Measurement Includes Temperature Change Of The Material Being Analyzed (e.g., Calorimetry, Etc.) Patents (Class 436/147)
  • Patent number: 7413706
    Abstract: A measurement operation, such as a calorimetry measurement, is performed using a measurement array and a replaceable passivation membrane (e.g., a parylene membrane). The passivation membrane is used to cover the measurement array to provide temporary electrical and chemical passivation, while still allowing measurement of the parameter of interest (e.g., temperature, in a calorimetry measurement). By only replacing the membrane instead of the entire measurement array between measurement operations, the cost of the measurements can be significantly reduced over conventional methods. The passivation membrane can be mounted on a frame to simplify handling of the membrane.
    Type: Grant
    Filed: December 19, 2003
    Date of Patent: August 19, 2008
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Eric Peeters, Gregory B. Anderson
  • Patent number: 7399446
    Abstract: The present invention relates to an apparatus and a process for locating and for measuring variations in temperature and/or in degree of fouling over the internal suface of equipment.
    Type: Grant
    Filed: May 17, 2001
    Date of Patent: July 15, 2008
    Assignee: Ineos Europe Limited
    Inventor: Marc Jacques Herzog
  • Publication number: 20080145840
    Abstract: A method for identifying a modulator of a biological process or a biomolecule.
    Type: Application
    Filed: June 30, 2004
    Publication date: June 19, 2008
    Applicant: AstraZeneca AB
    Inventors: Ann Eakin, Stewart Fisher, Irene Karantzeni, Gunther Kern
  • Patent number: 7387764
    Abstract: An apparatus for analyzing the amount of gas in a solid sample such as a contained oxygen analyzing apparatus and method utilizing a preliminary reducing furnace which can be connected to an analyzing furnace by a transfer unit. A sample such as steel can be reduced in the preliminary reducing furnace and transferred to the analyzing furnace, for example, by a magnetic force, a gripping unit or a transporting sample body holder. A controller can control the application of heat and the mixing of a metal flux to provide discharge gas to an analyzer.
    Type: Grant
    Filed: May 28, 2003
    Date of Patent: June 17, 2008
    Assignee: Horiba, Ltd.
    Inventors: Hiroshi Uchihara, Masahiko Ikeda
  • Patent number: 7387889
    Abstract: Free-standing microfluidic channels are used to both transport and analyze molecules of interest. In a biochemical context, such molecules may be polypeptides, nucleic acids, or other biomolecules. The free-standing channels provide a real-time readout of concentration without the need for labeling with reporter molecules. The channels can also measure enthalpy values and equilibrium constants by detecting heat released from or absorbed by the sample.
    Type: Grant
    Filed: January 2, 2003
    Date of Patent: June 17, 2008
    Assignee: Massachusetts Institute of Technology
    Inventor: Scott Manalis
  • Patent number: 7368291
    Abstract: A process is provided for determining the amount of sulfuryl fluoride in the atmosphere of an enclosed area that has been fumigated with sulfuryl fluoride (SO2F2). This process comprises: (A) sampling said atmosphere of said enclosed area to obtain a gaseous sample; (B) selectively removing water from said gaseous sample by passing said gaseous sample through a perevaporation zone to obtain a perevaporated sample, wherein said perevaporation zone comprises a copolymer of tetrafluoroethylene and perfluoro-3,6-dioxa-4-methyl-7-octene-sulfonic acid; and (C) analyzing said perevaporated sample in a sulfuryl fluoride detector to determine the amount of sulfuryl fluoride in said perevaporated sample.
    Type: Grant
    Filed: May 31, 2002
    Date of Patent: May 6, 2008
    Assignee: Dow AgroSciences LLC
    Inventors: Malcolm Wayne Warren, James Lawrence Witt
  • Publication number: 20080102533
    Abstract: The present invention relates to an apparatus and method for measuring specific heat using flash. To this end, the specific heat measurement apparatus includes sample fixing means for fixing a sample 50 so that each of both surfaces 52, 55 of the sample 50 is partially exposed, flash irradiation means for irradiating flash to one surface 52 of the sample 50, which is exposed by the sample fixing means, a light-receiving detector for receiving light irradiated from the other surface 55 of the sample 50, which is exposed by the sample fixing means, and a calculation unit 74 for calculating specific heat of the sample 50 based on an output signal of the light-receiving detector.
    Type: Application
    Filed: April 27, 2007
    Publication date: May 1, 2008
    Inventor: Seog Kwang Kim
  • Patent number: 7354770
    Abstract: A device and method which comprises a sensing surface on a membrane, solid surface or electrode, where the sensing surface contains a dye or chromophore chosen in relation to a particular target substance to be detected and quantified. The dye or chromophore is of a type which produces an electrical signal upon illumination. The particular dye or chromophore chosen for a particular target substance is one in which the presence of the target substance causes a change in the electrical signal produced. The presence of the target substance modifies the expected photo-induced charge movements (PICM) produced by the sensing surface upon illumination. The photo-induced charge movements produce signals which are detected by electronic circuits, and the presence and concentration of the target substance is determined by analyzing the difference between the PICM of the target sample versus the PICM of a control sample lacking the target substance.
