Detecting Cancer Patents (Class 435/6.14)
  • Patent number: 11519036
    Abstract: The invention concerns gene signatures obtained from microvesicles and a method of applying these gene signatures in helping to determine a biological condition. The determination of a biological condition may aid, for example, the diagnosis, prognosis, and therapy treatment selection for disease in a subject.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: December 6, 2022
    Inventors: Mikkel Noerholm, Johan Karl Olov Skog, Xandra O. Breakefield, Bob Carter
  • Patent number: 11504021
    Abstract: A method for detecting tumor tissue boundaries or a tumor stromal cell distribution range, more specifically, a diagnostic or non-diagnostic method for determining the boundaries of a tumor tissue; the boundaries of the tumor tissue are determined by means of determining the boundaries of the tumor stromal cells in the tumor tissue. The present method can more accurately determine the boundaries of tumor tissue, which serves to more accurately instruct the treatment of tumors, especially with respect to surgical treatment.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: November 22, 2022
    Inventors: Jun Mi, Jiangmin Zhao, Yazhi Xing, Yongbin Wang, Jinliang Wu, Bocheng Wang
  • Patent number: 11505620
    Abstract: Plasma kallikrein binding proteins and methods of using such proteins are described.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: November 22, 2022
    Assignee: Takeda Pharmaceutical Company Limited
    Inventors: Daniel J. Sexton, Malini Viswanathan
  • Patent number: 11499150
    Abstract: Use of the surface presentation level of binders (e.g., antibodies, receptors) on cultured higher eukaryotic cells in vitro as a predictive indicator of developability characteristics, e.g., solubility, of the binders. Display libraries of higher eukaryotic cells, e.g., mammalian cells, adapted for use in screening surface-displayed binders for developability and affinity of target binding. High-throughput screening of display libraries with in-built selection for developability including binder solubility, capability to be formulated at high concentrations, low propensity for non-specific binding, and half-life. Enrichment of populations of binders for developability characteristics and/or other qualities such as target binding and affinity, by controlling cell surface presentation of binders from an inducible promoter operably linked to binder-encoding DNA.
    Type: Grant
    Filed: December 5, 2018
    Date of Patent: November 15, 2022
    Assignee: Iontas Limited
    Inventors: John McCafferty, Rajika Perera, Michael Richard Dyson, Kothai Parthiban, Johanna Liinamaria Syrjanen
  • Patent number: 11492663
    Abstract: The present invention regards a variety of methods and compositions for whole genome amplification and whole transcriptome amplification. In a particular aspect of the present invention, there is a method of amplifying a genome comprising a library generation step followed by a library amplification step. In specific embodiments, the library generating step utilizes specific primer mixtures and a DNA polymerase, wherein the specific primer mixtures are designed to eliminate ability to self-hybridize and/or hybridize to other primers within a mixture but efficiently and frequently prime nucleic acid templates.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: November 8, 2022
    Assignee: Takara Bio USA, Inc.
    Inventors: Emmanuel Kamberov, Tong Sun, Eric Bruening, Jonathon H. Pinter, Irina Sleptsova, Takao Kurihara, Vladimir L. Makarov
  • Patent number: 11492650
    Abstract: Polypeptides that fold into biologies are stabilized by diselenide bonds between selenocysteine amino acids. Methods to produce such polypeptides in genomically recoded organisms (GRO) can be scaled up for industrial production. Since diselenides have the same geometric bond angles and torsions as disulfides, as well as very similar bond lengths, they can be substituted into polypeptides without disrupting the three dimensional structure of the polypeptides. Diselenides render the polypeptides resistant to reduction when they are exposed to blood serum or to reducing components of blood serum or to reducing components components within cells.
    Type: Grant
    Filed: August 30, 2017
    Date of Patent: November 8, 2022
    Inventors: Daniel J. Mandell, Christopher John Gregg, Ross Thyer, Andrew D. Ellington, Peter Benjamin Stranges
  • Patent number: 11492671
    Abstract: miRNAs for in vitro diagnosis of resistance of tumors to BRAF/MEK pathway (also named as MAPK 5 pathway) inhibiting drugs and for treatment of tumors which are treated with said drugs, such as melanoma, by stimulating or inhibiting the expression of down-regulated or up-regulated miRNAs, respectively.
