Including Sample Preparation Patents (Class 436/174)
  • Patent number: 10416225
    Abstract: A detection method for an LED chip comprising the following steps: providing a container with a solvent therein, and putting the LED chips in the container to mix the LED chips with the solvent; providing a base with a circuit therein, the base forms a plurality of receiving holes, a bottom of each receiving holes have an N electrode and a P electrode coupled with the circuit; transferring the solvent and the LED chip mixed in the solvent on the base; detecting the LED chip received in the receiving holes; providing a carrier film and classifying the LED chips on the carrier film.
    Type: Grant
    Filed: November 28, 2017
    Date of Patent: September 17, 2019
    Inventors: Po-Min Tu, Tzu-Chien Hung, Chia-Hui Shen, Chien-Shiang Huang, Chien-Chung Peng, Ya-Wen Lin, Ching-Hsueh Chiu
  • Patent number: 10393725
    Abstract: A system and method that images biological samples and uses chromophores to analyze the imaged samples. The chromophore analysis can be done by itself or in conjunction with fluorophore analysis in High Content Imaging systems. To perform chromophore analysis the biological samples can be labeled with different chromophores and imaged using transmitted light that is at least partially absorbed by the chromophores. To also perform fluorophore analysis the samples can also be labeled with fluorophores that are excited by excitation light. The chromophore analysis and fluorophore analysis can be performed separately or concurrently using a High Content Imaging system. The system provides the expanded capability by illuminating the chromophore-labeled samples with transmitted light of different wavelengths and automatically detecting the images which represent the differential absorption of the colored lights by the sample.
    Type: Grant
    Filed: January 28, 2019
    Date of Patent: August 27, 2019
    Assignee: CELLOMICS, INC.
    Inventors: Richik Niloy Ghosh, Dirk John VandenBerg, III, Keith Rao Heffley, Monica Jo Tomaszewski, Jeffrey Robert Haskins
  • Patent number: 10379016
    Abstract: The apparatus for inoculating agar plates includes a spray chamber having an upper opening for receiving an atomized microbial suspension and a lower opening for receiving an agar plate. The apparatus also includes an atomizer including a reservoir and a fluid tube for delivering the microbial suspension to the atomizer nozzle. A containment feature extends around an inner surface of the spray chamber to catch any drop that may form on its inner wall and advance down towards the lower opening. The spray chamber allows multiple agar plates to be quickly inoculated without cross-contamination of agar habitats, without contaminating the outside of the plates, and without contaminating the work area.
    Type: Grant
    Filed: September 18, 2018
    Date of Patent: August 13, 2019
    Assignee: King Saud University
    Inventors: Mohd Aftab Alam, Fahad Ibrahim Al-Jenoobi, Mohamed Hamed M. Al-Agamy
  • Patent number: 10361337
    Abstract: Micro light-emitting diode (LED) displays and assembly apparatuses are described. In an example, method of manufacturing a micro-light emitting diode (LED) display panel includes positioning a display backplane substrate in a tank or container, the display backplane substrate having microgrooves therein. The method also includes adding a fluid to the tank or container, the fluid including a suspension of light-emitting diode (LED) pixel elements therein. The method also includes moving the fluid over the display backplane substrate. The method also includes assembling LED pixel elements from the fluid into corresponding ones of the microgrooves.
    Type: Grant
    Filed: August 18, 2017
    Date of Patent: July 23, 2019
    Assignee: Intel Corporation
    Inventors: Khaled Ahmed, Anup Pancholi, Ali Khakifirooz
  • Patent number: 10345240
    Abstract: The invention combines recent advances in barcode technology with portable wireless communication devices to engineer a simple and low-cost chip-based multiplex wireless detection system. The system can analyze multiple targets of interest simultaneously in minutes and is applicable to detection of pathogens or contaminants in a wide range of fields including medicine, agriculture and the environment.
    Type: Grant
    Filed: December 11, 2013
    Date of Patent: July 9, 2019
    Inventors: Warren Che Wor Chan, Kevin Ming
  • Patent number: 10266204
    Abstract: A lane-maintaining control device detects a lane width (H1) of a traveling lane (21) through a camera (4) and performs lane-maintaining control without a deviation from the lane width (H1). When detecting, through the camera (4), that the traveling lane (21) gradually increases (H2>H1 where the increasing lane width is (H2)), the lane-maintaining control device continues the lane-maintaining control on a condition that a turn signal is not operated.