    Type: Grant
    Filed: November 8, 2001
    Date of Patent: April 8, 2008
    Assignee: University of North Florida
    Inventors: Jay S. Huebner, Rodolfo T. Arrieta
  • Publication number: 20080053194
    Abstract: An apparatus for sensing an analyte in a gas. The apparatus includes a gas collecting device within the apparatus for collecting the gas containing the analyte, a gas input in fluid communication with the gas collecting device for inputting the gas containing the analyte into the gas collecting device, an analyte interactant in fluid communication with the gas collecting device, wherein the analyte interactant, when contacted by the analyte, reacts to cause a change in thermal energy within the gas collecting device, the anlayte interactant being disposed in a plurality of regions separate from one another, a thermopile device comprising at least one thermopile thermally coupled to the gas collecting device to generate a signal in response to the change in thermal energy, wherein the signal comprises information useful in characterizing the analyte. A related method also is disclosed.
    Type: Application
    Filed: December 2, 2006
    Publication date: March 6, 2008
    Inventor: Lubna M. Ahmad
  • Patent number: 7338640
    Abstract: A method of manufacturing a sensor is provided. The method includes disposing a sacrificial layer on a substrate, disposing a low-thermal-conductivity layer on the sacrificial layer, and disposing a first set of conductive arms and a second set of conductive arms on the low-thermal-conductivity layer to form a plurality of thermal junctions. The plurality of thermal junctions is adapted to form a plurality of hot junctions and a plurality of cold junctions when subjected to a difference in temperature. The method also includes removing the sacrificial layer and a portion of the low-thermal-conductivity layer to form a cavity therein. The cavity is configured to provide insulation for the plurality of hot junctions. A thermopile sensor is also provided, and a calorimetric gas sensor implementing the thermopile sensor is provided.
    Type: Grant
    Filed: March 31, 2005
    Date of Patent: March 4, 2008
    Assignee: General Electric Company
    Inventors: Sunil Srinivasa Murthy, Anis Zribi, Shankar Chandrasekaran
  • Patent number: 7329389
    Abstract: New sensors and methods for qualitative and quantitative analysis of multiple gaseous substances simultaneously with both high selectivity and high sensitivity are provided. The new sensors rely on a characteristic difference in energy between the interaction of a particular substance with a catalyst coated heat transfer device (HTD) and a non-catalyst coated (or one coated with a different catalyst) reference HTD. Molecular detection is achieved by an exothermic or endothermic chemical or physical reaction between the catalytic surface of the sensor and the molecule, tending to induce a temperature change of the sensor. Both high temperature and non-destructive low temperature detection are possible. The magnitude and rate of endothermic or exothermic heat transfer from a specific molecule-catalyst interaction is related to molecular concentration.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: February 12, 2008
    Assignee: Sensor Tech, Inc.
    Inventors: Michael L. Horovitz, Karl F. Anderson
  • Patent number: 7288229
    Abstract: An apparatus and method for carrying out and monitoring the progress and properties of multiple reactions is disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight.
    Type: Grant
    Filed: May 8, 2001
    Date of Patent: October 30, 2007
    Assignee: Symyx Technologies, Inc.
    Inventors: Howard Turner, G. Cameron Dales, Lynn VanErden, Johannes A. M. van Beek
  • Patent number: 7255837
    Abstract: An airtight configuration for keeping down the permeation of corrosive gas from silicone adhesive, and for preventing corrosive gas from entering the case. An electronic device mounted on vehicle. The electronic device has at least one of a portion connecting components, and a portion sealing the clearance or hole where exists in the electronic device. The at least one of the connection portion and the seal portion is constituted by using adhesive or sealant which has at least one of a function adsorbing corrosive gas and a function trapping corrosive gas with chemical reaction. A car-mounted electronic device characterized by reduced permeation of corrosive gas into a case and high reliability.
    Type: Grant
    Filed: September 20, 2002
    Date of Patent: August 14, 2007
    Assignees: Hitachi, Ltd., Hitachi Car Engineering Co., Ltd.
    Inventors: Hiroyuki Abe, Shinya Igarashi
  • Patent number: 7201877
    Abstract: A device for detecting sulfuryl fluoride, in which the gas specimen to be examined is subjected to pyrolysis with ensuing detection of a pyrolysis product, is to be improved for the sake of achieving a mobile, economical structure. To attain this object, in a preliminary tube (1) for pyrolysis, there is a chemical layer (5) of pyrophoric iron, and as an indicator system for the pyrolysis product, a test tube (2) for hydrogen fluoride is used.
