) at dihydrouridine (D) positions, or fluorescent labeling of synthetic tRNAs. In another aspect, the present invention provides methods for assessing protein synthesis in a translation system comprise providing a tRNA having a fluorophore substitution for the uracil component of a dihydrouridine in a D loop of the tRNA; introducing the labeled tRNA into the translation system; irradiating the translation system with electromagnetic radiation, thereby generating a fluorescence signal from the fluorophore; detecting the fluorescence signal; and, correlating the fluorescence signal to one or more characteristics of the protein synthesis in the translation system.
    Type: Grant
    Filed: February 9, 2017
    Date of Patent: February 12, 2019
    Assignees: The Trustees of the University of Pennsylvania, Anima Cell Metrology
    Inventors: Barry S. Cooperman, Zeev Smilansky, Yale E. Goldman, Dongli Pan
  • Patent number: 10203334
    Abstract: Small molecule fluorescent probes for established drug targets such as nucleic acids including DNA and RNA has been developed and disclosed herein. These nucleic acid probes bind to multiple DNA and RNA structures, and to sites crucial for nucleic acid function, such as DNA and RNA major grooves. Displacement of the probes by other binders such as small molecule compounds and/or proteins illicits a fluorescence change in the probe that once detected and analyzed provide binding information of these other binders of interest. Similarly, changes in fluorescence upon binding of the probes to nucleic acid have been applied to screen nucleic acid of different sequence and conformation. The nucleic acid probes and method of uses disclosed herein are advantageously suitable for high-through put screening of libraries of small molecule compounds, proteins, and nucleic acids.
    Type: Grant
    Filed: March 31, 2016
    Date of Patent: February 12, 2019
    Assignee: Nubad, LLC
    Inventors: Dev P. Arya, Frank Anderson Norris, Jason Derrick Watkins
  • Patent number: 10196673
    Abstract: Improved compositions for and methods of processing and analyzing samples are described. In particular, the compositions and methods liberate nucleic acids from a biological sample allowing direct downstream processing of the nucleic acids in microfluidic systems. These compositions, methods and kits are useful in diagnosing, staging or otherwise characterizing various biological conditions.
    Type: Grant
    Filed: February 18, 2014
    Date of Patent: February 5, 2019
    Assignee: BIOCARTIS N.V.
    Inventors: Koen Van Acker, Bart Claes, Benoit Devogelaere, Geert Maertens, Erwin Sablon, Pascale Holemans, Tania Ivens
  • Patent number: 10196683
    Abstract: The present invention relates to a method of preparation of substrates for nucleic acid sequencing reactions. More specifically, the present invention provides a new method of preparing hairpins using force-induced strand invasion. Hairpins prepared by this method and methods of nucleic acid analysis using these hairpins are also part of the present invention.
    Type: Grant
    Filed: May 4, 2016
    Date of Patent: February 5, 2019
    Assignees: PARIS SCIENCES ET LETTRES—QUARTIER LATIN, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (cnrs), SORBONNE UNIVERSITE, UNIVERSITE PARIS DIDEROT PARIS 7
    Inventors: Vincent Croquette, Jimmy Ouellet
  • Patent number: 10190157
    Abstract: Some embodiments of the present application relate to novel modified nucleotide linkers for increasing the efficiency of nucleotide incorporation in Sequencing by Synthesis applications. Methods of preparing these modified nucleotide linkers are also provided herewith.
    Type: Grant
    Filed: August 7, 2015
    Date of Patent: January 29, 2019
    Assignee: Illumina Cambridge Limited
    Inventors: Xiaolin Wu, Xiaohai Liu
  • Patent number: 10190178
    Abstract: Methods for the rapid detection of the presence or absence of mecC-containing Staphylococcus aureus (mecC-MRSA) in a biological or non-biological sample are described. The methods can include performing an amplifying step, a hybridizing step, and a detecting step. Furthermore, primers, probes targeting the genes for mecC-MRSA, along with kits are provided that are designed for the detection of mecC-MRSA.
