Using A Micro-organism To Make A Protein Or Polypeptide Patents (Class 435/71.1)
  • Patent number: 10737953
    Abstract: A system for enhancing the separation of particles or fluids from water is disclosed. A tank or bioreactor is provided with an open submersible acoustophoretic separator. The separator captures and holds fluid droplets or particles such as cells, permitting them to coalesce or agglomerate until they are large enough and have sufficient buoyant or weight force to float/sink to the top/bottom of the tank or bioreactor. In a tank or bioreactor, the separator captures and holds particles until they are large enough that their weight causes them to settle out of the host fluid. The acoustophoretic device thus speeds up separation of the particles or droplets from the host fluid.
    Type: Grant
    Filed: August 1, 2017
    Date of Patent: August 11, 2020
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Thomas J. Kennedy, III
  • Patent number: 10731196
    Abstract: The disclosure provides recombinant cells and methods for producing a ribosomally synthesized and posttranslationally modified peptide (RiPP), as well as RiPP libraries and methods for producing RiPP libraries.
    Type: Grant
    Filed: October 14, 2016
    Date of Patent: August 4, 2020
    Assignee: UNIVERSITY OF UTAH RESEARCH FOUNDATION
    Inventor: Eric Schmidt
  • Patent number: 10689676
    Abstract: The present invention provides mutant microorganism that have higher lipid productivity than the wild type microorganisms from which they are derived while producing biomass at levels that are at least 45% of wild type biomass productivity under nitrogen replete conditions. Particular mutants produce at least 50% as much FAME lipid as wild type while producing at least the amount of biomass produced by wild type cells under nitrogen replete conditions. Also provided are methods of producing lipid using the mutant strains.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: June 23, 2020
    Assignee: Synthetic Genomics, Inc.
    Inventors: Imad Ajjawi, Leah Soriaga, Moena Aqui, Eric R. Moellering
  • Patent number: 10041138
    Abstract: A sugar composition comprising: at least 40% dissolved solids in an aqueous solution having a viscosity at least 10% lower than a 42 DE (Dextrose Equivalents) reference solution with a same dissolved solids concentration at a given temperature.
    Type: Grant
    Filed: April 9, 2018
    Date of Patent: August 7, 2018
    Assignee: Virdia, Inc.
    Inventors: Aharon Eyal, Robert Jansen
  • Patent number: 10017795
    Abstract: Methods and systems for simultaneously enhancing the production of both methane and volatile fatty acids in an anaerobic digestion bioreactor are disclosed. In some embodiments, the methods include: providing a stream of organic feedstock; providing a plurality of anaerobic digester bioreactors, each of the plurality of anaerobic digester bioreactors connected in series; step-feeding predetermined percentages of the stream of organic feedstock to two or more of the plurality of anaerobic digester bioreactors; feeding effluent from each of the plurality of anaerobic digester bioreactors to a subsequent one of the plurality of anaerobic digester bioreactors; and anaerobically digesting at least one of the stream of organic feedstock and the effluent from each of the plurality of anaerobic digester bioreactors to develop a final effluent stream including methane and volatile fatty acids. The volatile fatty acids are then microbially converted to lipids in an aerobic bioreactor.
    Type: Grant
    Filed: December 11, 2014
    Date of Patent: July 10, 2018
    Assignee: The Trustees of Columbia University in the City of New York
    Inventor: Kartik Chandran
  • Patent number: 10000402
    Abstract: A method for treating solid organic materials includes providing phagotrophic algae, providing solid organic material, combining the algae and the solid organic material, allowing the algae to grow by engulfing or uptaking the solid organic material, forming an algal product, and collecting the algal product. The method can also include a pretreatment step. The solid organic material can be waste activated sludge. A system for treating and disposing solid organic material is also provided.
    Type: Grant
    Filed: May 30, 2014
    Date of Patent: June 19, 2018
    Assignee: The University of Akron
    Inventors: Lu-Kwang Ju, Cong Li, Suo Xiao
  • Patent number: 9976194
    Abstract: A sugar composition comprising at least 40% dissolved solids in an aqueous solution having a viscosity at least 10% lower than a 42 DE (Dextrose Equivalents) reference solution with a same dissolved solids concentration at a given temperature. Another sugar composition comprising at least 30% glucose relative to total sugars, at least 10% mannose relative to total sugars, at least 5% xylose relative to total sugars, and less than 0.25% ash. Another sugar composition comprising at least 30% glucose relative to total sugars at least 10% mannose relative to total sugars, at least 5% xylose relative to total sugars, and at least 2% total furfurals.
