Volumetric Liquid Transfer Patents (Class 436/180)
  • Patent number: 11285480
    Abstract: A testing assembly for the rapid detection of a desired chemical from a sample, the testing assembly having a sample collection device for obtaining the sample and depositing the sample into a chemical capture cartridge that operably engages with a sensing device, the chemical capture cartridge utilizing the microdiffusion of reagents to isolate the desired chemical from the sample and react the desired chemical to form a detectible complex that can be detected and measured. The testing assembly can be portable and can rapidly diagnose a toxic industrial chemical exposure in just a few minutes, preferably about a minute or less for cyanide exposure using a blood sample from a subject onsite. The testing assembly can be used to determine the presence and/or concentration of a toxic industrial chemical in a variety of samples, including biological, environmental, and industrial samples.
    Type: Grant
    Filed: December 27, 2019
    Date of Patent: March 29, 2022
    Assignee: Analytical and Diagnostic Solutions, LLC
    Inventors: Brian A. Logue, Randy E. Jackson
  • Patent number: 11266969
    Abstract: Provided is a fluid treatment system, including: a plurality of fluid channel devices arranged in series along a regular channel; a plurality of flow control valves each adjusting the flow rate of a treatment target fluid flowing into each of the plurality of fluid channel devices; a flow control valve provided on the upstream side of the plurality of fluid channel device and operable to change the flow rate of the treatment target fluid flowing into each of the plurality of fluid channel device; a bypass channel allowing the treatment target fluid to flow so as to bypass the fluid channel device in which abnormality has occurred, and a plurality of bypass selector valves selectable between a state of allowing the flow of the treatment target fluid in the bypass channel and a state of blocking the flow.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: March 8, 2022
    Assignee: Kobe Steel, Ltd.
    Inventors: Akira Matsuoka, Tsuyoshi Kakio, Yuji Kurishiro, Fumiaki Suzuki
  • Patent number: 11260388
    Abstract: A system that include an sample analyzer having a sensor array. The sensor array includes a housing having a base, a top spaced above the base, and an outer wall that extends from the base to the top. The sensor array includes an inlet that is sized to receive a sample of the fluid, and a plurality of partitions arranged around the fluid inlet. Each partition has a port at the fluid inlet for receiving a portion of the sample of fluid received by the fluid inlet. The sensor array includes at least one sensor in each partition. The sensor array is configured to selectively direct the sample of fluid received by the fluid inlet into one or more of the plurality of partitions into contact the at least one sensor.
    Type: Grant
    Filed: December 13, 2017
    Date of Patent: March 1, 2022
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Jennifer Samproni
  • Patent number: 11237086
    Abstract: A method and system are provided for extracting a target analyte from a sample using acoustic ejection technology. The method involves applying focused acoustic energy to a fluid reservoir housing a fluid composition that contains a target analyte and comprises an upper region and a lower region, where the concentration of the target analyte in the upper region differs from that in the lower region. The focused acoustic energy is applied in a manner that is effective to result in the ejection of a fluid droplet from the fluid composition into a droplet receiver, wherein the concentration of the analyte in the droplet corresponds to either the concentration of the analyte in the upper region or the concentration of the analyte in the lower region, and wherein the concentration of the analyte is substantially uniform throughout the droplet. The fluid composition may comprise an ionic liquid, used in the extraction of ionic target analytes. Related methods and an acoustic extraction system are also provided.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: February 1, 2022
    Assignee: LABCYTE, INC.
    Inventors: Joseph D. Olechno, Richard N. Ellson
  • Patent number: 11215562
    Abstract: Examples include a fluid device. The fluid device includes a substrate, a sensor coupled on the substrate. A reservoir is formed in the substrate adjacent to the sensor. A deformable cover is disposed to seal the sensor and the reservoir on the substrate.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: January 4, 2022
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Chien-Hua Chen, Michael Cumbie, Viktor Shkolnikov
  • Patent number: 11215628
    Abstract: Provided are methods for the automated loading and/or automatic processing of one or more samples in an automated sample processing device. Also provided are automated sample loading systems and devices that include automated sample loading systems or devices that are utilized in such systems.
    Type: Grant
    Filed: June 20, 2018
    Date of Patent: January 4, 2022
    Assignee: Abbott Molecular Inc.
    Inventors: Jason E. Bryant, Brett W. Johnson, Richard J. Schoon
  • Patent number: 11215577
    Abstract: A test system for analyzing a sample of a bodily fluid is provided and comprises: at least one test strip comprising at least one capillary channel comprising an inlet opening configured to receive the sample; a vent opening configured to provide an air vent to the capillary channel; and at least one zone consisting of a detection zone and a reagent zone; at least one measuring device configured for interacting with the test strip, the measuring device comprising at least one sealing element for hermetically sealing the vent opening from an ambient atmosphere; and at least one suction device adapted to provide an underpressure to the vent opening; wherein the measuring device further comprises at least one valve or is connectable to the valve, wherein the valve is configured to vent the vent opening of the test strip when the measuring device interacts with the test strip.