    Type: Grant
    Filed: September 25, 2003
    Date of Patent: April 10, 2007
    Assignee: Dräger Safety AG & Co. KGaA
    Inventors: Holger Bohm, Silke Guga, Andreas Mohrmann, Armin Schulten, Bernd Siemensmeyer, Katja Stern, Bettina Runge
  • Patent number: 7189373
    Abstract: Carbon monoxide contained in reformate gas is removed by a preferential oxidation reaction in a catalyst, two preferential oxidation reactors (20A, 20B) being disposed in series. Valves (7, 8) supply air containing oxygen as an oxidizing agent individually to these preferential oxidation reactors (20A, 20B). Temperature sensors (9, 10) detect the catalyst temperatures of the preferential oxidation reactors (20A, 20B), and a controller (5), by adjusting the flow rate of the valves (7, 8) based on the detected temperatures, maximizes the carbon monoxide removal performance of the preferential oxidation reactors (20A, 20B), while preventing excessive catalyst temperature rise.
    Type: Grant
    Filed: February 19, 2003
    Date of Patent: March 13, 2007
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Ikuhiro Taniguchi, Hiroaki Hashigaya
  • Patent number: 7188001
    Abstract: A system for controlling the temperature of a reaction mixture comprises at least one heating device for heating the mixture and a power regulator for regulating the amount of power supplied to the heating device. A controller in communication with the power regulator includes program instructions for heating the reaction mixture by setting a variable target temperature that initially exceeds a desired setpoint temperature for the mixture. When the heating device reaches a threshold temperature, the variable target temperature is decreased to the desired setpoint temperature. In another embodiment, the controller includes an adaptive control program for dynamically adjusting the duration or intensity of power pulses provided to the heating device.
    Type: Grant
    Filed: January 27, 2003
    Date of Patent: March 6, 2007
    Assignee: Cepheid
    Inventors: Steven J. Young, Gregory T. A. Kovacs, M. Allen Northrup, Kurt E. Petersen, William A. McMillan, Konstantin Othmer, Lee A. Christel
  • Patent number: 7141210
    Abstract: A nanocalorimeter array for detecting chemical reactions includes at least one thermal isolation region residing on a substrate. Each thermal isolation region includes at least one thermal equilibration region, within which resides a thermal measurement device connected to detection electronics.
    Type: Grant
    Filed: April 1, 2002
    Date of Patent: November 28, 2006
    Assignee: Palo Alto Research Center Incorporated
    Inventors: Alan G. Bell, Richard H. Bruce, Scott A. Elrod, Eric Peeters, Francisco E. Torres
  • Patent number: 7125163
    Abstract: An exemplary calorimeter includes a body configured to capture radiation generated by a source of the radiation, such as without limitation a laser, and absorb energy from the captured radiation. The calorimeter is simple to manufacture, operate, and maintain and is compact, highly accurate, able to withstand high power beams, and self-calibrating. NIST traceable electrical wires are used for the measurement. No fluids are used during measurements of the input radiation. A simple built in fluid or gaseous cooling system may be used post-measurement to reset the calorimeter temperature back to ambient for repeated measurement capability.
    Type: Grant
    Filed: November 24, 2003
    Date of Patent: October 24, 2006
    Assignee: The Boeing Company
    Inventors: Lynne C. Eigler, Yan S. Tam, Youssef Kohanzadeh
  • Patent number: 7105354
    Abstract: An analyzer characterized by comprising a chip and a detector, wherein the chip is an organic polymer member having a fine capillary through which a fluid sample or a fluid sample and a fluid reagent flow and can perform a chemical reaction on the sample in the capillary without using a separate weighing means, and the detector is a photothermal conversion detector for measuring a physical quantity change such as a refractive index change caused by a partial temperature change of the sample and the reagent by applying an excitation light to a substance to be measured produced by the chemical reaction, thereby providing a small analyzer excellent in chip waste-disposal, capable of analyzing inexpensively, simply and in a short time and being suitable for a POC analysis.
    Type: Grant
    Filed: June 14, 1999
    Date of Patent: September 12, 2006
    Assignee: Asahi Kasei Kabushiki Kaisha
    Inventors: Koji Shimoide, Akira Kiguchi, Shigemi Mukaiyama, Hiroshi Kurokawa
  • Patent number: 7097352
    Abstract: A holder for materials for use in a measuring instrument includes a three-piece housing consisting of an upper housing member, an intermediate housing member and a lower housing member, the three-piece housing defining a first closed cavity and a second closed cavity. A first winding assembly is disposed within the first closed cavity, and a second winding assembly is disposed within the second closed cavity.
    Type: Grant
    Filed: October 5, 2004
    Date of Patent: August 29, 2006
    Assignee: PerkinElmer LAS, Inc.