    Type: Grant
    Filed: June 3, 2015
    Date of Patent: May 22, 2018
    Assignee: Virdia, Inc.
    Inventors: Aharon Eyal, Robert Jansen
  • Patent number: 9914755
    Abstract: The present invention relates to cyclosporin analogs that are potent inhibitors of cyclophilin D and have low immunosuppressive activity; processes for preparing them; pharmaceutical compositions containing them; and methods for using these analogs and compositions containing them for the treatment of medical conditions, including but not limited to ischemic conditions, such as ischemia-reperfusion (I/R) injury, including myocardial FR injury, cerebral I/R injury, and ocular or retinal I/R injury.
    Type: Grant
    Filed: January 8, 2016
    Date of Patent: March 13, 2018
    Assignee: Allergan, Inc.
    Inventors: Simon N. Pettit, Andrew D. Jones, Catherine Simone V. Frydrych, Alex J. Thomas, Michael E. Garst
  • Patent number: 9873859
    Abstract: Herein disclosed is a method of generating products from microorganisms, comprising super-saturating a liquid medium with a gas consumable by the microorganisms in a high shear device operating at a shear rate of greater than 1,000,000 s?1 to produce a gas-super-saturated (GSS) medium, wherein the GSS medium maintains a GSS level for at least 10 minutes; feeding the GSS medium to microorganisms; allowing the microorganisms to grow by consuming the gas and generate products via photosynthesis or chemosynthesis; and recovering the products. In an embodiment, the microorganisms are genetically modified. In an embodiment, the microorganisms include bacteria, protozoa, algae, or fungi, or a combination thereof. In an embodiment, the gas consumable by the microorganisms is selected from the group consisting of carbon dioxide, nitrogen, air, oxygen, methane, and combinations thereof. A suitable system is also discussed in this disclosure.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: January 23, 2018
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Aziz Hassan, Gregory G. Borsinger, Rayford Gaines Anthony
  • Patent number: 9862910
    Abstract: Herein disclosed is a method of processing a medium containing algae microorganisms to produce algal oil and by-products, comprising providing the medium containing algae microorganisms; passing the medium through a rotor-stator high shear device; disintegrating cell walls of and intracellular organelles in the algae microorganisms to release algal oil and by-products; and removing the algae medium from an outlet of the high shear device. In an embodiment, disintegration is enhanced by a penetrating gas capable of permeating the cell wall. In an embodiment, enhancement is accomplished by super-saturation of the penetrating gas in the medium or increased gas pressure in a vessel. In an embodiment, the penetrating gas is different from the gas produced by the cell during respiration. A suitable system is also discussed in this disclosure.
    Type: Grant
    Filed: August 20, 2015
    Date of Patent: January 9, 2018
    Assignee: H R D Corporation
    Inventors: Abbas Hassan, Aziz Hassan, Gregory G. Borsinger, Rayford Gaines Anthony
  • Patent number: 9796956
    Abstract: An acoustophoresis device made up of modular components is disclosed. Several modules are disclosed herein, including ultrasonic transducer modules, input/output modules, collection well modules, and various connector modules. These permit different systems to be constructed that have appropriate fluid dynamics for separation of particles, such as biological cells, from a fluid.
    Type: Grant
    Filed: October 3, 2016
    Date of Patent: October 24, 2017
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Thomas J. Kennedy, III, Jeffrey King, Jason Barnes, Brian McCarthy, Dane Mealey, Erik Miller, Walter M. Presz, Jr., Benjamin Ross-Johnsrud, John Rozembersky
  • Patent number: 9745569
    Abstract: Acoustophoretic devices and methods for concentrating targeted biological cells in a reduced volume using multi-dimensional acoustic standing waves are disclosed. The methods include flowing a mixture of a host fluid and the biological cells through an acoustophoretic device. The acoustophoretic devices include an inlet, an outlet, and a flow chamber having an ultrasonic transducer-reflector pair. Biological cells, such as T cells, are separated from a host fluid for utilization in allergenic or autologous cell therapies. The disclosed devices and methods are capable of concentrating biological cells to at least 100 times their original cell concentration. The disclosed methods and devices are further capable of decreasing an original feed volume to a final concentrated volume that is less than one percent of the original feed volume.
    Type: Grant
    Filed: January 26, 2017
    Date of Patent: August 29, 2017
    Assignee: FloDesign Sonics, Inc.