    Type: Grant
    Filed: November 9, 2018
    Date of Patent: January 4, 2022
    Assignee: Roche Diagnostics Operations, Inc.
    Inventors: Uwe Goebbert, Eloísa Lopez-Calle, Michael Marquant, Christine Nortmeyer, Katja Reiter, Reiner Stein
  • Patent number: 11207455
    Abstract: Disclosed herein are membrane device embodiments that can be used for separating blood plasma and/or blood serum from blood samples. The membrane device embodiments comprise built-in features that facilitate blood plasma and/or blood serum separation and also provide the ability to detect, quantify, and qualify analytes present in a blood sample. The membrane device embodiments are portable and just a single membrane can be used for a plethora of detection and analysis techniques. Also disclosed herein are embodiments of methods for making and using the membrane device.
    Type: Grant
    Filed: March 4, 2020
    Date of Patent: December 28, 2021
    Assignee: Oregon State University
    Inventors: Vincent T. Remcho, Gayan C. Bandara, Linus Jacob Unitan, Matthew H. Kremer
  • Patent number: 11207689
    Abstract: There is provided a cartridge for nucleic acid extraction comprising: a first body having a plurality of chambers in which ports are formed at the bottom; a second body coupled to a lower region of the first body; and a piston disposed rotatably in the centers of the first body and the second body and having a port formed at the bottom thereof; and characterized in that the cartridge comprises a plurality of flow paths formed on the upper region of the second body, one end overlapping the port of the piston and the other end overlapping the port of the first body.
    Type: Grant
    Filed: December 27, 2018
    Date of Patent: December 28, 2021
    Assignee: SD BIOSENSOR, INC.
    Inventors: Young Shik Cho, Hyo Guen Lee, Hae Joon Park, Sun Young Lee, Kwan Hun Lim, In Ae Kim, Jae Young Kim, Hyo Lim Park, Dong Hun Kim
  • Patent number: 11207888
    Abstract: A liquid discharge head includes a nozzle to discharge a liquid, an individual chamber communicating with the nozzle, a supply channel communicating with the individual chamber to supply the liquid to the individual chamber, and a discharge channel communicating with the individual chamber to discharge the liquid in the individual chamber. A fluid resistance of the supply channel is greater than a fluid resistance of the discharge channel.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: December 28, 2021
    Assignee: RICOH COMPANY, LTD.
    Inventors: Junichi Iwata, Takahiro Yoshida, Yukio Otome, Tomoaki Murakami
  • Patent number: 11203017
    Abstract: According to an example, a microfluidic apparatus may include a channel, a foyer, in which the foyer is in fluid communication with the channel and in which the channel has a smaller width than the foyer, a sensor to sense a property of a fluid passing through the channel, a nozzle in fluid communication with the foyer, and an actuator positioned in line with the nozzle. The microfluidic apparatus may also include a controller to determine whether the sensed property of the fluid meets a predetermined condition and to perform a predefined action in response to the sensed property of the fluid meeting the predetermined condition.
    Type: Grant
    Filed: July 26, 2016
    Date of Patent: December 21, 2021
    Assignee: Hewlett-Packard Development Company, L.P.
    Inventors: Jeffrey A Nielsen, Manish Giri, Chantelle Domingue, Kenneth Ward, Christie Dudenhoefer, Matthew David Smith, Joshua M. Yu, Diane R. Hammerstad, Hilary Ely
  • Patent number: 11192106
    Abstract: A fluidic device includes a first circulation flow path and a second circulation flow path which circulate a solution containing a sample material, the first circulation flow path and the second circulation flow path share at least a part of the flow path, and at least one selected from the group consisting of a capture unit which captures the sample material, a detection unit which detects the sample material, a valve, and a pump is provided on the shared flow path.
    Type: Grant
    Filed: December 4, 2018
    Date of Patent: December 7, 2021
    Assignee: Nikon Corporation
    Inventors: Ryo Kobayashi, Keiji Mitsui, Taro Ueno, Hirofumi Shiono
  • Patent number: 11166920
    Abstract: The devices, methods, and compositions disclosed herein accomplish robust cell encapsulation in polymer microparticles using a vertically oriented microfluidic device. A hydrophilic polymer precursor solution is flowed into a first inlet channel, which extends inward from an upper surface of the device housing. A hydrophobic fluid is flowed into a second inlet channel, which extends inward from a lower surface of the device housing. The two inlet channels meet at a junction, and an outlet channel extends away from the two inlet channels. When the two inwardly flowing streams meet at the junction, the polymer precursor solution disperses into the hydrophobic fluid. The dispersed precursor droplets are photopolymerized into microparticles as they travel through the outlet channel. The resulting microparticles are highly uniform, and are larger than conventionally formed microparticles. Cells of varying types can be encapsulated with high viability and spatial uniformity.