    Type: Grant
    Filed: April 10, 2019
    Date of Patent: November 8, 2022
    Inventors: Gennaro Ciliberto, Paolo Antonio Ascierto, Luigi Fattore, Gerardo Botti, Rita Mancini
  • Patent number: 11486877
    Abstract: Disclosed is a measurement method for measuring a test substance contained in a biological sample based on a predetermined measurement principle, comprising acquiring a first measured value of the test substance using a first measurement reagent, and operating the first measured value to an arithmetic value when measured using a second measurement reagent different from the first measurement reagent, by using arithmetic information designed to make a first cut-off value for the measured value obtained using the first measurement reagent correspond to a second cut-off value for a measured value obtained using the second measurement reagent.
    Type: Grant
    Filed: April 6, 2018
    Date of Patent: November 1, 2022
    Inventors: Mamoru Ashida, Motonari Daito, Tetsuro Morinaga
  • Patent number: 11486007
    Abstract: Disclosed herein is a combination of genomic sequences whose methylation patterns have utility for the improved detection and differentiation between colorectal neoplasms. Further disclosed herein are methods, nucleic acids and kits for detecting or differentiating between colorectal neoplasms.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: November 1, 2022
    Assignees: Quest Diagnostics Investments Incorporated, CLINICAL GENOMICS PTY LTD
    Inventors: Susanne Pedersen, Lawrence LaPointe, Rohan Baker, Amber C. Donahue, Yen-lin Peng, Frederic Waldman
  • Patent number: 11471098
    Abstract: Systems and methods are provided for monitoring the effects of therapeutics on the brain. Brains of first and second sets of patients are imaged and a gene expression is measured at a first time to provide a first set of images and a first set of gene expression transcripts. A therapeutic is administered to the first set of patients after the first time. The brains of the patients are imaged and the gene expression of the patients is measured at a second time, after the therapeutic is administered, to provide a second set of images and a second set of gene expression transcripts. A change in the brain is determined for the patients from the sets of images. A set of changes in the gene expression that are correlated with the changes in the brain are determined from the change in the brain and the sets of gene expression transcripts.
    Type: Grant
    Filed: January 22, 2020
    Date of Patent: October 18, 2022
    Inventor: Amit Anand
  • Patent number: 11466328
    Abstract: The present invention provides methods and compositions that are useful for assessing gene expression for tumor immune response profile of a sample. In particular, a target-specific primer panel is provided that allows for selective amplification of immune response target sequences in a sample. In one aspect, the invention relates to target-specific primers useful for selective amplification of one or more target sequences associated with immune response. In some aspects, amplified target sequences obtained using the disclosed methods, and compositions can be used in various processes including nucleic acid sequencing and used to detect the presence of genetic variants and/or expression levels of one or more targeted sequences associated with immune response.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: October 11, 2022
    Assignee: Life Technologies Corporation
    Inventors: Ann Mongan, Alex Atkins
  • Patent number: 11468967
    Abstract: Systems and methods for computer-aided vaccine design may comprise performing one or more molecular dynamics simulations of a protein assembly having at least one epitope, determining a fluctuation measurement for the at least one epitope using the one or more molecular dynamics simulations, and predicting the immunogenicity of the protein assembly in response to the fluctuation measurement are disclosed.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: October 11, 2022
    Inventor: Peter J. Ortoleva
  • Patent number: 11466323
    Abstract: A digital droplet PCR method of analyzing the methylation status of methylation sites of a double-stranded DNA molecule which comprises at least two methylation sites per single strand of the double-stranded DNA molecule is disclosed.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: October 11, 2022
    Inventors: Yuval Dor, Ruth Shemer, Benjamin Glaser, Judith Magenheim
  • Patent number: 11459605
    Abstract: The present invention relates to a method for the in vitro diagnosis or prognosis of prostate cancer, which includes a step of detecting at least one expression product of at least one HERV nucleic acid sequence, the use of said nucleic acid sequences, once isolated, as one or more molecular marker(s) and a kit comprising at least one specific binding partner of at least one of the expression products of the HERV nucleic acid sequences.