    Inventors: Bart Lipkens, Jason Dionne, Goutam Ghoshal
  • Patent number: 9725705
    Abstract: Chromatographic processes and systems for purifying a botulinum toxin from an APF fermentation medium.
    Type: Grant
    Filed: December 20, 2013
    Date of Patent: August 8, 2017
    Assignee: Allergan, Inc.
    Inventor: Hui Xiang
  • Patent number: 9364492
    Abstract: The present invention provides a method for preparing a glycoside of a flavonoid compound, which comprises the step of treating flavonoid and a glycosyl donor with an enzymatic agent having glycosylation activity and being derived from the genus Trichoderma (preferably Trichoderma viride or Trichoderma reesei). Such a flavonoid compound includes a catechin compound or a methylated derivative thereof, and the glycosyl donor includes a carbohydrate containing a maltotriose residue (preferably maltotriose, maltotetraose, maltopentaose, maltohexaose, maltoheptaose, dextrin, ?-cyclodextrin or soluble starch). Glycosides obtained by the present invention have higher water solubility, improved taste, and increased stability. The present invention also provides novel glycosides of catechin compounds, which are obtained by the method of the present invention.
    Type: Grant
    Filed: January 18, 2008
    Date of Patent: June 14, 2016
    Assignee: SUNTORY HOLDINGS LIMITED
    Inventors: Misa Ochiai, Harukazu Fukami, Masahiro Nakao, Akio Noguchi
  • Patent number: 9340813
    Abstract: The present specification discloses expression constructs comprising single-chain proteins comprising a di-chain loop region comprising an exogenous protease cleavage site and a protease that can cleave the exogenous protease cleavage site located within the di-chain loop, cell compositions comprising such expression construct, and intracellular methods of converting the single-chain protein into its di-chain form.
    Type: Grant
    Filed: September 26, 2013
    Date of Patent: May 17, 2016
    Assignee: Allergan, Inc.
    Inventors: Sanjiv Ghanshani, Linh Q. Le, Yi Liu, Lance E. Steward
  • Patent number: 9315833
    Abstract: The present invention relates to the engineering and expression of heterologous cellulosomes in microorganisms in order to facilitate the conversion of biomass to useful products. In some embodiments, the invention relates to the expression of scaffoldin proteins which form the nucleus of a cellulosome. Cellulases or other biomass-degrading enzymes can be non-covalently linked to the scaffoldin protein by virtue of a dockerin domain-cohesin domain interaction.
    Type: Grant
    Filed: February 18, 2010
    Date of Patent: April 19, 2016
    Assignees: Lallemand Hungary Liquidity Management LLC, Stellenbosch University
    Inventors: John McBride, Mark Mellon, Vineet Rajgarhia, Elena E. Brevnova, Erin Wiswall, David A. Hogsett, Danie LaGrange, Shaunita Rose, Emile Van Zyl
  • Patent number: 9279000
    Abstract: Methods for producing proteins, for example, recombinant meningococcal 2086 proteins, using fed-batch fermentation with continuous input of an inducer after achieving a threshold parameter, and optionally continuous input of a carbon source, for example, a constant rate input, to improve protein yields, as well as high density protein compositions and compositions for use in the methods of the present invention, are provided.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: March 8, 2016
    Assignee: Wyeth LLC
    Inventors: Wei-Qiang Willie Sun, Earl Joseph Pursell
  • Patent number: 9272035
    Abstract: Methods of treating, preventing, or managing autoimmune inflammatory diseases and disorders including but not limited to spondylitis, juvenile rheumatoid arthritis, psoriasis, psoriatic arthritis, osteoarthritis, ankylosing spondylitis, and rheumatoid arthritis by the administration of phosphodiesterase 4 (PDE4) inhibitors in combination with other therapeutics are disclosed. Pharmaceutical compositions, dosage forms, and kits suitable for use in methods of the invention are also disclosed.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: March 1, 2016
    Assignee: Celgene Corporation
    Inventors: Peter H. Schafer, Anita Gandhi, Lori Capone
  • Patent number: 9243253
    Abstract: Provided herein are methods and compositions for expression of a nucleic acid construct comprising nucleic acids encoding a) a recombinant polypeptide, and b) a prototrophy-restoring enzyme in a host cell that is auxotrophic for at least one metabolite. In various embodiments, the host cell is auxotrophic for a nitrogenous base compound or an amino acid. The invention involves introducing an analogue into the growth media for the host cell such that the analogue is incorporated into the recombinant polypeptide or a nucleic acid coding sequence thereof. In various embodiments, the compositions and methods disclosed herein result in improved recombinant protein expression compared to expression of recombinant protein in an antibiotic selection system, or compared to expression of the recombinant protein in an expression system that lacks a metabolite analogue.