    Type: Grant
    Filed: January 8, 2018
    Date of Patent: January 29, 2019
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Jenny A. Johnson, Ashley Hayes
  • Patent number: 10189874
    Abstract: Novel compositions and methods for engineering wireframe architectures and scaffolds of increasing complexity by creating gridiron-like DNA structures (FIG. 1). A series of four-arm junctions are used as vertices within a network of double-helical DNA fragments. Deliberate distortion of the junctions from their most relaxed conformations ensures that a scaffold strand can traverse through individual vertices in multiple directions. DNA gridirons, ranging from two-dimensional arrays with reconfigurability to multilayer and three-dimensional structures and curved objects, can be assembled according the methods presented herein.
    Type: Grant
    Filed: February 25, 2015
    Date of Patent: January 29, 2019
    Assignee: Arizona Board of Regents on behalf of Arizona State University
    Inventors: Dongran Han, Hao Yan
  • Patent number: 10190120
    Abstract: Provided herein are a novel Zn-DPA complex compound and an siRNA delivery system including the same as a transporter, the Zn-DPA complex compound including: a phosphate-directing functional part of zinc (II)-dipicolylamine (“Zn-DPA”); a cell membrane-directing functional part; and a linker part that links the phosphate-directing functional part and the cell membrane-directing functional part. The Zn-DPA complex compound has low toxicity and efficiently delivers siRNA to cells, thereby useful in various ways for various studies and diagnosis and treatment of diseases, which use siRNA.
    Type: Grant
    Filed: August 8, 2017
    Date of Patent: January 29, 2019
    Assignee: KOREA INSTITUTE OF SCIENCE AND TECHNOLOGY
    Inventors: Gyo Chang Keum, Eun Kyoung Bang, Jin Bum Kim
  • Patent number: 10182987
    Abstract: A lipid membrane structure encapsulating an siRNA inside thereof and containing a lipid compound of the formula (I) as a lipid component (R1 and R2 represent CH3—(CH2)n—CH?CH—CH2—CH?CH—(CH2)m—, n represents an integer of 3 to 5, m represents an integer of 6 to 10, p represents an integer of 2 to 7, and R3 and R4 represent a C1-4 alkyl group or a C2-4 alkenyl group.
    Type: Grant
    Filed: May 18, 2015
    Date of Patent: January 22, 2019
    Assignee: NATIONAL UNIVERSITY CORPORATION HOKKAIDO UNIVERSITY
    Inventors: Hideyoshi Harashima, Yusuke Sato, Shota Warashina, Hiroto Hatakeyama, Mamoru Hyodo, Takashi Nakamura
  • Patent number: 10184123
    Abstract: Therapies and assays to screen for small molecules that can have therapeutic use in the control of neurodegenerative diseases such as Parkinson's and other alpha-synucleinopathies.
    Type: Grant
    Filed: July 17, 2017
    Date of Patent: January 22, 2019
    Assignee: RUTGERS, THE STATE UNIVERSITY OF NEW JERSEY
    Inventors: M. Maral Mouradian, Eunsung Junn
  • Patent number: 10179931
    Abstract: The present invention provides methods for immobilizing target nucleic acids on a solid support utilizing combinatorial capture probe pairs. These pairs contain first and second capture oligonucleotides that each comprise a target binding region, a capture region and a stem region positioned between the target binding and capture regions. The target binding regions comprise nucleic acid sequences that allow them to hybridize to adjacent regions on the target nucleic acid. The stem regions have nucleic acid sequences that are complementary to each other and the capture regions each comprise a sequence that when positioned adjacent to one another produce a combined nucleic acid sequence that is complementary to a portion of an oligonucleotide bound to a solid support.
    Type: Grant
    Filed: July 18, 2017
    Date of Patent: January 15, 2019
    Inventor: Lyle J. Arnold, Jr.
  • Patent number: 10176277
    Abstract: Methods are provided that operate on raw dissociation data and dissociation curves to generate calibrations of the detected data and to further improve analysis of the data. The data can be taken from each support region of a multi-region platform, for example, from each well of a multi-well plate. Each support region can be loaded with portions of the same sample. In some embodiments, a dissociation curve correction can be calibrated for the sample, prior to a run of an experiment using such sample. In some embodiments, a method is provided for generating a melting transition region of dissociation curves that show the melting characteristics of the sample. In some embodiments, dye temperature dependence correction can be performed on the dissociation curve data to further improve analysis. In some embodiments, a feature vector can be derived from the melt data, and the feature vector can be used to further improve genotyping analysis of the dissociation curves.