    Type: Grant
    Filed: December 18, 2012
    Date of Patent: October 4, 2022
    Inventors: François Mallet, Nathalie Mugnier, Philippe Perot
  • Patent number: 11456055
    Abstract: Provided are methods, systems, and computer products for genotyping polyploid organisms, as well as diploid organisms. The provided methods use an allele-intensity model to generate cluster definitions. The allele-intensity model relates allele counts of different genotypes to signal intensities generated by the genotyping platform. The model also includes a capability to update cluster positions obtained from a maximum likelihood model using a Bayesian method.
    Type: Grant
    Filed: June 2, 2017
    Date of Patent: September 27, 2022
    Assignee: Illumina, Inc.
    Inventor: Ryan Kelley
  • Patent number: 11447531
    Abstract: A peptide comprised of either a binary or a tertiary peptide, the peptide contains at least 4 amino acids and up to a maximum of 16 amino acids, comprised of 2 or 3 different regions, wherein the binary peptides have 2 different regions and the tertiary peptides have 3 different regions; wherein, the peptide can be cleaved by both an animal gut protease and an insect or nematode gut protease.
    Type: Grant
    Filed: October 6, 2017
    Date of Patent: September 20, 2022
    Assignee: Vestaron Corporation
    Inventors: Alvar R. Carlson, Alexandra M. Haase, Robert M. Kennedy
  • Patent number: 11420174
    Abstract: The disclosure provides three-dimensional crosslinked polymer networks comprising one or more channels extending from the surface and/or near the surface of the network into the interior of the network, arrays comprising the networks, processes for making the networks, and uses of the networks and arrays.
    Type: Grant
    Filed: December 16, 2016
    Date of Patent: August 23, 2022
    Assignee: Safeguard Biosystems Holdings Ltd.
    Inventors: Holger Klapproth, Sonja Bednar
  • Patent number: 11423547
    Abstract: Systems and methods are disclosed for receiving one or more electronic slide images associated with a tissue specimen, the tissue specimen being associated with a patient and/or medical case, partitioning a first slide image of the one or more electronic slide images into a plurality of tiles, detecting a plurality of tissue regions of the first slide image and/or plurality of tiles to generate a tissue mask, determining whether any of the plurality of tiles corresponds to non-tissue, removing any of the plurality of tiles that are determined to be non-tissue, determining a prediction, using a machine learning prediction model, for at least one label for the one or more electronic slide images, the machine learning prediction model having been generated by processing a plurality of training images, and outputting the prediction of the trained machine learning prediction model.
    Type: Grant
    Filed: September 21, 2021
    Date of Patent: August 23, 2022
    Assignee: Paige.AI, Inc.
    Inventors: Brandon Rothrock, Christopher Kanan, Julian Viret, Thomas Fuchs, Leo Grady
  • Patent number: 11413328
    Abstract: The present invention relates to methods for treatment or prevention of asthma, mild intermittent asthma, mild persistent asthma, moderate persistent asthma, severe persistent asthma, eosinophilic asthma, neutrophilic asthma, steroid refractory asthma, status asthmaticus, pneumonia, bronchiectasis, COPD, sarcoidosis, and lung cancer based on reducing airway hyper responsiveness, increasing pulmonary compliance, reducing lung inflammation, reducing inflammatory cell count in bronchoalveolar fluid and reducing cytokine production by administration of a mammalian ?- and/or ?-defensin.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: August 16, 2022
    Assignee: NOVOZYMES A/S
    Inventors: Peter Nordkild, Søren Kjærulff
  • Patent number: 11408039
    Abstract: Disclosed herein are methods for molecularly characterizing cervical cell samples as being negative for intraepithelial lesion or malignancy (NILM), low-grade squamous intraepithelial lesion (LSIL), or high-grade squamous intraepithelial lesion (HSIL).