    Type: Grant
    Filed: May 10, 2010
    Date of Patent: January 26, 2016
    Assignee: Pfenex, Inc.
    Inventors: Diane M. Retallack, Lawrence C. Chew, Charles H. Squires
  • Patent number: 9040258
    Abstract: A eukaryotic expression vector capable of displaying a multi-chain polypeptide on the surface of a host cell is provided, such that the biological activity of the multi-chain polypeptide is exhibited at the surface of the host cell. Such a vector allows for the display of complex biologically active polypeptides, e.g., biologically active multi-chain polypeptides such as immunoglobulin Fab fragments. The present invention describes and enables the successful display of a multi-chain polypeptide on the surface of a eukaryotic host cell. Preferred vectors are described for expressing the chains of a multi-chain polypeptide in a host cell separately and independently (e.g., under separate vector control elements, and/or on separate expression vectors, thus forming a matched vector set).
    Type: Grant
    Filed: June 28, 2011
    Date of Patent: May 26, 2015
    Assignee: Dyax Corp.
    Inventors: Simon E. Hufton, Hendricus Renerus Jacobus Mattheus Hoogenboom
  • Patent number: 9040294
    Abstract: According to one embodiment, a first gene encodes a reporter protein. The first gene is disposed at the downstream of the gene promoter. A second gene is disposed at the downstream of the gene promoter and encodes a replication origin-binding protein. An internal ribosome entry site is disposed between the first gene and the second gene. The transcription termination signal sequence encodes a signal for terminating the transcription of the first gene and the second gene. A replication origin sequence is recognized by the replication origin-binding protein.
    Type: Grant
    Filed: August 24, 2012
    Date of Patent: May 26, 2015
    Assignees: KABUSHIKI KAISHA TOSHIBA, Toshiba Medical Systems Corporation
    Inventors: Eiichi Akahoshi, Mitsuko Ishihara
  • Patent number: 9034601
    Abstract: A eukaryotic expression vector capable of displaying a multi-chain polypeptide on the surface of a host cell is provided, such that the biological activity of the multi-chain polypeptide is exhibited at the surface of the host cell. Such a vector allows for the display of complex biologically active polypeptides, e.g., biologically active multi-chain polypeptides such as immunoglobulin Fab fragments. The present invention describes and enables the successful display of a multi-chain polypeptide on the surface of a eukaryotic host cell. Preferred vectors are described for expressing the chains of a multi-chain polypeptide in a host cell separately and independently (e.g., under separate vector control elements, and/or on separate expression vectors, thus forming a matched vector set).
    Type: Grant
    Filed: July 9, 2013
    Date of Patent: May 19, 2015
    Assignee: Dyax Corp.
    Inventors: Simon E. Hufton, Hendricus Renerus Jacobus Mattheus Hoogenboom
  • Patent number: 9029105
    Abstract: The present invention relates to a method for producing L-methionine, comprising: i) culturing an L-methionine precursor-producing microorganism strain in a fermentation solution, so that the L-methionine precursor accumulates in the solution; and ii) mixing a converting enzyme and methylmercaptan or its salts with at least a portion of the solution to convert the accumulated L-methionine precursor into L-methionine, as well as to microorganism strains used in each step.
    Type: Grant
    Filed: January 29, 2013
    Date of Patent: May 12, 2015
    Assignee: CJ Cheiljedang Corporation
    Inventors: So-young Kim, Kwang-myung Choi, Yong-uk Shin, Hye-won Um, Kyung-oh Choi, Jin-sook Chang, Young-wook Cho, Young-hoon Park
  • Patent number: 9029126
    Abstract: A method of hydrothermally treating stillage by heating stillage to 200 degrees F. to 350 degrees F., altering physicochemical properties of the stillage, enabling facile separation of the stillage, and creating unique product fractions. A method of performing ethanol fermentation by treating stillage to enable facile separation by heating the stillage to a temperature of 200 degrees F. to 350 degrees F., and separating the treated stillage to recover a high protein solids fraction, a stickwater fraction, and an oil fraction. A method of improving fermentation by heating stillage to a temperature of 200° F. to 350° F. resulting in hydrothermally treated stillage, using all or a portion of the hydrothermally treated stillage as a component of a media, and using the media for a process including fermentation and biomass production. Oil, stickwater, high protein solids fraction, high protein meal, metabolites, biomass, and media obtained from the methods above.