    Inventor: Donald L. Groeschner
  • Patent number: 7078164
    Abstract: A method is disclosed for screening potential catalysts for polymerization performance. The method includes the steps of reacting a potential catalyst with at least a first monomer under polymerization conditions, determining the polymerization performance of the catalyst with the at least first monomer, and using the determination as a predictor for the polymerization performance of the catalyst for at least a second monomer, wherein the first and second monomers are different from each other and the first monomer is an olefin other than ethylene. The method provides a useful, concrete and tangible result that has particular value for identifying appropriate catalysts for olefin polymerization and copolymerization.
    Type: Grant
    Filed: June 19, 2000
    Date of Patent: July 18, 2006
    Assignee: Symyx Technologies, Inc.
    Inventors: Gary M. Diamond, Christopher Goh, Margarete K. Leclerc, Vince Murphy, Howard W. Turner
  • Patent number: 7078237
    Abstract: A micropyrolyzer has applications to pyrolysis, heated chemistry, and thermal desorption from liquid or solid samples. The micropyrolyzer can be fabricated from semiconductor materials and metals using standard integrated circuit technologies. The micropyrolyzer enables very small volume samples of less than 3 microliters and high sample heating rates of greater than 20° C. per millisecond. A portable analyzer for the field analysis of liquid and solid samples can be realized when the micropyrolyzer is combined with a chemical preconcentrator, chemical separator, and chemical detector. Such a portable analyzer can be used in a variety of government and industrial applications, such as non-proliferation monitoring, chemical and biological warfare detection, industrial process control, water and air quality monitoring, and industrial hygiene.
    Type: Grant
    Filed: October 23, 2001
    Date of Patent: July 18, 2006
    Assignee: Sandia Corporation
    Inventors: Curtis D. Mowry, Catherine H. Morgan, Ronald P. Manginell, Gregory C. Frye-Mason
  • Patent number: 7033840
    Abstract: Workstation, apparatuses and methods for the high-throughput synthesis, screening and/or characterization of combinatorial libraries. The invention relates to an array, which permits various high-throughput methods for synthesis, screening and/or characterization in the same array, without requiring sample transfer from the array. In a preferred embodiment, the synthesis, screening, and/or characterization steps are carried out in a highly parallel fashion, where more than one compound is synthesized, screened, and/or characterized at the same time. The invention may be practiced at the microscale. The array may comprise thermal channels, for regulating the temperature of the wells in the array. The wells of the array may comprise a membrane, which is used in various screening and characterization methods. The invention also relates to a covered array, comprising the array and an array cover, as well as an apparatus comprising the array, which comprises the array, an array cover and a stage.
    Type: Grant
    Filed: November 9, 2000
    Date of Patent: April 25, 2006
    Assignee: SRI International
    Inventors: Christopher D. Tagge, Robert B. Wilson, Jr., Seajin Oh, Albert S. Hirschon
  • Patent number: 7033837
    Abstract: A method for the combinatorial development of materials in which heat changes caused by chemical or physical processed with materials of combinatorial libraries are visualized using heat different images form an infrared camera. As said libraries, all kinds of material libraries, such as heterogeneous or homogeneous catalysts or enzymes, can be used.
    Type: Grant
    Filed: December 15, 1998
    Date of Patent: April 25, 2006
    Assignee: hte Aktiengesellschaft the high throughput experimentation company
    Inventors: Wilhelm F. Maier, Arnold Holzwarth
  • Patent number: 7021820
    Abstract: A new adiabatic scanning calorimeter allows the thermal mass of a high-pressure reaction vessel to be dynamically compensated during a test. This allows the effective ? factor for the experiment to be reduced to 1.0 without the use of complex pressure balancing equipment. Endothermic events can be quantified and sample specific heats can be measured. The time required for test completion is much shorter than for conventional adiabatic calorimeters, thus considerably improving apparatus productivity. The sensitivity to exotherm detection is at least as good as existing adiabatic calorimeters employing the Heat-Wait-Search strategy, but does depend on the temperature-scanning rate. In addition, the heat of reaction is obtained without reference to the heat capacity of the sample, pressure is measured continuously, reactants may be injected into the test vessel and the sample can be mixed during the test.
    Type: Grant
    Filed: July 12, 2004
    Date of Patent: April 4, 2006
    Inventor: Simon Chippett
  • Patent number: 7018845
    Abstract: A more efficient method for combustion or oxidation of samples containing nitrogen, phosphorus and/or sulfur to their corresponding oxides is disclosed, where method uses multi-staged addition of an oxidizing agent to enhance oxidation and liberation of nitrogen, phosphorus and/or sulfur oxides for subsequent detection. The method of the present invention allows for the injection of larger samples or the introduction of a greater amount of sample per unit of time which results in a larger amount of analyte being delivered to the detector per unit of time, thereby improving detection limits and detection efficiency.