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: August 9, 2022
    Assignee: The Government of The United States, as represented by The Secretary of The Army
    Inventor: Jane Shen-Gunther
  • Patent number: 11401559
    Abstract: Methods and kits are provided for screening a patient for bladder cancer. Embodiments include those involving centromeric probes to chromosomes 3, 7, and 10 and a locus-specific probe to 5p15.
    Type: Grant
    Filed: August 6, 2019
    Date of Patent: August 2, 2022
    Inventors: Saskia Schoenmakers, Harry Schrickx, Herman Volkers
  • Patent number: 11398303
    Abstract: Described here are systems and methods for generating and analyzing co-expression signature data from scalar or multi-dimensional data fields contained in or otherwise derived from imaging data acquired with a medical imaging system. A similarity metric, such as an angular similarity metric, is computed between the data field components contained in pairs of voxels in the data field data. The data fields can be scalar fields, vector fields, tensor fields, or other higher-dimensional data fields. A probability distribution of these similarity metrics can be generated and used as co-expression signature data that indicate pairwise disparities in the data field data.
    Type: Grant
    Filed: August 27, 2020
    Date of Patent: July 26, 2022
    Assignee: Northwestern University
    Inventors: Mohammed S. M. Elbaz, Michael Markl
  • Patent number: 11389799
    Abstract: A microfluidic device system includes a channel having an entrance and an exit, a height at the entrance being greater than a height at the exit. The height of the channel may decrease continuously from the height at the entrance to the height at the exit. Cells or particles or beads traveling through the channel become trapped based on their size and/or deformability. A visual sensor captures images of the trapped cells or particles or beads, and image software analyzes the captured images to provide size and/or deformability and/or fluorescence information. A method of fabricating such a microfluidic device includes introducing a glass wafer to an etching solution at a specific rate such that a first end of the glass wafer is etched longer than other portions of the glass wafer.
    Type: Grant
    Filed: January 17, 2020
    Date of Patent: July 19, 2022
    Inventors: Mark A. Burns, Alyse D. Krausz, Sarah Elizabeth Mena, Martin Patrick De Beer, Kevin R. Ward, Frederick Korley
  • Patent number: 11382976
    Abstract: A method comprising: providing aqueous antibodies; cationizing the aqueous antibodies by the addition of stoichiometric amounts of an excess of a positively-charged crosslinker in the presence of a coupling reagent; titrating the cationized antibodies with a counter anionic polymer until the antibody cation/anion pair solution becomes negative by zeta potential measurement, to create at least one antibody cation/anion pair in aqueous solution. The antibodies are one of anti-hemoglobin antibodies, anti-horse spleen ferritin IgG antibodies, or blood-typing IgM Anti-A antibodies, single-chain antibodies from camelids, monoclonal Anti-Flag antibodies, monoclonal Anti-HRP2 to Plasmodium falciparum, polyclonal Anti-neuropeptide Y, and polyclonal Anti-human troponin. The antibody cation/anion pair solution may be lyophilized to remove all of the water, forming a lyophilized solid, and the lyophilized solid may be heated to generate an antibody ionic liquid.
    Type: Grant
    Filed: September 30, 2019
    Date of Patent: July 12, 2022
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: Joseph M Slocik, Rajesh R. Naik, Patrick B Dennis
  • Patent number: 11380420
    Abstract: A system is described for constructing a biological simulation using inputs from a knowledge base data structure and one or more templates. The knowledge base data structure comprises a set of entries representing distinct molecules and chemical reactions specific within the cell. Each template defines a sub-model program specification and a set of sub-model parameters to further characterize the sub-model specification. A graphical user interface is presented on a display for a user to view and select a templates and to assign information from the knowledge base to the selected template. From the graphical user interface, the user selects multiple templates to be included in the simulation and information from the knowledge base generally describing the cell. Based on the information selected from the graphical user interface, a compiler generates a simulation configuration data file comprising computer code capable of being executed by a simulation engine.