    Type: Grant
    Filed: June 20, 2013
    Date of Patent: May 12, 2015
    Assignee: Valicor, Inc.
    Inventors: James Robert Bleyer, Thomas J Czartoski, Puneet Chandra
  • Publication number: 20150125906
    Abstract: The present invention relates to methods of degrading or converting biomass material enriched with hemicellulosic material into fermentable sugars.
    Type: Application
    Filed: January 14, 2015
    Publication date: May 7, 2015
    Inventors: Prashant Iyer, Harry Showmaker, Hui Xu, Kishore Rane
  • Patent number: 9023618
    Abstract: The present invention relates to a recombinant E. coli exhibiting a complex phenotype, comprising one or more RNA polymerase subunit genes, one or more functional genes, and, optionally, one or more transcription factors from a heterologous prokaryote. Also provided are methods for screening such a recombinant E. coli.
    Type: Grant
    Filed: June 2, 2011
    Date of Patent: May 5, 2015
    Assignee: Eleftherios Papoutsakis and Stefan Gaida
    Inventors: Eleftherios T. Papoutsakis, Stefan Marcus Gaida
  • Patent number: 9023989
    Abstract: Protein-based photovoltaic cells and the manufacture and use of protein-based photovoltaic cells are described. In one embodiment, bacteriorhodopsin from Halobacterium salinarum, which undergoes structural transitions when irradiated with a given wavelength of light, is used as the protein in the protein-based photovoltaic cells. In another embodiment, mutant bacteriorhodopsin from H. salinarum is used. Exposure of the protein to sunlight causes proton transfer across a membrane resulting in the generation of an electrical charge. The protein can be oriented and/or layered on a substrate and modified by mutation to enhance transmembrane proton transfer, covalent binding to a substrate and layering. The protein-based photovoltaic cells sequentially or simultaneously generate hydrogen gas from water or salt, which also can be harnessed to produce electricity.
    Type: Grant
    Filed: February 4, 2009
    Date of Patent: May 5, 2015
    Assignee: University of Connecticut
    Inventors: Robert R. Birge, Rekha Rangarajan
  • Patent number: 9017969
    Abstract: The present invention provides: genetically modified yeasts such as mutant yeasts having an ability to produce N-linked sugar chains of Man5GlcNAc2 and a decreased ability to produce O-linked sugar chains, mutant yeasts having an ability to produce N-linked sugar chains of Man5GlcNAc2 and further having an ability to produce N-linked sugar chains of GlcNAc1Man5GlcNAc2, and mutant yeasts having an increased ability to produce and secrete proteins and an ability to produce N-linked sugar chains of Man5GlcNAc2; and a method for producing glycoproteins using them.
    Type: Grant
    Filed: March 1, 2012
    Date of Patent: April 28, 2015
    Assignee: National Institute of Advanced Industrial Science and Technology
    Inventors: Hiroko Abe, Kazuya Tomimoto, Yasuko Fujita, Tomoko Iwaki, Yasunori Chiba, Yoshihiro Nakajima, Kenichi Nakayama, Masatoshi Kataoka, Shouki Yatsushiro, Shohei Yamamura
  • Publication number: 20150111253
    Abstract: The invention relates to a method for oxidizing a fatty acid or an ester thereof of formula (I) H3C—(CH2)n-COOR, wherein R is selected from the group that comprises H, methyl, ethyl, propyl, and butyl, wherein n is 0 to 30, preferably 6 to 24, comprising the step of oxidizing the fatty acid or the ester thereof by contacting the fatty acid or the ester thereof with a cytochrome P450 monooxygenase of the CYP153 family in the presence of molecular oxygen and NAD(P)H and a whole-cell catalyst that expresses a recombinant cytochrome P450 monooxygenase of the CYP153 family, a recombinant alcohol dehydrogenase, a recombinant transaminase, and optionally one or more than one recombinant enzyme from the group comprising alanine dehydrogenase, ferredoxin, and ferredoxin reductase, and the use of said whole-cell catalyst to oxidize a fatty acid or an ester thereof.