    Type: Grant
    Filed: August 27, 2013
    Date of Patent: January 8, 2019
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Francis T. Cheng, Casey R. McFarland
  • Patent number: 10174352
    Abstract: The present invention provides methods for amplifying a nucleic acid from a sample containing a mixture of nucleic acids utilizing a solid support. Methods are provided utilizing user-defined primer oligonucleotides for directional amplification that assists in further manipulation of the target nucleic acid, such as sequencing. Methods are also provided utilizing blocker and displacer oligonucleotides for generating amplified target nucleic acids of defined length. One of these methods provides a first oligonucleotide and a second oligonucleotide affixed to a solid support or separate solid supports. The first oligonucleotide is blocked to prevent extension from the 3?-terminus and has a sequence complementary to a first portion of a target nucleic acid. The second oligonucleotide has a sequence that is identical to a second portion of the target nucleic acid. In this method, a sample is applied to the solid support and the target nucleic acid within the sample binds said first oligonucleotide.
    Type: Grant
    Filed: March 14, 2014
    Date of Patent: January 8, 2019
    Inventors: Lyle J. Arnold, Norman C. Nelson
  • Patent number: 10174358
    Abstract: The present invention provides a novel assay that allows high-throughput screening of chemical compounds for the inhibition of binding between EF-Tu and tRNA.
    Type: Grant
    Filed: October 31, 2014
    Date of Patent: January 8, 2019
    Assignee: Rutgers, The State University of New Jersey
    Inventors: Wlodek Mandecki, Emanuel Goldman, Maxim Chudaev
  • Patent number: 10174310
    Abstract: The invention provides methods, compositions, kits and devices for the detection of target molecules. In some embodiments, the invention allows for multiplexed target molecule detection.
    Type: Grant
    Filed: August 8, 2013
    Date of Patent: January 8, 2019
    Assignee: ROCHE SEQUENCING SOLUTIONS, INC.
    Inventor: Garry P. Nolan
  • Patent number: 10168335
    Abstract: The present invention relates to a method of biological labeling that occurs via a free radical chain reaction. The labeling occurs due to deposition of a detectable reporter molecule from a media comprising a substance comprising at least two moieties of a peroxidase enzyme substrate (termed herein ‘cross-linker’) in a target site comprising peroxidase activity and a biological marker. The labeling reaction described herein may generally be used to detect targets in a host of experimental schemes for detecting and visualizing a biological or chemical target, including immunohistochemistry (IHC), in situ hybridization (ISH), antibody-based staining methods such as ELISA, Southern, Northern, and Western blotting, and others.
    Type: Grant
    Filed: May 26, 2016
    Date of Patent: January 1, 2019
    Assignee: DAKO DENMARK A/S
    Inventors: Jesper Lohse, Kenneth Heesche Petersen
  • Patent number: 10167253
    Abstract: This invention includes ionizable compounds, and compositions and methods of use thereof. The ionizable compounds can be used for making nanoparticle compositions for use in biopharmaceuticals and therapeutics. More particularly, this invention relates to compounds, compositions and methods for providing nanoparticles to encapsulate active agents, such as nucleic acid agents, and to deliver and distribute the active agents to cells, tissues, organs, and subjects.
    Type: Grant
    Filed: June 23, 2016
    Date of Patent: January 1, 2019
    Assignee: Nitto Denko Corporation
    Inventors: Roger Adami, Hao Bai, John Gaudette, Bharat Majeti, Seiji Nukui, Kwok Yin Tsang, Hai Wang, Haiqing Yin, Wenbin Ying
  • Patent number: 10161002
    Abstract: Nucleic acid compositions, methods of making and using such compositions that comprise modular functional groups that can be configured to provide desired functionality to different nucleotide types through a swappable and preferably non-covalent linkage component. Such compositions are useful in a variety of applications including nucleic acid analyses.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: December 25, 2018
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Jonas Korlach, Jeffrey Wegener
  • Patent number: 10161933
    Abstract: The invention provides methods of detecting an analyte by multi-stage mass spectrometry with improved S/N ratio. An analyte is labeled with a positively-charged mass tag to form a precursor ion that leads by anchimeric assistance to a greatly enhanced, analyte-characteristic first product ion that can, in turn, lead to a greatly enhanced, analyte-characteristic second product ion in a mass spectrometer. Either a three stage mass spectrometer (true MS3) or a two-stage mass spectrometer (MS2) operated in a pseudo MS3 mode can be used. The precursor ion is split via an anchimeric-assisted reaction to form a first product ion, which in turn can be fragmented to form the second product ion. The methods offer extreme ultrasensitivity, at the low amol level. The invention also provides anchimeric mass tags for use in the methods. A wide variety of previously undetectable analytes of biological or environmental origin can be detected and quantified.