    Type: Grant
    Filed: May 7, 2018
    Date of Patent: July 5, 2022
    Assignee: X Development LLC
    Inventors: Frank Russo, Jason Thompson, Nicholas Casavant, Yu Tanouchi
  • Patent number: 11369673
    Abstract: Methods for generating immune responses using adenovirus vectors that allow multiple vaccinations with the same adenovirus vector and vaccinations in individuals with preexisting immunity to adenovirus are provided.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: June 28, 2022
    Assignee: Etubics Corporation
    Inventors: Joseph P. Balint, Frank R. Jones, Richard B. Gayle
  • Patent number: 11371882
    Abstract: Described herein are methods and apparatus for spectroscopic analysis of samples. In many embodiments, an apparatus for providing spectroscopic analysis of a sample comprises a sample holder. For example, the sample holder may comprise a consumable single use sample holder that can be readily coupled to and removed from a measurement apparatus such as a spectrometer. The sample holder may comprise a measurement surface configured to receive the sample during measurement, wherein the measurement surface may comprise a porous mesh. The porous mesh can receive the sample to optimally configure the sample for spectroscopic measurement, as described in further detail herein.
    Type: Grant
    Filed: August 26, 2020
    Date of Patent: June 28, 2022
    Assignee: NUEON INC.
    Inventors: Robert Messerschmidt, Howland D.T. Jones
  • Patent number: 11366301
    Abstract: A method and an apparatus for imaging a sample (14). In the method, a first excitation radiation (5) is focused into a volume of the sample (14) and a caused first detection radiation (15) is captured and evaluated in respect of a form of its wavefront. A second excitation radiation (11) is manipulated on the basis of the evaluation results in order to correct the ascertained deviations of the wavefront. A region (20) to be imaged of the sample (14) is scanned by means of the second excitation radiation (11) and a second detection radiation (16) is captured as image data. The second excitation radiation (11) is directed in the form of at least two partial beams (11T) into the sample volume, into a respective spot (22) illuminated by the partial beam (11T) and the second detection radiations (16) respectively caused by the partial beams (11T) are captured separately.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: June 21, 2022
    Assignee: Carl Zeiss Microscopy GmbH
    Inventors: Daniel Schwedt, Tiemo Anhut
  • Patent number: 11359236
    Abstract: Provided herein is technology relating to sequencing nucleic acids and particularly, but not exclusively, to methods, compositions, and systems for sequencing a nucleic acid using one or more labels and signal amplitude to distinguish bases.
    Type: Grant
    Filed: January 27, 2020
    Date of Patent: June 14, 2022
    Inventor: Mark W. Eshoo
  • Patent number: 11339444
    Abstract: A method for detecting genes sensitive to low-level ionizing radiation and genes detected by the method. More specifically, genes sensitive to low-level ionizing radiation and related to suppressing thymic cancer, discovered in a carcinogenic entity and verified in a normal entity are detected by subjecting a cancerous AKR/J mouse and a normal ICR mouse to low-level radiation. Thymus is collected therefrom, immunogenic and apoptotic genes are classified via microarray processing of the thymus. The genes are amplified and the levels of gene expression are measured. Thus, a gene having a specific reaction to radiation can be accurately detected by preventing the interference of confounding variables.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: May 24, 2022
    Inventors: Hee Sun Kim, Seung Jin Choi, Moo Hyun Choi, Jin Jong Bong, Seok Cheol Shin
  • Patent number: 11340221
    Abstract: Disclosed are a protein molecular marker Dkk-3 protein associated with age-related muscle atrophy and the use thereof in the diagnosis of age-related muscle atrophy. The expression level of the Dkk-3 protein in amyotrophic cells is significantly higher than that in normal myocytes or tissues, and thus the Dkk-3 protein can be used as an effective marker for the detection of age-related muscle atrophy.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: May 24, 2022
    Assignee: Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
    Inventors: Ping Hu, Jie Yin
  • Patent number: 11333608
    Abstract: The present invention relates to a target gene-detecting device and a method for detecting a target gene. According to an aspect, a target gene-detecting device can be conveniently fabricated at low cost by employing a porous substrate or a method for detecting a target gene allows the pretreatment of a sample, the extraction of a nucleic acid, the amplification of a nucleic acid, and the detection of a target gene to be conducted at high accuracy and specificity in an integral system, with no contamination plausibility and can be thus useful for gene inspection.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: May 17, 2022
    Assignee: Samsung Life Public Welfare Foundation
    Inventors: Min Young Lee, Min Hee Kang, Hyun Ju Park, Dong Ho Kim, Sung Gyu Park, Ho Sang Jung
  • Patent number: 11319583
    Abstract: Disclosed herein include methods and compositions for selectively amplifying and/or extending nucleic acid target molecules in a sample. The methods and compositions can, for example, reduce the amplification and/or extension of undesirable nucleic acid species in the sample, and/or allow selective removal of undesirable nucleic acid species in the sample.