    Type: Application
    Filed: March 12, 2013
    Publication date: April 23, 2015
    Applicant: EVONIK INDUSTRIES AG
    Inventors: Steffen Schaffer, Michaela Hauberg, Mirja Wessel, Hans-Georg Hennemann, Jan Christoph Pfeffer, Thomas Haas, Harald Haeger
  • Publication number: 20150107318
    Abstract: The method contains the following steps. In step A, supersonic waves are applied to Mountain Litsea fruits for excitation and sterilization. In step B, the inferior fruits and the cleaning water are removed from the water tank, placed in a fermentative tank, and left for fermentation. After the fermentation, a pressing and separation process is conducted. In step C, the superior fruits are placed in a separate fermentative tank for fermentation into mofetil alcohol. In step D, the superior fruits are alternatively mixed with pure water, crushed, and placed in a boiler for aging and sterilization. Then the crushed and aged fruits are placed in yet another fermentative tank with pure water for fermentation. After the fermentation, a pomace separation process is conducted. The separated pomace becomes a Mountain Litsea wine lees, whereas the separated water becomes a Mountain Litsea enzymatic liquid.
    Type: Application
    Filed: October 22, 2013
    Publication date: April 23, 2015
    Inventors: HENG-JUI HSU, TSU-YU HSU
  • Patent number: 9012177
    Abstract: The present disclosure relates to host cells containing a recombinant polynucleotide encoding a polypeptide where the polypeptide transports cellodextrin into the cell. The present disclosure further relates to methods of increasing transport of cellodextrin into a cell, methods of increasing growth of a cell on a medium containing cellodextrin, methods of co-fermenting cellulose-derived and hemicellulose-derived sugars, and methods of making hydrocarbons or hydrocarbon derivatives by providing a host cell containing a recombinant polynucleotide encoding a polypeptide where the polypeptide transports cellodextrin into the cell.
    Type: Grant
    Filed: May 28, 2014
    Date of Patent: April 21, 2015
    Assignees: The Regents of the University of California, The Board of Trustees of the University of Illinois, BP Corporation North America Inc.
    Inventors: N. Louise Glass, Chaoguang Tian, William T. Beeson, IV, Huimin Zhao, Jing Du, Jin Ho Choi, James H. Doudna Cate, Jonathan M. Galazka, Suk-Jin Ha, Yong-Su Jin, Soo Rin Kim, Sijin Li, Xiaomin Yang
  • Patent number: 9012226
    Abstract: The present invention relates to the propagation of covalently closed circular recombinant DNA molecules such as plasmids, cosmids, bacterial artificial chromosomes (BACs), bacteriophages, viral vectors and hybrids thereof, and more particularly is strain modifications that improve strain viability, plasmid stability, plasmid production yield, and plasmid-directed protein production yield, using said DNA molecules in fermentation culture.
    Type: Grant
    Filed: March 10, 2010
    Date of Patent: April 21, 2015
    Assignee: Nature Technology Corporation
    Inventor: James A. Williams
  • Patent number: 9012181
    Abstract: A eukaryotic expression vector capable of displaying a multi-chain polypeptide on the surface of a host cell is provided, such that the biological activity of the multi-chain polypeptide is exhibited at the surface of the host cell. Such a vector allows for the display of complex biologically active polypeptides, e.g., biologically active multi-chain polypeptides such as immunoglobulin Fab fragments. The present invention describes and enables the successful display of a multi-chain polypeptide on the surface of a eukaryotic host cell. Preferred vectors are described for expressing the chains of a multi-chain polypeptide in a host cell separately and independently (e.g., under separate vector control elements, and/or on separate expression vectors, thus forming a matched vector set).
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: April 21, 2015
    Assignee: Dyax Corp.
    Inventors: Simon E. Hufton, Hendricus R. J. M. Hoogenboom
  • Patent number: 9012192
    Abstract: A method of increasing the rate of growth, useful product production, or protein expression of a microorganism includes the step of exposing the microorganism to ultrasound having a frequency greater than about 1 MHz.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: April 21, 2015
    Assignee: Intelligentnano Inc.
    Inventors: Jie Chen, James Xing, Woon T. Ang
  • Patent number: 9005948
    Abstract: The present invention provides a novel endoglucanase nucleic acid sequence, designated egl7, and the corresponding EGVII amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding EGVII, recombinant EGVII proteins and methods for producing the same.
    Type: Grant
    Filed: January 20, 2014
    Date of Patent: April 14, 2015
    Assignee: Danisco US Inc.