    Type: Grant
    Filed: November 9, 2016
    Date of Patent: April 23, 2019
    Inventors: Kazunori Isomoto, Shusaku Ombe, Hiroshi Ohmura, Kouichi Kojima, Tsuyoshi Arinaga
  • Patent number: 10267794
    Abstract: Disclosed herein is an aptamer sensor including a substrate having metal nanoparticles formed thereon, an aptamer attached to surfaces of the metal nanoparticles to form a structure by selectively reacting with a target material to be detected, and an intercalating agent inserted between the aptamer and the target material in reaction of the aptamer with the target material to increase shift of an absorption spectrum due to local surface plasmon resonance sensor through aggregation toward the metal nanoparticles.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: April 23, 2019
    Inventors: Min-Gon Kim, Jin-Ho Park, Ju Young Byun
  • Patent number: 10183293
    Abstract: A reagent reservoir for fluids, including a storage chamber connected to a duct for conducting fluid out of, into and/or through the storage chamber. The duct includes a duct section delimited by a substrate and a film joined to the substrate. The duct is sealed and is openable at a predetermined breaking point by deflecting the film. The film also delimits the storage chamber and covers a recess in the substrate which forms the duct section. A sealing wall that seals the duct and is integrally joined to the substrate is placed in the recess. The predetermined breaking point is formed by a breakable joining region between the film and an edge portion of the sealing wall facing the film. The dimensions of a peripheral area of the sealing wall, which is formed in the edge portion and runs parallel to the film, determine the surface area of the joining region.
    Type: Grant
    Filed: June 22, 2015
    Date of Patent: January 22, 2019
    Inventor: Lutz Weber
  • Patent number: 10166330
    Abstract: A pharmaceutical drug delivery system having a base (1) comprising at least two inlets (2), an outlet (20) and a passive mixing chamber (7) having micro pin fins (8) with heights in the range of 10 to 100???? characterized in that the base (1) is selectively coated with nanostructures which are made of a material different than the material of said base, such that the base (1) comprises a plurality of regions R1 to RN each having a different nanostructure coating intensity, and such that a surface tension gradient is established among regions R1 to RN for promoting fluid flow towards the outlet (20). The present invention further proposes a method for obtaining a pharmaceutical drug delivery system.
    Type: Grant
    Filed: March 12, 2015
    Date of Patent: January 1, 2019
    Inventors: Ali Kosar, Osman Yavuz Perk
  • Patent number: 10018627
    Abstract: A technique for efficiently sealing many substances, such as beads, nucleic acid, protein, virus, cells, and lipid membrane complex, into an array is provided. The present invention provides a method for sealing a substance, including: (i) a step of introducing a first solvent containing a substance on a substrate on which a plurality of receptacles capable of storing the substance are formed separated from each other by a side wall; and (ii) a step of introducing a second solvent having a greater specific gravity than that of the first solvent onto the first solvent, the step (ii) being carried out after the step (i).
    Type: Grant
    Filed: October 14, 2014
    Date of Patent: July 10, 2018
    Inventors: Hiroyuki Noji, Lisa Yamauchi
  • Patent number: 9930453
    Abstract: The present invention provides a silicon microphone with a high-aspect-ratio corrugated diaphragm and a microphone package including the same. The microphone comprises the corrugated diaphragm on which at least one ring-shaped corrugation is formed in the vicinity of the edge of the diaphragm which is fixed to the substrate, the corrugated diaphragm is flexible, wherein the ratio of the depth of the corrugation to the thickness of the diaphragm is larger than 5:1, preferably 20:1, and the walls of the corrugation are inclined to the surface of the diaphragm at an angle in the range of 80° to 100°. The microphone with the high-aspect-ratio corrugated diaphragm can achieve a consistent and optimal sensitivity and greatly reduce impact applied thereto in a drop test so that the performances, the reproducibility, the reliability and the yield can be improved. The microphone package of the present invention further provides a simplified processing, an improved sensitivity and an improved SNR.