    Type: Grant
    Filed: January 19, 2018
    Date of Patent: May 3, 2022
    Assignee: Becton, Dickinson and Company
    Inventors: Eleen Shum, Glenn K. Fu
  • Patent number: 11319587
    Abstract: The disclosure relates to novel particle compositions and methods of making said compositions having applications in nucleic acid analysis, as well as apparatuses and systems for the same.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: May 3, 2022
    Assignee: Life Technologies Corporation
    Inventors: Wolfgang Hinz, David Light, Todd Rearick, James A. Ball
  • Patent number: 11319586
    Abstract: Embodiments may include a method of determining a nucleic acid sequence. The method may include receiving a plurality of DNA fragments. The method may also include concatemerizing a first set of the DNA fragments to obtain a concatemer. The method may include performing single-molecule sequencing of the concatemer to obtain a first sequence of the concatemer. In some embodiments, single-molecule sequencing may be performed using a nanopore, and the method may include passing the concatemer through a nanopore. A first electrical signal may then be detected as the concatemer passes through the nanopore. The first electrical signal may correspond to a first sequence of the concatemer. In addition, the method may include analyzing the first electrical signal to determine the first sequence. Subsequences of the first sequence may be aligned to identify sequences corresponding to each of the first set of the DNA fragments.
    Type: Grant
    Filed: August 12, 2016
    Date of Patent: May 3, 2022
    Assignee: The Chinese University of Hong Kong
    Inventors: Yuk-Ming Dennis Lo, Rossa Wai Kwun Chiu, Suk Hang Cheng
  • Patent number: 11320390
    Abstract: A nanopore measurement circuit includes a first analog memory configured to store a first electrical value corresponding to a first measurement sample of a nanopore and a second analog memory configured to store a second electrical value corresponding to a second measurement sample of the nanopore. The nanopore measurement circuit also includes a measurement circuitry configured to provide an output indicating a difference between the first electrical value of the first analog memory and the second electrical value of the second analog memory.
    Type: Grant
    Filed: April 28, 2020
    Date of Patent: May 3, 2022
    Inventors: Santiago Fernandez-Gomez, Bill Maney, Hui Tian
  • Patent number: 11312990
    Abstract: The methods described herein, referred to as PCR-Activated Sorting (PAS), allow nucleic acids contained in biological systems to be sorted based on their sequence as detected with nucleic acid amplification techniques, e.g., PCR. The nucleic acids can be free floating or contained within living or nonliving structures, including particles, viruses, and cells. The nucleic acids can include, e.g., DNA or RNA. Systems and devices for use in practicing methods of the invention are also provided.
    Type: Grant
    Filed: April 23, 2020
    Date of Patent: April 26, 2022
    Assignee: The Regents of the University of California
    Inventors: Adam R. Abate, Dennis Jay Eastburn, Adam R. Sciambi, Shaun Lim
  • Patent number: 11306127
    Abstract: The present disclosure relates to methods for producing recombinant proteins, as well as compositions used in and produced by such methods. Specifically, the present disclosure relates to methods for producing high secreted yields of recombinant proteins, and the compositions provided herein include expression constructs, recombinant vectors, and recombinant host cells that comprise polynucleotide sequences encoding proteins operably linked to recombinant secretion signals that comprise the leader peptide of the ?-mating factor (?MF) of Saccharomyces cerevisiae and a non-?MF signal peptide.
    Type: Grant
    Filed: March 13, 2018
    Date of Patent: April 19, 2022
    Assignee: Bolt Threads, Inc.