    Inventors: Nigel Dunn-Coleman, Frits Goedegebuur, Michael Ward, Jian Yao
  • Patent number: 9005927
    Abstract: A eukaryotic expression vector capable of displaying a multi-chain polypeptide on the surface of a host cell is provided, such that the biological activity of the multi-chain polypeptide is exhibited at the surface of the host cell. Such a vector allows for the display of complex biologically active polypeptides, e.g., biologically active multi-chain polypeptides such as immunoglobulin Fab fragments. The present invention describes and enables the successful display of a multi-chain polypeptide on the surface of a eukaryotic host cell. Preferred vectors are described for expressing the chains of a multi-chain polypeptide in a host cell separately and independently (e.g., under separate vector control elements, and/or on separate expression vectors, thus forming a matched vector set).
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: April 14, 2015
    Assignee: Dyax Corp.
    Inventors: Simon E. Hufton, Hendricus R. J. M. Hoogenboom
  • Patent number: 9005947
    Abstract: The present invention provides a novel ?-glucosidase nucleic acid sequence, designated bgl7, and the corresponding BGL7 amino acid sequence. The invention also provides expression vectors and host cells comprising a nucleic acid sequence encoding BGL7, recombinant BGL7 proteins and methods for producing the same.
    Type: Grant
    Filed: January 17, 2014
    Date of Patent: April 14, 2015
    Assignee: Danisco US Inc.
    Inventors: Nigel Dunn-Coleman, Michael Ward
  • Patent number: 8999691
    Abstract: Disclosed is a modified glucose dehydrogenases that has dramatically increased productivity in Escherichia coli and dramatically increased thermal stability, which is obtained by introducing specific amino acid mutations to glucose dehydrogenase derived from Botryotinia fuckeliana. Also disclosed is a modified glucose dehydrogenases that has dramatically increased productivity in E. coli and dramatically increased thermal stability, which is obtained by replacing two amino acid residues in glucose dehydrogenase of fungal origin with cysteine residues. The novel glucose dehydrogenase has a low reactivity to xylose.
    Type: Grant
    Filed: June 29, 2011
    Date of Patent: April 7, 2015
    Assignee: Ultizyme International Ltd.
    Inventors: Koji Sode, Kazushige Mori
  • Publication number: 20150093785
    Abstract: The invention provides apparatus and processes for cultivating algae.
    Type: Application
    Filed: December 8, 2014
    Publication date: April 2, 2015
    Inventors: Ari KETOLA, Veikko LATVALA
  • Patent number: 8993267
    Abstract: The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.
    Type: Grant
    Filed: December 17, 2007
    Date of Patent: March 31, 2015
    Assignee: Danisco US Inc.
    Inventors: Elizabeth A Bodie, George England
  • Patent number: 8993299
    Abstract: The present invention relates to polypeptides having cellobiohydrolase I activity and polynucleotides having a nucleotide sequence which encodes for the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acid constructs as well as methods for producing and using the polypeptides.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: March 31, 2015
    Assignee: Novozymes A/S
    Inventors: Lene Lange, Wenping Wu, Dominique Aubert, Sara Landvik, Kirk Matthew Schnorr, Ib Groth Clausen
  • Patent number: 8993268
    Abstract: Provided are a method of producing Clostridium botulinum toxin by using a media containing plant-derived components, and a method of producing Clostridium botulinum toxin by using a flexible closed container.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: March 31, 2015
    Assignee: Medy-Tox Inc.
    Inventors: Hyun-Ho Jung, Gi-Hyeok Yang, Hack-Woo Kim, Byung-Kook Lee, Young-suk Yoon, Hyung-Pyo Hong
  • Patent number: 8993743
    Abstract: The present invention relates to a nucleic acid molecule encoding a chimeric protein having the biochemical activity of a surface active protein, wherein said chimeric protein comprises: (a) an N-terminal portion of a first surface active protein, wherein the N-terminal portion is devoid of between 0 and 10 of the most N-terminal amino acids of the mature first surface active protein; and, C-terminally thereof, (b) a C-terminal portion of a second surface active protein, wherein the C-terminal portion is devoid of between 0 and 10 of the most C-terminal amino acids of the mature second surface active protein. The present invention further relates to a vector, a non-human host and a method for the production of a chimeric protein having the biochemical activity of a surface active protein. In addition, the present invention relates to a chimeric protein encoded by the nucleic acid molecule of the invention and a composition comprising the chimeric protein.