    Type: Grant
    Filed: June 7, 2002
    Date of Patent: March 28, 2006
    Assignee: Petroleum Analyzer Company, LP
    Inventor: Randy L. Wreyford
  • Patent number: 6988826
    Abstract: The present invention provides a nano-calorimeter device operable for measuring and characterizing the thermodynamic and other physical properties of materials that are confined to essentially nano-scale dimensions. The nano-calorimeter device including a thin film membrane having a first surface and a second surface. The nano-calorimeter device also including a frame structure disposed adjacent to and in thermal contact with the first surface of the thin film membrane, the frame structure defining a plurality of hollow cells adjacent to and in thermal contact with the first surface of the thin film membrane.
    Type: Grant
    Filed: May 17, 2004
    Date of Patent: January 24, 2006
    Assignee: General Electric Company
    Inventors: Anis Zribi, Azar Alizadeh, Suryaprakash Ganti, Juan Antonio Sabate, Loucas Tsakalakos, Kenneth Roger Conway
  • Patent number: 6955787
    Abstract: An array of piezoelectric resonators used in a sensor device in order to identify chemical and biological agents. The resonators can operate as bulk acoustic wave (BAW), surface acoustic wave (SAW), or Love mode devices. The sensor device integrates gravimetric, calorimetric, thermal gravimetric, voltage gravimetric and optical detection methods into one sensor system, improving the accuracy of identifying hazardous agents. For gravimetric detection, dual-mode resonators provide simultaneous calorimetric and gravimetric data, one type from each mode. Resonators with heaters on the surfaces will provide thermal gravimetric data. An optical detector can be used to analyze the optical signal from the surface of a coated resonator. Additionally, voltage gravimetric measurements can be made with an electric field set up between the resonator and an external electrode. Thermal voltage gravimetric measurements can be made by adding an integrated heater on the resonator with an external electrode.
    Type: Grant
    Filed: October 11, 2003
    Date of Patent: October 18, 2005
    Inventor: William Paynter Hanson
  • Patent number: 6939512
    Abstract: A heating and cooling device (3) for an apparatus (1) for tissue preparation for the tissue embedding is disclosed. The apparatus (1) has a free space (13) for the accommodation of a transport plate (15). The apparatus (1) is surrounded by a housing (5) which defines an upper side (8) and a heating and cooling device (3) that is provided on the upper side (8) of the housing (5), and the heating and cooling device (3) has a reception (23) with at least one chamber (32) for the accommodation of at least one processing container (17). The heating and cooling device (3) is pivotable with respect to the upper side (8) of the housing (5).
    Type: Grant
    Filed: March 18, 2002
    Date of Patent: September 6, 2005
    Assignee: Leica Mikrosysteme GmbH
    Inventors: Reinhard Lihl, Michael Zimmerman, Guenther Bock, Ian Lamswood
  • Patent number: 6908768
    Abstract: Apparatus for testing catalyst candidates including a multi-cell holder e.g. a honeycomb or plate, or a collection of individual support particles that have been treated with solutions/suspensions of catalyst ingredients to produce cells, spots or pellets holding each of a variety of combinations of the ingredients and dried, calcined or treated as necessary to stabilize the ingredients in the cells, spots or pellets. The apparatus also includes structure for contacting the catalyst candidates with a potentially reactive feed stream or batch e.g., biochemical, gas oil, hydrogen plus oxygen, propylene plus oxygen, CCl2F2 and hydrogen, etc. The reaction occurring in each cell can be measured, e.g. by infrared thermography, spectroscopic detection of products or residual reactants, or by sampling, e.g. by multistreaming through low volume tubing, from the vicinity of each combination, followed by analysis e.g. spectral analysis, chromatography etc.
    Type: Grant
    Filed: December 21, 2001
    Date of Patent: June 21, 2005
    Assignee: University of Houston, Texas
    Inventor: Richard C. Willson, III
  • Patent number: 6897960
    Abstract: A hydrogen gas detector for detection of hydrogen gas in a gaseous environment. The detector comprises a light/heat source, an optical detector, and an optical barrier between the source and detector. The optical barrier responds to the presence of hydrogen by responsively changing from a first optical state to a different second optical state, whereby transmission of light from the light/heat source through the optical barrier is altered by the presence of hydrogen and the altered transmission is sensed by the optical detector to provide an indication of the presence of hydrogen gas in the gaseous environment.
    Type: Grant
    Filed: May 2, 2002
    Date of Patent: May 24, 2005
    Inventors: Frank DiMeo, Jr., Mackenzie E. King
  • Patent number: 6896783
    Abstract: The invention relates to a method for combinatorially producing a library of materials by means of an electrochemical deposition in an array. The inventive library is made from an array of containers that consist of an electroconductive material, are open to the top and are electroconductively connected to a shared current supply device and is made from a corresponding array of auxiliary electrodes that are electroconductively connected to a shared current supply device and are arranged in such a way that an auxiliary electrode plunges into a container respectively or can be introduced therein without touching said container. The inventive method comprises the following steps: filling the containers with electrolytes having different compositions and containing electrolytically separable elements and applying an electric voltage between the current supply devices of the containers and auxiliary electrodes for obtaining an electrolytic deposition on the surfaces of the containers.