    Inventors: Joshua Kittleson, Thomas Stevens, Rena Hill, Carlos Gustavo Pesce, David N. Breslauer, Daniel M. Widmaier
  • Patent number: 11287431
    Abstract: A primary object of the present invention is to provide a method for conveniently and accurately testing for pulmonary hypertension. To achieve this object, the present invention provides a method for testing for pulmonary hypertension using as an indicator the concentration of selenoprotein P protein in a sample derived from a subject.
    Type: Grant
    Filed: November 15, 2018
    Date of Patent: March 29, 2022
    Inventors: Hiroaki Shimokawa, Kimio Satoh, Nobuhiro Kikuchi
  • Patent number: 11279974
    Abstract: Disclosed is an in situ method for detecting spatial proximity relationships between nucleic acid sequences, such as DNA, in a cell. The method includes: providing a sample of one or more cells comprising nucleic acids; fragmenting the nucleic acids present in the cells that leaves 5? overhanging ends; filling in the overhanging ends with at least one labeled nucleotide; joining the filled in end of the fragmented nucleic acids that are in close physical proximity to create one or more end joined nucleic acid fragments having a junction; isolating the one or more end joined nucleic acid fragments using the labeled nucleotide; and determining the sequence at the junction of the one or more end joined nucleic acid fragments.
    Type: Grant
    Filed: December 1, 2015
    Date of Patent: March 22, 2022
    Inventors: Erez Lieberman-Aiden, Suhas Rao, Elena Stamenova, Olga Dudchenko, Eric Lander
  • Patent number: 11279979
    Abstract: An ultra-sensitive, specific methodology for detecting PIK3CA mutations in biological samples of cancer patients, comprises a combination of allele-specific, asymmetric rapid PCR and melting analysis in a DNA sample from Circulating Tumor Cells, cell-free DNA in plasma/serum, or Formalin-Fixed Paraffin-Embedded tissues. Using the allele-specific primers for hotspot mutations in exons 9 and 20 (E545K and H1047R), detection can enhance amplification of mutant PIK3CA allele sequence, whereas presence of corresponding competitive blocking unlabeled probes for each exon can avoid non-specific amplification of wild-type PIK3CA sequence increasing the sensitivity and the specificity of method. The mutational detection is completed with melting curve analysis of the unlabeled probe and DNA template of the mutant PIK3CA sequence.
    Type: Grant
    Filed: July 28, 2015
    Date of Patent: March 22, 2022
    Inventors: Evrykleia Lianidou, Athina Markou
  • Patent number: 11253522
    Abstract: In cancers such as prostate cancer, the combination of PTEN loss and activation of Myc activates an adaptive stress response that enables tumor cells to escape the stress of massively upregulated protein synthesis. This pro-survival response is mediated by the PERK-phosphorylated eIF2? axis of the UPR adaptive response. Agents that disrupt PERK-eIF2? pathways disrupt the adaptive response and lead to cancer cell death from uncontrolled growth. For example, ISRIB and derivatives may be employed as therapeutic agents to disrupt PERK-mediated adaptive mechanisms. Additionally PTEN loss and activation of Myc provides a diagnostic marker that enables better prognosis and the selection of amenable treatments.
    Type: Grant
    Filed: April 28, 2019
    Date of Patent: February 22, 2022
    Assignee: The Regents of the University of California
    Inventors: Davide Ruggero, Hao Nguyen, Peter Carroll, Crystal Conn
  • Patent number: 11243210
    Abstract: Disclosed is a library consisting essentially of a plurality of antigen-binding molecules differing in sequence from each other, wherein an antigen-binding domain in each of the antigen-binding molecules comprises at least one amino acid residue that changes the antigen-binding activity of the antigen-binding molecule depending on ion concentration conditions. Also disclosed are a composition comprising a plurality of polynucleotide molecules each encoding the antigen-binding molecules, a composition comprising a plurality of vectors each comprising the polynucleotide molecules, a method for selecting the antigen-binding molecules, a method for isolating the polynucleotide molecules, a method for producing the antigen-binding molecules, and a pharmaceutical composition comprising any of the antigen-binding molecules.