    Type: Grant
    Filed: October 5, 2018
    Date of Patent: November 9, 2021
    Assignee: Auburn University
    Inventors: Elizabeth A. Lipke, Wen Jun Seeto, Yuan Tian
  • Patent number: 11167350
    Abstract: Different Au—Pd nanoparticles, ranging from sharp-branched octopods to core@shell octahedra, can be achieved by inline manipulation of reagent flowrates in a microreactor for seeded growth. Significantly, these structures represent different kinetic products, demonstrating an inline control strategy toward kinetic nanoparticle products that should be generally applicable.
    Type: Grant
    Filed: April 22, 2019
    Date of Patent: November 9, 2021
    Assignee: The Trustees of Indiana University
    Inventors: Joshua S. Santana, Sara E. Skrabalak
  • Patent number: 11150255
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: October 19, 2021
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoungshin Park, Antonio Varone, Andries Van der Meer, Monicah Otieno, David Conegliano
  • Patent number: 11123731
    Abstract: The disclosure provides a microfluidic detection chip, a preparation method thereof, a fixing device and a centrifugal detection device. The detection chip comprises overlapped three layers. The upper layer of the chip includes a sample loading area and vents; the lower layer of the chip includes a waste liquid tank area in which a slope structure or a groove is disposed; the intermediate layer of the chip is a double-sided adhesive layer on which sample flow channels are divided by an adhesive area and an adhesive-free area. The self-driving and short-time centrifugation combined microfluidic detection chip technology designed by the present disclosure can solve inherent problems of traditional paper substrates, further improve sample utilization, detection speed and detection sensitivity in immunoassay, and the preparation and assembly of the chip are simple, has low requirement for the detection device, and can be conveniently applied to the clinical detection.
    Type: Grant
    Filed: May 13, 2019
    Date of Patent: September 21, 2021
    Assignee: Shanghai Igenetec Diagnostics Co., Ltd.
    Inventors: Xueen Fang, Jing Wu, Jianghong Qian
  • Patent number: 11117134
    Abstract: A method of partitioning droplets from a fluid reservoir containing particles provides a non-Poissonian distribution of dispensed droplets containing a desired number of particles.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: September 14, 2021
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Laura Huang, Benjamin James Hadwen, Adam Christopher Wilson
  • Patent number: 11084099
    Abstract: A method of additive manufacturing includes supplying additive manufacturing powder to a build area of an additive manufacturing machine. The method includes fusing a portion of the powder to form a part, and removing a non-fused portion of the powder from the build area into a removable vessel for storing non-fused powder after building a part. The method can include supplying additive manufacturing powder to a build area, fusing a portion of the powder, and removing a non-fused portion of the powder all on a single discrete lot of additive manufacturing powder without mixing lots.
    Type: Grant
    Filed: December 21, 2017
    Date of Patent: August 10, 2021
    Assignee: Delavan Inc.
    Inventors: Thomas J. Ocken, Lukas Shea, Jerry Logsdon, Joseph Samo
  • Patent number: 11084015
    Abstract: An array of membranes comprising amphipathic molecules is formed using an apparatus comprising a support defining an array of compartments. Volumes comprising polar medium are provided within respective compartments and a layer comprising apolar medium is provided extending across the openings with the volumes. Polar medium is flowed across the support to displace apolar medium and form a layer in contact with the volumes, forming membranes comprising amphipathic molecules at the interfaces. In one construction of the apparatus, the support that comprises partitions which comprise inner portions and outer portions. The inner portions define inner recesses without gaps therebetween that are capable of constraining the volumes comprising polar medium contained in neighbouring inner recesses from contacting each other. The outer portions extend outwardly from the inner portions and have gaps allowing the flow of an apolar medium across the substrate.
    Type: Grant
    Filed: September 30, 2020
    Date of Patent: August 10, 2021
    Assignee: Oxford Nanopore Technologies Ltd.