    Type: Grant
    Filed: February 18, 2011
    Date of Patent: March 31, 2015
    Assignee: B.R.A.I.N. Biotechnology Research and Information Network AG
    Inventors: Guido Meurer, Esther Gabor, Anke Bachert, Jürgen Eck
  • Patent number: 8993296
    Abstract: An object of the present invention is to provide enzymes associated with equol synthesis, genes coding such enzymes, and a process for producing equol and its intermediates using the enzymes and genes. The present invention provides a dihydrodaidzein synthesizing enzyme, tetrahydrodaidzein synthesizing enzyme, equol synthesizing enzyme, and genes coding these enzymes. The present invention also provides a process for synthesizing dihydrodaidzein, tetrahydrodaidzein, and/or equol using these enzymes.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: March 31, 2015
    Assignee: Otsuka Pharmaceutical Co., Ltd.
    Inventors: Yoshikazu Shimada, Setsuko Yasuda, Masayuki Takahashi, Takashi Hayashi, Norihiro Miyazawa, Yasuhiro Abiru, Tadaaki Ohtani, Ikutaro Sato
  • Patent number: 8986706
    Abstract: The present invention encompasses recombinant Newcastle Disease Virus-Herpesvirus vaccines or compositions. The invention encompasses recombinant NDV vectors encoding and expressing herpesvirus pathogen, antigens, proteins, epitopes or immunogens. Such vaccines or compositions can be used to protect animals against disease.
    Type: Grant
    Filed: August 29, 2011
    Date of Patent: March 24, 2015
    Assignee: Merial, Inc.
    Inventors: Michel Bublot, Frederic Reynard, Herve Poulet, Frederic Raymond David
  • Patent number: 8986977
    Abstract: Presented herein are methods of using cell wall degrading enzymes for recovery of internal lipid bodies from biomass sources such as algae. Also provided are algal cells that express at least one exogenous gene encoding a cell wall degrading enzyme and methods for recovering lipids from the cells.
    Type: Grant
    Filed: December 31, 2012
    Date of Patent: March 24, 2015
    Assignee: Alliance for Sustainable Energy, LLC
    Inventors: Eric P. Knoshaug, Bryon S. Donohoe, Henri Gerken, Lieve Laurens, Stefanie Rose Van Wychen
  • Patent number: 8986987
    Abstract: The present application applies to the field of veterinary vaccines, in particular of vaccines for poultry against avian influenza. The vaccine is based on a recombinant viral vector expressing the haemagglutinin protein of an influenza virus, wherein the vector is herpes virus of turkeys (HVT) and the haemagglutinin gene is driven by a glycoprotein B gene promoter from a mammalian herpesvirus. A vaccine comprising this HVT+HA vector can be used to induce a protective immune response against avian influenza in poultry, and to reduce the spread of AIV. The invention also relates to methods, uses, and vaccines involving the HVT+HA vector.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: March 24, 2015
    Assignee: Intervet Inc.
    Inventors: Paulus Jacobus Antonius Sondermeijer, Iwan Verstegen
  • Patent number: 8986969
    Abstract: The present invention relates to polypeptides having cellobiohydrolase I activity and polynucleotides having a nucleotide sequence which encodes for the polypeptides. The invention also relates to nucleic acid constructs, vectors, and host cells comprising the nucleic acid constructs as well as methods for producing and using the polypeptides.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: March 24, 2015
    Assignee: Novozymes A/S
    Inventors: Lene Lange, Wenping Wu, Dominique Aubert, Sara Landvik, Kirk Matthew Schnorr, Ib Groth Clausen
  • Patent number: 8980605
    Abstract: The present disclosure provides engineered ketoreductase enzymes having improved properties as compared to a naturally occurring wild-type ketoreductase enzyme. Also provided are polynucleotides encoding the engineered ketoreductase enzymes, host cells capable of expressing the engineered ketoreductase enzymes, and methods of using the engineered ketoreductase enzymes to synthesize a variety of chiral compounds.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: March 17, 2015
    Assignee: Codexis, Inc.
    Inventors: Charlene Ching, John M. Gruber, Gjalt W. Huisman, Emily Mundorff, Lisa M. Newman
  • Patent number: 8969066
    Abstract: The present invention provides compositions and methods for producing flocculation moieties in photosynthetic organisms. The photosynthetic organisms are genetically modified to effect production, secretion, or both, of the flocculation moieties. Also provided are methods of flocculating organisms.
    Type: Grant
    Filed: June 26, 2009
    Date of Patent: March 3, 2015
    Assignee: Sapphire Energy, Inc.
    Inventors: Michael Mendez, Craig Behnke, Yan Poon, Philip Lee