    Type: Grant
    Filed: December 12, 2000
    Date of Patent: May 24, 2005
    Assignee: hte Aktiengesellschaft the high throughput experimentation company
    Inventors: Stephan A. Schunk, Dirk Demuth, Hartmut Hibst
  • Patent number: 6881584
    Abstract: The present invention relates, in general, to thermography and, in particular, to a method of using infrared thermography to monitor physiological and molecular events that elicit a thermogenic response in animals (including humans), plants, tissues, cells and cell-free systems. The present method can be used for screening, identifying, and ranking drug candidates for multiple diseases, disorders and conditions.
    Type: Grant
    Filed: November 17, 1999
    Date of Patent: April 19, 2005
    Assignee: SmithKline Beecham Corporation
    Inventors: James Martin Lenhard, Mark Andrew Paulik
  • Patent number: 6880968
    Abstract: Test element analysis system (1) for the analytical investigation of a sample (8), in particular of a body liquid, of human beings or of animals, comprising test elements (3) with a test zone (7), to be brought in contact with the sample to be investigated for the purpose of performing an analysis, in order to measure a measurement quantity characteristic for the analysis, and an evaluation instrument (2) with a test element holder (5) for positioning a test element (3) in a measuring position in order to perform a measurement, and a measurement and evaluation electronics (15) for measuring the characteristic change and for determining a result of the analysis, based on the result of the measurement. In order to provide increased measuring accuracy by improved temperature compensation, it is proposed, in the scope of the invention, that the evaluation instrument (2) for the determination of the temperature prevailing in the test zone (7) of the test element (3) comprises an infrared detector (20).
    Type: Grant
    Filed: October 26, 2000
    Date of Patent: April 19, 2005
    Assignee: Roche Diagnostics GmbH
    Inventor: Hans-Peter Haar
  • Patent number: 6871118
    Abstract: Method intended for continuous detection and control of hydrate formation at any point of a pipe carrying multiphase petroleum fluids. The method uses a compositional code allowing to simulate the circulation modes and conditions at any point of the pipe, considering that the fluid mixture is substantially continuously at equilibrium, that the composition of the multiphase mixture is variable all along the pipe and that the mass of each constituent of the mixture is globally defined by a mass conservation equation regardless of its phase state. The thermodynamic hydrate formation conditions are detected after a particular stage of grouping the petroleum fluids into pseudo-components so as to isolate the hydrate forming components, with definition for each one of a mass fraction and of a certain number of characteristic physical quantities, and the data relative to these particular fractions are applied to the modules so as to determine at any point the hydrate dissociation temperature (Td).
    Type: Grant
    Filed: February 25, 2002
    Date of Patent: March 22, 2005
    Assignee: Institut Francais Du Petrole
    Inventors: Véronique Henriot, Véronique Lachet, Eric Heintze
  • Patent number: 6867002
    Abstract: A sample solution treating instrument is provided for facilitating rapid and simplified adjustment of the condition of a sample solution proper for analysis with a biosensor before supplying the solution to the biosensor. The sample solution treating instrument includes, for example, a catalyst or an adsorbent which can remove any interfering substance in order to adjust the sample solution for measurement with a biosensor.
    Type: Grant
    Filed: October 20, 1999
    Date of Patent: March 15, 2005
    Assignee: Matsushita Electric Industrial Co., Ltd.
    Inventors: Mariko Miyashita, Toshihiko Yoshioka, Shiro Nankai
  • Patent number: 6864092
    Abstract: Devices and methods for controlling and monitoring the progress and properties of multiple reactions are disclosed. The method and apparatus are especially useful for synthesizing, screening, and characterizing combinatorial libraries, but also offer significant advantages over conventional experimental reactors as well. The apparatus generally includes multiple vessels for containing reaction mixtures, and systems for controlling the stirring rate and temperature of individual reaction mixtures or groups of reaction mixtures. In addition, the apparatus may include provisions for independently controlling pressure in each vessel, and a system for injecting liquids into the vessels at a pressure different than ambient pressure. In situ monitoring of individual reaction mixtures provides feedback for process controllers, and also provides data for determining reaction rates, product yields, and various properties of the reaction products, including viscosity and molecular weight.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: March 8, 2005
    Assignee: Symyx Technologies, Inc.