    Inventors: Jason Robert Hyde, Pedro Miguel Ortiz Bahamon, Clive Gavin Brown, Andrew John Heron, Paul Raymond Mackett
  • Patent number: 11040878
    Abstract: The invention relates to a method for flexibly controlling the use of hydrochloric acid having an HCl concentration of at least 10 wt %, in particular at a volume flow rate of at least 1 m3/h, obtained from a continuous chemical production process (A). In the method, purified hydrochloric acid (54) from a hydrochloric acid store (E) is optionally fed to a dispatch station (H), an HCl electrolysis station (F) and a chloralkali electrolysis station (L), which are consumption points for the hydrochloric acid, or to a neutralisation station (G) in that if one or more of said consumption points (H, F, L) is not available or if there are bottlenecks at the consumption points (H, F, L), the hydrochloric acid (54) is fed to the neutralisation station (G) and neutralised with concentrated alkali solution (55), in particular with concentrated sodium hydroxide solution, and the resulting salt solution (56) is fed either to the chloralkali process station (L) or to a disposal station (M).
    Type: Grant
    Filed: January 17, 2018
    Date of Patent: June 22, 2021
    Assignee: Covestro Deutschland AG
    Inventors: Andreas Bulan, Johann Rechner, Rainer Weber, Juergen Hecke, Wolfgang Kern, Martin Leipnitz, Bernd Henning
  • Patent number: 10989721
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: April 27, 2021
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoungshin Park, Antonio Varone, Andries Van der Meer, Monicah Otieno, David Conegliano
  • Patent number: 10967371
    Abstract: Methods and apparatus for controlling flow in a microfluidic arrangement are disclosed. In one arrangement, a microfluidic arrangement comprises a first liquid held predominantly by surface tension in a shape defining a microfluidic pattern on a surface of a substrate. The microfluidic pattern comprises at least an elongate conduit and a first reservoir. A second liquid is in direct contact with the first liquid and covers the microfluidic pattern. A flow of liquid is driven through the elongate conduit into the first reservoir.
    Type: Grant
    Filed: August 16, 2017
    Date of Patent: April 6, 2021
    Assignee: OXFORD UNIVERSITY INNOVATION LIMITED
    Inventors: Edmond Walsh, Alexander Feuerborn, Peter Richard Cook
  • Patent number: 10926260
    Abstract: A microfluidic AM-EWOD device and a method of filling such a device are provided. The device comprises a chamber having one or more inlet ports. The device is configured, when the chamber contains a metered volume of a filler fluid that partially fills the chamber, preferentially maintain the metered volume of the filler fluid in a part of the chamber. The device is configured to allow displacement of some of the filler fluid from the part of the chamber when a volume of an assay fluid introduced into one of the one or more inlet ports enters the part of the chamber, thereby causing a volume of a venting fluid to vent from the chamber.
    Type: Grant
    Filed: September 14, 2016
    Date of Patent: February 23, 2021
    Assignee: Sharp Life Science (EU) Limited
    Inventors: Emma Jayne Walton, Lesley Anne Parry-Jones, Julie Karen Deacon
  • Patent number: 10908171
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: February 2, 2021
    Assignee: EMULATE, INC.
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoungshin Park, Antonio Varone, Andries Van der Meer, Monicah Otieno, David Conegliano
  • Patent number: 10894973
    Abstract: An array device including a base having wells, a cover positioned over the base with a gap from the base such that openings of the wells are covered by the cover with the gap in between, an injection port communicating with the gap, a discharge port communicating with the gap and positioned apart from the injection port, and a waste liquid vessel which collects liquid that flows from the gap via the discharge port and is positioned at a level different from the gap forming a channel. The discharge port is placed to discharge a surplus aqueous solution outside the wells from the discharge port by an oleaginous sealing liquid to be delivered from the injection port.
    Type: Grant
    Filed: May 4, 2017
    Date of Patent: January 19, 2021
    Assignee: TOPPAN PRINTING CO., LTD.
    Inventors: Yoichi Makino, Tomoyuki Ozawa, Shuichi Akashi, Tomoko Kunitomi
  • Patent number: 10890514
    Abstract: A vacuum manifold for filtration microscopy includes a manifold top having multiple openings, and a capture membrane positioned above and spaced apart from the manifold top, where the capture membrane is configured to deflect into contact with a surface of the manifold top when a negative pressure is applied to the multiple openings. A method for filtration microscopy includes the steps of providing a vacuum manifold including a manifold top having a plurality of openings, and a capture membrane positioned above and spaced apart from the manifold top; applying sample drops to sample spots on the membrane, the sample spots positioned above the plurality of openings; applying a negative pressure to the openings such that the capture membrane contacts a surface of the manifold top; and optically imaging particulates on the capture membrane.
    Type: Grant
    Filed: April 25, 2019
    Date of Patent: January 12, 2021
    Assignee: Optofluidics Inc.