    Type: Grant
    Filed: July 15, 2014
    Date of Patent: March 27, 2018
    Assignee: GOERTEK INC.
    Inventors: Quanbo Zou, Zhe Wang
  • Patent number: 9902990
    Abstract: Microfluidic devices are provided for trapping, isolating, and processing single cells. The microfluidic devices include a cell capture chamber having a cell funnel positioned within the cell capture chamber to direct a cell passing through the cell capture chamber towards one or more a cell traps positioned downstream of the funnel to receive a cell flowing. The devices may further include auxiliary chambers integrated with the cell capture chamber for subsequent processing and assaying of the contents of a captured cell. Methods for cell capture and preparation are also provided that include flowing cells through a chamber, funneling the cells towards a cell trap, capturing a predefined number of the cells within the trap, interrupting the flow of cells, flowing a wash solution through the chamber to remove contaminants from the chamber, and sealing the predefined number of cells in the chamber.
    Type: Grant
    Filed: May 27, 2011
    Date of Patent: February 27, 2018
    Assignee: The University of British Columbia
    Inventors: Carl Lars Genghis Hansen, Michael VanInsberghe, Adam White, Oleh Petriv, Tim Leaver, Anupam Singhal, William Bowden, Veronique Lecault, Dan Da Costa, Leo Wu, Georgia Russell, Darek Sikorski
  • Patent number: 9821308
    Abstract: Disclosed is a device for the directed capillary transport of liquids, comprising at least two capillaries (8, 9, 33, 54, 55), the at least two capillaries (8, 9, 33, 54, 55) being designed such that the liquid can be transported in at least some regions in a passive, directed and capillary manner, characterised in that at least two of the capillaries (8, 9, 33, 54, 55) are interconnected in the direction of transport of the liquid via at least one capillary passage conduit (20, 23, 28, 29, 34, 40, 41, 59, 63). The invention is intended for use in the separation of components from a fluidic substance and/or in oil/water separation. A production method is characterised in that at least one part of the capillary structure is generated by means of laser irradiation, by means of a moulding tool, in particular a sintering mould, by means of a milling process, in particular by means of a micro-milling process, or by means of EDM.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: November 21, 2017
    Assignee: Fraunhofer-Gesellschaft zur Foerderung der angewandten Forschung e.v.
    Inventors: Philipp Comanns, Werner Baumgartner, Frank Bernhardt, Kai Winands, Kristian Arntz
  • Patent number: 9791464
    Abstract: The invention provides methods of preparation of lipoproteins from a biological sample, including HDL, LDL, Lp(a), IDL, and VLDL, for diagnostic purposes utilizing differential charged particle mobility analysis methods. Further provided are methods for analyzing the size distribution of lipoproteins by differential charged particle mobility, which lipoproteins are prepared by methods of the invention. Further provided are methods for assessing lipid-related health risk, cardiovascular condition, risk of cardiovascular disease, and responsiveness to a therapeutic intervention, which methods utilize lipoprotein size distributions determined by methods of the invention.
    Type: Grant
    Filed: June 1, 2015
    Date of Patent: October 17, 2017
    Inventors: Michael P. Caulfield, Richard E Reitz, Shuguang Li, Gloria Kwangja Lee, Ronald Krauss, Patricia J. Blanche, W. Henry Benner, Earl Cornell
  • Patent number: 9757725
    Abstract: A system that includes a cartridge housing and a hollow transfer module, according to an embodiment is described herein. The cartridge housing further includes at least one sample inlet, a plurality of storage chambers, a plurality of reaction chambers, and a fluidic network. The fluidic network is designed to connect the at least one sample inlet, a portion of the plurality of storage chambers and the portion of the plurality of reaction chambers to a first plurality of ports located on an inner surface of the cartridge housing. The hollow transfer module includes a second plurality of ports along an outer surface of the transfer module that lead to a central chamber within the transfer module. The transfer module is designed to move laterally within the cartridge housing. The lateral movement of the transfer module aligns at least a portion of the first plurality of ports with at least a portion of the second plurality of ports.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: September 12, 2017
    Assignee: Stat-Diagnostica & Innovation, S.L.