    Inventors: Howard Turner, G. Cameron Dales, Lynn VanErden, Johannes A. M. VanBeek, Damian A. Hajduk, Ralph B. Nielsen, Paul Mansky, Leonid Matsiev, Pei Wang, Eric McFarland
  • Patent number: 6860632
    Abstract: A housing for a material holder includes an intermediate housing member having a generally horizontal member, an upper recess and a lower recess, an upper housing member having a generally horizontal member and a wall defining a material holding chamber, the upper housing member being seated within the upper recess of the intermediate housing member, and a lower housing member having a generally horizontal member, the lower housing member being seated within the lower recess of the intermediate housing member. The upper recess, the generally horizontal member of the intermediate housing member and the generally horizontal member of the upper housing member define a first cavity adapted to receive a first winding assembly, and the lower recess, the generally horizontal member of the intermediate housing member and the generally horizontal member of the lower housing member define a second cavity adapted to receive a second winding assembly.
    Type: Grant
    Filed: July 28, 2003
    Date of Patent: March 1, 2005
    Assignee: PerkinElmer Instruments LLC
    Inventor: Donald L. Groeschner
  • Patent number: 6849460
    Abstract: Methods and apparatus for screening diverse arrays of materials using infrared imaging techniques are provided. Typically, each of the individual materials on the array will be screened or interrogated for the same material characteristic. Once screened, the individual materials may be ranked or otherwise compared relative to each other with respect to the material characteristic under investigation. According to one aspect, infrared imaging techniques are used to identify the active sites within an array of compounds by monitoring the temperature change resulting from a reaction. This same technique can also be used to quantify the stability of each new material within an array of compounds. According to another aspect, identification and characterization of condensed phase products is achieved, wherein library elements are activated by a heat source serially, or in parallel.
    Type: Grant
    Filed: June 25, 2002
    Date of Patent: February 1, 2005
    Assignee: Symyx Technologies, Inc.
    Inventors: Eric W. McFarland, William Archibald
  • Patent number: 6849458
    Abstract: The present invention provides an assay apparatus for that includes a temperature adjusting means for simultaneously heating a plurality of samples, and a receiving means for receiving spectral emission from the samples while the samples are being heated. In further aspects of the invention, the receiving means can be configured to receive fluorescent emission, ultraviolet light, and visible light. The receiving means can be configured to receive spectral emission from the samples in a variety of ways, e.g., one sample at a time, simultaneously from more than one sample, or simultaneously from all of the samples. The temperature adjusting means can be configured with a temperature controller for changing temperature in accordance with a predetermined profile.
    Type: Grant
    Filed: March 9, 2001
    Date of Patent: February 1, 2005
    Inventors: Michael W. Pantoliano, Roger F. Bone, Alexander W. Rhind, Francis R. Salemme
  • Patent number: 6844198
    Abstract: A method of determining a surface property of solids in a plurality by contacting the solids with a fluid, measuring the radiation emitted, absorbed, or altered during adsorption of the fluid using a detector, and then determining at least one surface property of the solids from the radiation measurements has been invented. The invention is particularly useful in combinatorial applications in order to evaluate a plurality of solids or mixtures of solids to determine at least one surface property of each of the solids.
    Type: Grant
    Filed: April 27, 2001
    Date of Patent: January 18, 2005
    Assignee: UOP LLC
    Inventors: La Salle R. Swenson, Timothy A. Brandvold, Michael J. McCall, Richard R. Willis
  • Patent number: 6844166
    Abstract: The invention is based on the discovery of reduced valency carbohydrate binding ligands (CBLs) that can be used to to detect or quantitate (i.e., evaluate) carbohydrates in a sample. CBLs can be used with fluorescence resonance energy transfer (FRET) to evaluate free carbohydrates or those within a carbohydrate containing compound.
    Type: Grant
    Filed: September 10, 1999
    Date of Patent: January 18, 2005
    Assignee: Sensor Technologies Inc.
    Inventor: David E. Wolf
  • Patent number: 6838287
    Abstract: An improved, affordable, and rapid fluid mixture composition or process monitor based on a thermal microstructure sensor. This is preferably accomplished with a microbridge sensor design that has reduced susceptibility to interfering components of the mixture. The sensor described herein is therefore suitable for monitoring the concentration of at least one component in a fluid mixture when the fluid mixture consists of either (1) two components with very different thermal conductivities; or (2) three or more components wherein at least one component has a very different thermal conductivity and the effects of the other components can be largely eliminated, especially if the component of interest is hydrogen and the interference is from the variability in the concentrations of CO2 and H2O.
    Type: Grant
    Filed: December 20, 2001
    Date of Patent: January 4, 2005
    Assignee: Honeywell International Inc.