    Type: Grant
    Filed: June 18, 2018
    Date of Patent: February 8, 2022
    Assignee: Chugai Seiyaku Kabushiki Kaisha
    Inventors: Tomoyuki Igawa, Shinya Ishii, Miho Funaki, Naoka Hironiwa, Shun Shimizu
  • Patent number: 11238583
    Abstract: A system and method for generating a stained image including the steps of obtaining a first image of a key sample section; and processing the first image with a stain learning engine arranged to generate at least one stained image, wherein the at least one stained image represents the key sample section stained with at least one stain.
    Type: Grant
    Filed: March 25, 2020
    Date of Patent: February 1, 2022
    Assignee: City University of Hong Kong
    Inventors: Condon Lau, Yixuan Yuan, Chi Shing Cho, Wah Cheuk, Wan San Victor Ma, Wing Lun Law
  • Patent number: 11237164
    Abstract: Some embodiments described herein relate to systems and methods operable to combine immunoassay and Total Protein techniques in a single sample run. Some embodiments described herein allow for multiple sequential immunoassays to be performed in the same microfluidic device. Some embodiments described herein relate to stripping reagents operable to remove primary antibodies associated with immunoassays. Such stripping reagents can allow for additional immunoassays and/or Total Protein assays to be performed on the same sample.
    Type: Grant
    Filed: July 17, 2020
    Date of Patent: February 1, 2022
    Assignee: ProteinSimple
    Inventors: Irina Georgievna Kazakova, Crystal Tran, Jessica Dermody, Annegret Boge, Tom Weisan Yang
  • Patent number: 11231418
    Abstract: Some embodiments are directed to a process for the diagnosis of systemic lupus erythematosus (SLE) and/or of chronic lymphoid leukaemia (CLL) of a subject who may be suffering therefrom, comprising the in vitro detection of the expression of the fraction of the STIM1 protein located at the cell plasma membrane in a biological sample from human and mice. Some other embodiments are directed to a process for predicting the progression and/or monitoring the progression of CLL and/or of SLE, comprising the in vitro detection of the expression of the fraction of the STIM1 protein located at the cell plasma membrane.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: January 25, 2022
    Inventors: Yves Renaudineau, Olivier Mignen, Marjolaine Debant, Christelle Le Dantec, Jacques Olivier Pers
  • Patent number: 11220715
    Abstract: The present invention provides gene sets the expression of which is important in the diagnosis and/or prognosis of breast cancer.
    Type: Grant
    Filed: February 15, 2018
    Date of Patent: January 11, 2022
    Assignee: Genomic Health, Inc.
    Inventors: Melody A. Cobleigh, Steven Shak, Joffre B. Baker, Maureen T. Cronin
  • Patent number: 11220682
    Abstract: Provided is a method of genetically incorporating an L-dihydroxyphenylalanine in a target protein.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: January 11, 2022
    Inventors: Hyun Soo Lee, Sanggil Kim
  • Patent number: 11214836
    Abstract: The invention features methods, devices, and kits for predicting the responsiveness of a cancer patient (e.g., a breast cancer patient, such as a grade 1, 2, or 3 breast cancer patient) to anthracycline treatment by determining the expression levels of four chromosomal instability (CIN) genes including HDGF, KIAA0286, RFC4, and MSH6, collectively referred to as CIN4. Patients that have a low CIN4 score benefit from anthracycline treatment compared patients with a high CIN4 score.
    Type: Grant
    Filed: July 15, 2015
    Date of Patent: January 4, 2022
    Assignee: Ontario Institute for Cancer Research
    Inventors: Melanie Spears, John Bartlett, Fouad Yousif, Paul Boutros
  • Patent number: 11208677
    Abstract: The present invention relates to methods for detecting and quantifying intact protein-polynucleotide conjugate molecules in various sample matrices. In particular, the methods utilize triplex forming oligonucleotides in combination with protein-specific binding partners to respectively detect the polynucleotide and protein components of the conjugate molecules.
    Type: Grant
    Filed: June 6, 2019
    Date of Patent: December 28, 2021
    Assignee: AMGEN INC.
    Inventors: Mai Thayer, Sara Humphreys