    Inventors: Jordi Carrera Fabra, Anna Comengés Casas, Rafael Bru Gibert
  • Patent number: 9733166
    Abstract: A tissue embedder comprising a transport mechanism for an input member, the input member adapted to hold a plurality of tissue supports, with each tissue support associated with a mould, a wax bath and a cooling station wherein the transport mechanism moves the input member from a wax bath to a cooling station.
    Type: Grant
    Filed: December 18, 2007
    Date of Patent: August 15, 2017
    Inventors: Eduardo Vom, Chester John Henderson, Craig Matthew Lewis
  • Patent number: 9638621
    Abstract: A method for identifying, analyzing, and quantifying the cellular components of whole blood by means of an automated hematology analyzer and the detection of the light scattered, absorbed, and fluorescently emitted by each cell. More particularly, the aforementioned method involves identifying, analyzing, and quantifying the cellular components of whole blood by means of a light source having a wavelength ranging from about 400 nm to about 450 nm and multiple in-flow optical measurements and staining without the need for lysing red blood cells.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: May 2, 2017
    Assignee: Abbott Laboratories
    Inventors: Martin Krockenberger, Jiong Wu, Bodo Roemer, Giacomo Vacca
  • Patent number: 9551700
    Abstract: The present invention discloses a novel device and methods thereof with utility application in the high-throughput detection, screening and disease management of cervical disease. The “multiwell” device of the present invention consists of a solid support featuring multiple well-separated areas, each accommodating a patient sample, leading to simultaneous evaluation of patient samples. The methods of the present invention comprise conventional cytological staining, cervical Pap staining, and immunochemical staining using antibodies or combination of antibodies which are capable of binding to biomarkers that are overexpressed in cancer including in cervical carcinoma and dysplasia, as compared to normal controls. The device and methods of the present invention can be practiced in either manual or automated mode, and applied to any biological fluid or cell suspension from any biological specimen in view of a variety of cell biology assays, and in view of detection and screening of cervical and other diseases.
    Type: Grant
    Filed: December 20, 2010
    Date of Patent: January 24, 2017
    Assignee: MILAGEN, INC.
    Inventor: Moncef Jendoubi
  • Patent number: 9476811
    Abstract: Devices and methods are provided for performing droplet-based solid phase processing steps on a digital microfluidic device. A solid phase material, which may be a porous solid phase material such as a porous polymer monolith is formed or located on a digital microfluidic element. The solid phase may be formed by an in-situ method in which the digital microfluidic array is actuated to transport a droplet of solid phase pre-cursor solution to a selected element on the array, and subsequently processed to form a solid phase on the array element. The integration of a solid phase material with a digital microfluidic array enables a wide range of applications including solid phase extraction and sample concentration.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: October 25, 2016
    Assignee: The Governing Council of the University of Toronto
    Inventors: Jared M. Mudrik, Hao Yang, Aaron R. Wheeler
  • Patent number: 9448142
    Abstract: A milk sampling system for use with an automatic milking machine includes a metering pump (2) having an inlet (9) connected to a induction system (3) and an outlet (10) connected to a discharge system (5). The induction system includes a manifold block (4) with passages forming supply paths (12, 13, 15) for connecting the pump inlet to a milk source, a washing fluid source, and a source of pressurized air, and solenoid valves (21, 22, 25) to selectively open and close the supply paths. The discharge systems includes a manifold block (6) with passages forming a plurality discharge paths (27, 29, 31, 33) for successively delivering discrete milk samples for analysis, and solenoid valves (35, 36, 37, 38) to selectively open and close the discharge paths.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 20, 2016
    Inventor: Mats Gudmundsson
  • Patent number: 9434940
    Abstract: The invention generally relates to methods for universal target capture.
    Type: Grant
    Filed: December 16, 2013
    Date of Patent: September 6, 2016
    Assignee: DNA Electronics, Inc.