    Inventors: Thomas Castner, Robert Hart, Colby Ashcroft, Brian DiPaolo, Nathan Wall
  • Patent number: 10871430
    Abstract: A method and system are provided for extracting a target analyte from a sample using acoustic ejection technology. The method involves applying focused acoustic energy to a fluid reservoir housing a fluid composition that contains a target analyte and comprises an upper region and a lower region, where the concentration of the target analyte in the upper region differs from that in the lower region. The focused acoustic energy is applied in a manner that is effective to result in the ejection of a fluid droplet from from the fluid composition into a droplet receiver, wherein the concentration of the analyte in the droplet corresponds to either the concentration of the analyte in the upper region or the concentration of the analyte in the lower region, and wherein the concentration of the analyte is substantially uniform throughout the droplet. The fluid composition may comprise an ionic liquid, used in the extraction of ionic target analytes.
    Type: Grant
    Filed: March 4, 2019
    Date of Patent: December 22, 2020
    Assignee: Labcyte Inc.
    Inventors: Joseph D. Olechno, Richard N. Ellson
  • Patent number: 10852311
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: December 1, 2020
    Assignee: Emulate, Inc.
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoungshin Park, Antonio Varone, Andries Van der Meer, Monicah Otieno, David Conegliano
  • Patent number: 10852223
    Abstract: A flow cell has: a flow path in which a specimen fluid and a sheath fluid flow; a specimen flow path that introduces the specimen fluid into the flow path; a first sheath flow path and a second sheath flow path that introduce the sheath fluid into the flow path; and a merging portion at which the specimen flow path, the first sheath flow path and the second sheath flow path merge together. The specimen flow path is provided on a central flow line of the flow path. At the merging portion, the first sheath flow path and the second sheath flow path face directions intersecting the central flow line of the flow path, and are disposed at positions that are offset in a depth direction of the flow path.
    Type: Grant
    Filed: December 28, 2017
    Date of Patent: December 1, 2020
    Assignee: ARKRAY, Inc.
    Inventor: Shigeki Masuda
  • Patent number: 10836918
    Abstract: A smart ink, comprising microparticles, with each microparticle comprising: a) an exterior shell; b) a liquid encapsulated within the shell; and c) a Janus microparticle suspended in the liquid, wherein the Janus microparticle either comprises: i) two or more distinct assemblies of particles; or ii) a core loaded with particles, the core having a first surface portion and a second surface portion that is functionally distinct from the first surface portion. An apparatus and method for production of the microparticles are also provided.
    Type: Grant
    Filed: December 23, 2015
    Date of Patent: November 17, 2020
    Assignee: National Research Council of Canada
    Inventors: Lidija Malic, Xuefeng Zhang, Teodor Veres
  • Patent number: 10746734
    Abstract: The present invention relates to methods and systems for testing for the presence of a material such as one or more analyte types within a sample and more particularly, for improved single enzyme-linked immunosorbent assay (sELISA) testing as well as other variants of single-enzyme linked molecular analysis (SELMA). The invention involves flow systems for digital counting of analytes with at least one opening (inlet/outlet). A support with hydrophilic and hydrophobic patches preferably harbours capture probes immobilised on the hydrophilic features. Nano-to-attoliter droplets are formed on the hydrophilic features. A gas phase (called gas phase seal) is applied to prevent/reduce evaporation from the droplets.
    Type: Grant
    Filed: October 7, 2016
    Date of Patent: August 18, 2020
    Assignee: SELMA DIAGNOSTICS APS
    Inventor: Andreas Hjarne Kunding
  • Patent number: 10738601
    Abstract: The present invention concerns a process for developing a subterranean formation, in which at least one fluid is injected. In accordance with the invention, the fluid comprises at least one additive, the additive being labelled with at least one luminescent semiconductor nanocrystal (fluorescent or phosphorescent). In this manner, and by optical analysis of the presence of luminescent semiconductor nanocrystal in the fluid recovered from the subterranean formation, the presence and/or quantity of additive in the recovered fluid can be determined. Given that the semiconductor nanocrystal is either phosphorescent or fluorescent, the additive is rendered readily detectable and quantitatively determinable in the fluids recovered from the subterranean formation.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: August 11, 2020
    Assignee: IFP ENERGIES NOUVELLES
    Inventors: Eric Lecolier, Patrick Gateau
  • Patent number: 10710078
    Abstract: The present invention relates to the field of microfluidics and in particular to methods for detecting microfluidic droplets and particles within droplets, as well as sorting the droplets. These methods allow for quantifying properties and activities of the particles within the droplets. For this purpose, the invention provides microfluidic droplets comprising suitably labelled particles. The invention also provides microfluidic devices and systems having properties which make them particularly suitable for use in the methods of the invention.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: July 14, 2020
    Assignee: EUROPEAN MOLECULAR BIOLOGY LABORATORY
    Inventors: Christoph A. Merten, Hongxing Hu, David Eustace
  • Patent number: 10677811
    Abstract: A sample receptacle including one or more receptacle cavities each having an opening dimensioned such that a liquid within the cavity is retained when the cavity opening is oriented downwardly and/or a gas vent in the base of each cavity sized and positioned to allow gases contained within the cavity to egress whilst preventing the egress of liquid at atmospheric pressure. A sample liquid may be poured into the sample receptacle so that the level of the sample liquid is above each cavity opening and the sample receptacle inverted so as to remove liquid above each cavity whilst retaining sample liquid in each sample receptacle when inverted. This may be used for sample separation or to provide relatively uniform sample volumes to sample wells of a sample container when mated. In another embodiment plungers may be used to eject liquid from receptacle wells via an aperture in the base of each receptacle well.