    Inventors: Ulrich Bonne, Kenneth Creasy, Troy W. Francisco
  • Patent number: 6833272
    Abstract: A method for determining the storage state of an ammonia-storing SCR catalyst, the change in at least one physical property of the SCR catalyst material, changing with the NH3 storing process, being sensed, the measurement taking place on the SCR catalyst material itself by applying a measuring pickup to the SCR catalyst or bringing it into direct contact with the latter and determining the storage state on the basis of these results.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: December 21, 2004
    Assignee: DaimlerChrysler AG
    Inventors: Klaus Binder, Tillmann Braun, Michael-Rainer Busch, Aleksandar Knezevic, Klaus-Jürgen Marquardt, Ralf Moos, Carsten Plog
  • Publication number: 20040248315
    Abstract: The present invention relates to a method as well as a device for analysis of a fluid medium wherein the fluid medium is guided over at least one micro sensor (14) of a sensor assembly, comprising at least two microsensors (14) being identical or different, and wherein the at least one microsensor (14) is thermographically supervised with at least one detector with regard to an amendment of properties wherein the amendment of properties of the at least one microsensor (14) is specific for at least one predetermined component of the fluid medium.
    Type: Application
    Filed: July 22, 2004
    Publication date: December 9, 2004
    Inventors: Jens Klein, STephan Andreas Schunk
  • Publication number: 20040241869
    Abstract: A method of screening a test agent for its ability to cause a thermodynamic change in a cell-free sample, comprising the steps of: i) measuring the temperature of said sample using electrothermometry; ii) contacting the sample with said test agent; iii) measuring the temperature of the sample resulting from step (ii) using electrothermometry; and iv) comparing the temperature obtained in step (i) with the temperature obtained in step (iii), wherein temperature measurement steps (i) and (iii) are conducted using a non-invasive electro thermometric method.
    Type: Application
    Filed: April 14, 2004
    Publication date: December 2, 2004
    Inventors: Gary Christopher Davies, Roger Stuart Hutton, Anthony Patrick Jones
  • Publication number: 20040229375
    Abstract: A method of determining the solubility of a compound in a selected solvent is provided that does not require determination of, or use of, standards having known concentrations of the compound. In one aspect, the method can include preparation of a mixture where not all of a compound is dissolved in the provided solvent, separating undissolved compound from the solvent, and direct determination of the amount of the compound dissolved in the solvent. Methods adapted for use include those where a multiplicity of compounds or solvents are tested in parallel. Devices adapted for these methods are also provided by the present disclosure.
    Type: Application
    Filed: February 13, 2004
    Publication date: November 18, 2004
    Applicant: Analiza, Inc.
    Inventors: Arnon Chait, Boris Y. Zaslavsky
  • Patent number: 6808928
    Abstract: A method of determining a surface property of a plurality of solids by contacting the solids with a fluid, measuring the radiation emitted, absorbed, or altered during desorption of the fluid using a detector, and then determining at least one surface property of the solids from the radiation measurements has been invented. The invention is particularly useful in combinatorial applications in order to evaluate a plurality of solids or mixtures of solids to determine at least one surface property of each of the solids.
    Type: Grant
    Filed: November 7, 2001
    Date of Patent: October 26, 2004
    Assignee: UOP LLC
    Inventors: LaSalle R. Swenson, Timothy A. Brandvold, Michael J. McCall, Kurt M. Vanden Bussche, Richard R. Willis
  • Patent number: 6806087
    Abstract: Methods for discovering optimum catalysts and/or reaction conditions for performing endo-or exothermic reactions, in particular gas-to-liquid reactions, are disclosed. A combinatorial approach is used to identify optimum catalysts and/or reaction conditions for performing the reactions. The reactions are performed in the channels of a microchannel reactor. These results can be used directly to optimize large scale reactions performed in a plurality of microchannel reactors, or can be correlated to useful catalysts and reaction conditions for use in large scale reactors by taking into consideration the heat transfer effects in the microchannel reactor and the large scale reactor. The method can advantageously be used to generate a database of combinations of catalyst systems and/or reaction conditions which provide various product streams, such that as market conditions vary and/or product requirements change, conditions suitable for forming desired products can be identified with little or no downtime.
    Type: Grant
    Filed: May 28, 2002
    Date of Patent: October 19, 2004
    Assignee: Chevron U.S.A. Inc.
    Inventors: Charles L. Kibby, Dennis J. O'Rear, Georgieanna L. Scheuerman
  • Patent number: 6805839
    Abstract: A “folded leg” thermal detector microcantilever constructed of a substrate with at least one leg interposed between a fixed end and a deflective end, each leg having at least three essentially parallel leg segments interconnected on alternate opposing ends and aligned in a serpentine pattern with only the first leg segment attached to the fixed end and only the last leg segment attached to the deflective end. Alternate leg segment are coated on the pentalever with coating applied to the top of the first, third, and fifth leg segments of each leg and to the bottom of the second and fourth leg segments of each leg.
    Type: Grant
    Filed: March 16, 2001
    Date of Patent: October 19, 2004
    Inventors: Joseph P. Cunningham, Slobodan Rajic, Panagiotis G. Datskos, Boyd M. Evans, III