    Inventor: Colin Dykes
  • Patent number: 9381513
    Abstract: A detection chip is provided. The detection chip includes a substrate, an active reagent, a hydrophilic droplet and a lipophilic substance. The substrate includes a first containing slot, wherein the first containing slot includes a first space and a second space adjacent to each other. The active reagent is disposed in the first space of the first containing slot. The hydrophilic droplet is disposed in the second space of the first containing slot. The lipophilic substance is disposed in the first containing slot, wherein the lipophilic substance is immiscible to the active reagent and the hydrophilic droplet, and separates the active reagent from the hydrophilic droplet.
    Type: Grant
    Filed: March 21, 2014
    Date of Patent: July 5, 2016
    Assignee: Industrial Technology Research Institute
    Inventors: Liang-Ju Chien, Yu-Ying Lin, Chi-Han Chiou
  • Patent number: 9372080
    Abstract: The invention relates to an adjustment system (3) for a transfer system (1) in an in-vitro diagnostics system. The adjustment system comprises a contact element (4), which is arranged on a movable element (2) of the transfer system (1). The contact element (4) is arranged on the movable element (2) by means of a joint element (5), wherein the joint element (5) has a self-resetting design and wherein a distance measuring sensor (7, 8) is associated with a distance between the contact element (4) and the movable element (2). The adjustment system enables a quick automated adjustment.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: June 21, 2016
    Inventors: Achim Herz, Alexander Wiedekind-Klein
  • Patent number: 9322052
    Abstract: A cartridge for conducting a chemical reaction includes a body having at least one flow path formed therein. The cartridge also includes a reaction vessel extending from the body for holding a reaction mixture for chemical reaction and optical detection. The vessel comprises a rigid frame defining the side walls of a reaction chamber. The frame includes at least one channel connecting the flow path to the chamber. The vessel also includes flexible films or sheets attached to opposite sides of the rigid frame to form opposing major walls of the chamber. In addition, at least two of the side walls are optically transmissive and angularly offset from each to permit real-time optical detection of analyte in the reaction chamber.
    Type: Grant
    Filed: March 18, 2014
    Date of Patent: April 26, 2016
    Assignee: Cepheid
    Inventors: Kurt E. Petersen, William McMillan, Farzad Pourahmadi, Ronald Chang, Douglas B. Dority
  • Patent number: 9299476
    Abstract: Disclosed herein is a polymeric material comprising a conductive polymer substantially homogeneously distributed within a hydrogel. Also disclosed are methods for making the polymeric material and uses for the polymeric material.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: March 29, 2016
    Inventors: Rylie Adelle Green, Laura Anne Poole-Warren, Sungchul Baek, Penny Jo Martens
  • Patent number: 9289764
    Abstract: Methods and apparatus for mixing at least one sample solution with at least one reagent in at least one chamber of a microfluidic cartridge such that at least one reagent (R) is supplied to the sample solution (P) and brought into contact therewith by way of at least one movable component. In this way the loss of sample liquid or analyte can be reduced.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: March 22, 2016
    Assignee: Boehringer Ingelheim Microparts GmbH
    Inventors: Berthold Lange, Christian Schoen, Tobias Eichmann
  • Patent number: 9267876
    Abstract: The present invention relates to a cell for optical analysis, wherein a flow space of a low depth is formed by attachment, using a simple double-coated tape without out special processing, of a micro flow channel through which a liquid sample passes, thereby enabling: a very easy manufacturing method; a reduction of manufacturing costs, thereby allowing the cell to be more widely used; a maintenance of a short path length of light with respect to the flow space in which the liquid sample flows, thereby enabling accurate optical analysis without diluting a sample with high absorbance; an expansion of a flow space region along the plane vertical to the light-passing direction, thereby enabling smoother optical analysis and improving the accuracy of optical analysis.
    Type: Grant
    Filed: June 21, 2012
    Date of Patent: February 23, 2016
    Assignee: I-SENS, INC.
    Inventors: Young Jae Kang, Tae Young Kang
  • Patent number: 9089850
    Abstract: Systems and methods for separating particles of pharmaceutically active materials, based on differences in density.