    Type: Grant
    Filed: February 26, 2016
    Date of Patent: June 9, 2020
    Assignee: Mastaplex Ltd.
    Inventor: Olaf Bork
  • Patent number: 10632463
    Abstract: In certain embodiments, the disclosure provides an inflatable bladder lid that configures with a cartridge configured for assay testing. The inflatable bladder provides substantially uniform pressure to the cartridge. The pressure is substantially distributed across the one or more regions of the cartridge to extend pressure over a wide cartridge surface. At least a portion of the bladder lid may comprise a flexible membrane material that inflates and stretches over at least a portion of the cartridge to conformally contact its first/top surface.
    Type: Grant
    Filed: July 26, 2017
    Date of Patent: April 28, 2020
    Assignee: ANCERA, LLC
    Inventor: Hur Koser
  • Patent number: 10486155
    Abstract: A microfluidic chip that can have a body defining a microfluidic network including a test volume, one or more ports, and one or more channels in fluid communication between the port(s) and the test volume is described. Gas can be removed from the test volume before a sample liquid is introduced therein by reducing pressure at a first one of the port(s), optionally while the liquid is disposed in the port. Liquid in the first port can be introduced into the test volume by increasing pressure at the first port. The microfluidic network can define one or more droplet-generating regions in which at least one of the channel(s) defines a constriction and/or two or more of the channels connect at a junction. Liquid flowing from the first port can pass through at least one of the droplet-generating region(s) and to the test volume.
    Type: Grant
    Filed: January 18, 2019
    Date of Patent: November 26, 2019
    Assignee: KLARIS CORPORATION
    Inventors: Nicolas Arab, Ross Johnson, David Bussian, Jon Isom
  • Patent number: 10371664
    Abstract: A nanopore cell includes a titanium nitride (TiN) counter electrode configured to be at a first electric potential. The nanopore cell also include a working electrode configured to be at a second electric potential and an insulating wall. The insulating wall and the working electrode form at least a portion of a well configured to contain an electrolyte at a voltage that is at least a portion of an electric potential difference between the first electric potential of the titanium nitride counter electrode and the second electric potential of the working electrode.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: August 6, 2019
    Assignee: Roche Molecular Systems, Inc.
    Inventors: Markus Wallgren, Janusz B. Wójtowicz, Robert A. Yuan, John Foster, Jason Komadina
  • Patent number: 10307760
    Abstract: One example of systems and methods for inertio-elastic focusing of particles in microchannels includes a substrate including a channel having an inlet and an outlet. A viscoelastic fluid, i.e., a fluid having a dynamic viscosity that varies with shear rate, and that carries suspended particles is driven through the channel. The volumetric flow rate at which the fluid is driven results in the formation of a localized pathline in the fluid at or near a center of the channel. The localized pathline defines a width that is equal to or slightly greater than a hydraulic diameter of the particle. The particles in the fluid are focused into the localized pathline.
    Type: Grant
    Filed: January 30, 2015
    Date of Patent: June 4, 2019
    Assignees: The General Hospital Corporation, Massachusetts Institute of Technology
    Inventors: Mehmet Toner, Gareth McKinley, Eugene Lim, Thomas Ober
  • Patent number: 10302668
    Abstract: In a case where a sample container 15 has a rubber-made lid 35, if a sample nozzle descends and comes into contact with the lid, the sample nozzle is relatively moved inside an arm as far as a lid detection distance, and a detector detects a detection plate. A fact that the sample nozzle comes into contact with the lid is stored together with position information of the sample nozzle, into an operation commanding unit. The sample nozzle further continues to descend, and a suction operation of a sample is performed at a predetermined position. In a case where the sample nozzle collides with a frame portion of the lid and external force is applied thereto, the detector detects that the detection plate is relatively moved as far as the detection distance.