    Type: Grant
    Filed: June 28, 2018
    Date of Patent: December 25, 2018
    Inventors: Roger Giese, Poguang Wang
  • Patent number: 10160966
    Abstract: A method of preparing a nucleic acid sample with target enrichment uses a reaction vessel (11), within which is added a chelating agent to a sample with heating to about 99° C. to provide a crude lysate. A PNA probe is provided at a concentration sufficient for binding and capture of discernible levels of target nucleic acid. The PNA probe may be attached to beads (26) which are initially embedded in a wax body (17) and are released during the heating so that they are free to move and come into contact with the PNA probe and target DNA. After binding has occurred, the beads are magnetically attracted back into a pocket (16) along with the wax (17), which is allowed to solidify before they are removed from the reaction vessel.
    Type: Grant
    Filed: December 10, 2014
    Date of Patent: December 25, 2018
    Assignee: ALTRATECH LIMITED
    Inventors: Brian O'Farrell, Timothy Cummins, Cian Desmond O'Sullivan, Jorge Álvarez-Vicente
  • Patent number: 10154671
    Abstract: A composition and method for improving plant growth, wherein the composition includes at least one live strain of bacteria of the Lactobacillus rhamnosus species.
    Type: Grant
    Filed: October 30, 2013
    Date of Patent: December 18, 2018
    Assignee: DANSTAR FERMENT AG
    Inventors: Olivier Cor, Bruno Sanchez
  • Patent number: 10155942
    Abstract: Methods of barcoding nucleic acids, such as genomic DNA, are provided herein. In some embodiments, a fragment of genomic DNA may comprise a first and a second barcode.
    Type: Grant
    Filed: November 5, 2013
    Date of Patent: December 18, 2018
    Assignee: Takara Bio USA, Inc.
    Inventors: Takao Kurihara, Emmanuel Kamberov, Tim Tesmer, John Langmore
  • Patent number: 10150872
    Abstract: Multimeric protected fluorescent reagents and their methods of synthesis are provided. The reagents are useful in various fluorescence-based analytical methods, including the analysis of highly multiplexed optical reactions in large numbers at high densities, such as single molecule real time nucleic acid sequencing reactions. The reagents contain fluorescent dye elements, that allow the compounds to be detected with high sensitivity at desirable wavelengths, binding elements, that allow the compounds to be recognized specifically by target biomolecules, and protective shield elements, that decrease undesirable contacts between the fluorescent dye elements and the bound target biomolecules and that therefore decrease photodamage of the bound target biomolecules by the fluorescent dye elements. The reagents also contain coupling elements connect monomeric compounds into multimeric forms, thereby increasing brightness.
    Type: Grant
    Filed: February 4, 2016
    Date of Patent: December 11, 2018
    Assignee: Pacific Biosciences of California, Inc.
    Inventors: Frank Zheng, Jeremiah Hanes, Gene Shen, Louis Brogley, Stephen Yue, Yuri Lapin, John Lyle, Honey Osuna, Andrei Fedorov, Lubomir Sebo
  • Patent number: 10144961
    Abstract: This invention provides novel azido linkers for deoxynucleotide analogs having a detectable marker attached thereto.
    Type: Grant
    Filed: May 16, 2017
    Date of Patent: December 4, 2018
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: Jingyue Ju, Huanyan Cao, Zengmin Li, Qinglin Meng, Jia Guo, Shenglong Zhang, Lin Yu