    Type: Grant
    Filed: April 23, 2010
    Date of Patent: July 28, 2015
    Assignee: Syracuse University
    Inventors: Bruce S. Hudson, Jack Melton
  • Patent number: 9074250
    Abstract: Cartridges for the isolation of a biological sample and downstream biological assays on the sample are provided, as are methods for using such cartridges. In one embodiment, a nucleic acid sample is isolated from a biological sample and the nucleic acid sample is amplified, for example by the polymerase chain reaction. The cartridges provided herein can also be used for the isolation of non-nucleic acid samples, for example proteins, and to perform downstream reactions on the proteins, for example, binding assays. Instruments for carrying out the downstream biological assays and for detecting the results of the assays are also provided.
    Type: Grant
    Filed: February 5, 2013
    Date of Patent: July 7, 2015
    Assignee: Luminex Corporation
    Inventors: Dylan Hilmer Bird, Jesus Ching, Bruce A. Johnson, Keith E. Moravick, Bruce Richardson
  • Patent number: 9052256
    Abstract: A method for treating a tissue sample including placing at least one tissue sample on an cassette which has: a retaining member, a base and at least one biasing element; placing the at least one tissue sample in the tissue cassette; attaching the base and the retaining member to retain the tissue sample; processing the tissue sample in the tissue cassette with one or more solvents; and embedding the tissue sample in a paraffin to form an portion of paraffin in which the tissue sample is embedded in the tissue cassette, wherein the embedding comprises adding molten paraffin to the interior area of the tissue cassette and allowing the paraffin to become solid.
    Type: Grant
    Filed: March 11, 2014
    Date of Patent: June 9, 2015
    Assignee: Leica Biosystems Nussloch GmbH
    Inventors: Stella Knorr, Andrew Guy, Ralf Eckert, Fiona Tarbet, Fernando Dias, Chris Ryan, Neil Sanut
  • Patent number: 9044748
    Abstract: A cartridge capable of storing a chemical solution includes a first container, a second container installed within the first container and configured to store the chemical solution, and an exhaust path configured to exhaust a gas generated by the chemical solution stored in the second container, wherein the exhaust path is disposed between the first container and the second container.
    Type: Grant
    Filed: October 4, 2012
    Date of Patent: June 2, 2015
    Inventor: Takashi Koyama
  • Patent number: 9040255
    Abstract: The present invention provides methods for preventing clumping of cells in microfluidic devices by addition of diazolidinyl urea (DU). DU can be added to samples at the time of collection or can be added to samples post-collection. DU can also be pre-added to sample collection devices.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 26, 2015
    Assignee: BIOCEPT, INC.
    Inventors: Pavel Tsinberg, Stephen D. Mikolajczyk
  • Patent number: 9034651
    Abstract: This invention relates to methods and apparatus for determination of ion concentrations, particularly in downhole water from hydrocarbon wells, aquifers etc. It is useful in a wide range of applications, including predicting the formation of scale and fingerprinting waters from different sources. More particularly, the invention relates to the use of ligands whose electronic configuration is altered by the binding of the scaling ions within a water sample. These alterations are detected electrochemically by applying varying potential to electrodes and measuring current flow as potential is varied, from which is derived the concentration of scaling ions in the fluid.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: May 19, 2015
    Assignee: Schlumberger Technology Corporation
    Inventors: Li Jiang, Timothy Gareth John Jones, Andrew Meredith, Markus Pagels, Amilra Prasanna De Silva
  • Publication number: 20150132746
    Abstract: Provided herein is technology relating to the collection of biological samples and particularly, but not exclusively, to compositions, methods, and uses related to using a biopolymer substrate to collect biological samples for analysis.
    Type: Application
    Filed: May 29, 2013
    Publication date: May 14, 2015
    Inventors: Astrid Gjelstad, Lars Erik Eng Eibak, Anne Bee Hegge, Knut Einar Rasmussen, Stig Pedersen-Bjergaard
  • Patent number: 9029162
    Abstract: Disclosed are methods and systems for the analysis of testosterone in a sample using supported liquid extraction and liquid chromatography-mass spectrometry.
    Type: Grant
    Filed: February 7, 2012
    Date of Patent: May 12, 2015
    Assignee: Laboratory Corporation of America Holdings
    Inventors: Russell Philip Grant, Matthew Crawford, Donald Walt Chandler, William Curtin
  • Patent number: 9029158
    Abstract: Described herein are particular embodiments relating to a microfluidic device that may be utilized for cell sensing, counting, and/or sorting. Particular aspects relate to a microfabricated device that is capable of differentiating single cell types from dense cell populations. One particular embodiment relates a device and methods of using the same for sensing, counting, and/or sorting leukocytes from whole, undiluted blood samples.