    Type: Grant
    Filed: January 5, 2015
    Date of Patent: May 28, 2019
    Assignee: Hitachi High-Technologies Corporation
    Inventors: Akihiro Yasui, Yoshihiro Suzuki, Kazuhiro Nakamura, Hitoshi Tokieda
  • Patent number: 10239055
    Abstract: The present invention relates to a pipette comprising a tip removal mechanism adapted for lifting an inner mechanism of the pipette with regard to a body of the pipette when the user presses the tip removal button. The present invention further relates to a method for disengaging a disposable tip attached to a tip cone of a pipette of the present invention, and to a method for pipetting with a pipette according to the present invention.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: March 26, 2019
    Assignee: SARTORIUS BIOHIT LIQUID HANDLING OY
    Inventor: Ville Juhani Hintikka
  • Patent number: 10234446
    Abstract: A nanopore based sequencing system is disclosed. The system includes a plurality of nanopore sensors, each nanopore sensor having a top portion for receiving a fluid. The system further includes an inlet delivering the fluid into the nanopore based sequencing system and an outlet delivering the fluid out of the nanopore based sequencing system. The system includes a fluid chamber that comprises one or more fluid flow channels above top portions of the nanopore sensors; wherein the fluid chamber includes at least one divider that limits the width of the one or more fluid flow channels. In some embodiments, the at least one divider limits the width of the one or more fluid flow channel based on whether the surface tension and adhesive forces between the fluid and the fluid flow channel surfaces are sufficient to prevent the fluid from collapsing within the fluid flow channel.
    Type: Grant
    Filed: September 8, 2017
    Date of Patent: March 19, 2019
    Assignee: Genia Technologies, Inc.
    Inventor: Robert A. Yuan
  • Patent number: 10228381
    Abstract: Compositions, devices and methods are described for preventing, reducing, controlling or delaying adhesion, adsorption, surface-mediated clot formation, or coagulation in a microfluidic device or chip. In one embodiment, blood (or other fluid with blood components) that contains anticoagulant is introduced into a microfluidic device comprising one or more additive channels containing one or more reagents that will re-activate the native coagulation cascade in the blood that makes contact with it “on-chip” before moving into the experimental region of the chip.
    Type: Grant
    Filed: July 12, 2017
    Date of Patent: March 12, 2019
    Assignee: EMULATE, Inc.
    Inventors: Daniel Levner, Christopher David Hinojosa, Norman Wen, Jacob Fraser, Justin Nguyen, Riccardo Barrile, Geraldine Hamilton, Catherine Karalis, Hyoungshin Park, Antonio Varone, Andries Van der Meer, Monicah Otieno, David Conegliano
  • Patent number: 10166544
    Abstract: A unit for making available a fluid for a biochemical analysis device includes a lid element and a bottom element with a bottom recess lying opposite the lid element. A film is arranged between the lid element and the bottom element. A fluid bag with a force introduction surface for introducing a force into the fluid bag is folded and/or arranged in the bottom recess such that, without pressure acting on the film, the force introduction surface and a main plane of the film are oriented in different directions. The film is pressed against the force introduction surface when pressure acts on the film in the direction of the bottom recess to thereby introduce the force into the fluid bag. The fluid bag has at least one closure seam that opens when the force is introduced.
    Type: Grant
    Filed: January 21, 2015
    Date of Patent: January 1, 2019
    Assignee: Robert Bosch GmbH
    Inventors: Yvonne Beyl, Daniel Czurratis, Sven Zinober
  • Patent number: 10160944
    Abstract: Fluid circulation and leveling systems and methods of using the same are described. A fluid circulation system includes a fluid mixing chamber and open fluid chambers in fluid communication with the fluid mixing chamber. Each open fluid chamber includes a microfluidic fluid leveling conduit with an orifice disposed in the open fluid chamber at a minimum fluid level associated with a corresponding minimum fluid volume. A controller causes a first pump to generate a first direction of fluid flow during a first time period between the open fluid chambers, and causes the first pump to generate a second direction of fluid flow during a second time period between the first and second open fluid chambers. The controller also causes a second pump to generate a flow of fluid during a third time period from one of the first and second open fluid chambers into the fluid mixing chamber.
    Type: Grant
    Filed: August 5, 2015
    Date of Patent: December 25, 2018
    Assignee: The Charles Stark Draper Laboratory, Inc.
    Inventors: Jonathan Coppeta, Brett Isenberg, Mark Mescher
  • Patent number: 10010884
    Abstract: A droplet-based microfluidic device having a first confining plate, a second confining plate, and an actuator. Each confining plate includes a respective substrate and hydrophobic layer having a planar major surface. The first confining plate additionally includes a common electrode between its hydrophobic layer and substrate. The second confining plate includes an electrode array between its hydrophobic layer and substrate. The confining plates are disposed opposite one another with their major surfaces separated from one another by a gap. The actuator is to impart oscillatory sliding motion between the confining plates in a direction principally parallel to the major surfaces. The oscillatory sliding motion effectively allows voltages applied between the common electrode and the electrodes of the electrode array to move a microfluidic droplet located in the gap across the major surfaces without sticking.
    Type: Grant
    Filed: January 14, 2014
    Date of Patent: July 3, 2018
    Assignee: Agilent Technologies, Inc.
    Inventors: Curt A. Flory, Arthur Schleifer, Gershon Perelman
  • Patent number: 9945761
    Abstract: In some embodiments, a system may function to transfer samples in a controlled environment. The system may include a sample container configured to convey a sample from a first device to a second device. The first device may be under pressure and the second device may be under vacuum. The second device may include a load chamber which functions to accept the sample from the sample container and a pump chamber coupled to the load chamber. The second device may include a high vacuum pump coupled to the pump chamber and a vacuum pump coupled to the pump chamber through the high vacuum pump in sequence. The second device may include an orifice sized to significantly restrict the flow of fluids through the conduit coupling the pump chamber to the load chamber, wherein the orifice is configured to allow for a transition from a viscous into a molecular flow.
    Type: Grant
    Filed: July 29, 2014
    Date of Patent: April 17, 2018
    Assignee: Board of Regents of the University of Texas System
    Inventor: Hugo Celio
  • Patent number: 9937494
    Abstract: An apparatus for preparing a reagent solution includes an enclosure and a container disposed within the enclosure. The container defines an internal cavity having a compressible volume and defines a passage providing fluidic communication between the internal cavity and the exterior of the container. Optionally, a compressible member is disposed within the internal cavity. A reagent is disposed within the internal cavity.
    Type: Grant
    Filed: June 15, 2015
    Date of Patent: April 10, 2018
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Jonathan Schultz, Todd Roswech
  • Patent number: 9878325
    Abstract: Various aspects of the present invention relate to the control and manipulation of fluidic species, for example, in microfluidic systems. In one aspect, the invention relates to systems and methods for making droplets of fluid surrounded by a liquid, using, for example, electric fields, mechanical alterations, the addition of an intervening fluid, etc. In some cases, the droplets may each have a substantially uniform number of entities therein. For example, 95% or more of the droplets may each contain the same number of entities of a particular species. In another aspect, the invention relates to systems and methods for dividing a fluidic droplet into two droplets, for example, through charge and/or dipole interactions with an electric field. The invention also relates to systems and methods for fusing droplets according to another aspect of the invention, for example, through charge and/or dipole interactions. In some cases, the fusion of the droplets may initiate or determine a reaction.
    Type: Grant
    Filed: September 5, 2017
    Date of Patent: January 30, 2018
    Assignee: President and Fellows of Harvard College
    Inventors: David A. Weitz, Darren Roy Link, Galder Cristobal-Azkarate, Zhengdong Cheng, Keunho Ahn
  • Patent number: 9850460
    Abstract: An apparatus is described which includes at least one reactor, at least one linear piston pump, the or each piston pump including a tube, a piston and an arm coupled to the piston, the or each piston pump arranged to inject feedstock to a respective reactor, a beam or plate coupled to the arm(s) of the piston pump(s) configured to linearly drive the piston(s) and a linear actuator for driving the beam or plate. The piston pump has a volume of at least 50 milliliters and an output port having a diameter of at least 5 mm.
    Type: Grant
    Filed: July 30, 2014
    Date of Patent: December 26, 2017
    Assignee: ANAERO TECHNOLOGY LTD.
    Inventors: Ray Middleton, Edgar Blanco, Robin Proctor
  • Patent number: 9846136
    Abstract: Biosensor systems including a measurement device and test sensors including at least three independently addressable electrodes, with at least two of the electrodes being substantially chemically isolated are disclosed. One or more working electrodes may be combined with two or more counter electrodes. The two or more counter electrodes may operate at different potentials to provide for multi-analyte electrochemical analysis. Analysis methods are provided to perform multi-analyte electrochemical analysis and test sensors are provided having resistance to chemical mixing between secondary analysis regions.
    Type: Grant
    Filed: March 22, 2010
    Date of Patent: December 19, 2017
    Assignee: Ascensia Diabetes Care Holdings AG
    Inventors: Huan-Ping Wu, Weiping Zhong, Joseph E. Perry, Eric Maurer, Sung-Kwon Jung