    Type: Grant
    Filed: June 4, 2014
    Date of Patent: May 12, 2015
    Assignee: California Institute of Technology
    Inventors: Yu-Chong Tai, Siyang Zheng, Jeffrey Chun-Hui Lin, Harvey Kasdan
  • Patent number: 9029165
    Abstract: A method for detecting electromagnetic waves derived from bacterial DNA, comprising extracting and purifying nucleic acids from a sample; diluting the extracted purified nucleic acids in an aqueous solvent; measuring a low frequency electromagnetic emission over time from the diluted extracted purified nucleic acids in an aqueous solvent; performing a signal analysis of the low frequency electromagnetic emission over time; and producing an output, based on the signal analysis, in dependence on the DNA in the sample. The DNA may be extracted from at least one of blood, feces, urine, saliva, tears, seminal fluid, sweat, seminal and vaginal fluids of a patient, or water to determine, e.g., potability. The samples may be frozen. The extracting and purifying may comprise diluting the sample with an aqueous buffer and mixing; degrading proteins in the diluted sample; precipitating DNA from the buffer solution; and resuspending the precipitated DNA in an aqueous solution.
    Type: Grant
    Filed: May 9, 2014
    Date of Patent: May 12, 2015
    Inventor: Luc Montagnier
  • Patent number: 9028757
    Abstract: A method for analysis of an object dyed with fluorescent coloring agents. Separately fluorescing visible molecules or nanoparticles are periodically formed in different object parts, the laser produces the oscillation thereof which is sufficient for recording the non-overlapping images of the molecules or nanoparticles and for decoloring already recorded fluorescent molecules, wherein tens of thousands of pictures of recorded individual molecule or nanoparticle images, in the form of stains having a diameter on the order of a fluorescent light wavelength multiplied by a microscope amplification, are processed by a computer for searching the coordinates of the stain centers and building the object image according to millions of calculated stain center co-ordinates corresponding to the co-ordinates of the individual fluorescent molecules or nanoparticles. Two-dimensional and three-dimensional images are provided for proteins, nucleic acids and lipids with different coloring agents.
    Type: Grant
    Filed: January 15, 2014
    Date of Patent: May 12, 2015
    Assignee: Super Resolution Technologies LLC
    Inventors: Andrey Alexeevich Klimov, Dmitry Andreevich Klimov, Evgeniy Andreevich Klimov, Tatiana Vitalyevna Klimova
  • Patent number: 9028772
    Abstract: A method may involve forming one or more photoresist layers over a sensor located on a structure, such that the sensor is covered by the one or more photoresist layers. The sensor is configured to detect an analyte. The method may involve forming a first polymer layer. Further, the method may involve positioning the structure on the first polymer layer. Still further, the method may involve forming a second polymer layer over the first polymer layer and the structure, such that the structure is fully enclosed by the first polymer layer, the second polymer layer, and the one or more photoresist layers. The method may also involve removing the one or more photoresist layers to form a channel through the second polymer layer, wherein the sensor is configured to receive the analyte via the channel.
    Type: Grant
    Filed: June 28, 2013
    Date of Patent: May 12, 2015
    Assignee: Google Inc.
    Inventors: Huanfen Yao, Jeffrey George Linhardt, Babak Parviz
  • Publication number: 20150125963
    Abstract: Techniques for use with dried sample portions include a device having sample areas, identification areas and detachable portions. Each sample area includes one of the dried sample portions of the sample. Each identification area includes information stored therein which identifies the sample from which the dried sample portions stored on the sample areas of the device are obtained. Each detachable portion includes one of the sample areas and includes one of the identification areas. Also described is a method for processing dried sample portions of a sample. A card is received that includes a plurality of detachable portions. Each detachable portion includes a sample area with a dried sample portion and an identification area including information that identifies the sample. A first detachable portion is detached to process a dried sample portion included in the first detachable portion.
    Type: Application
    Filed: June 26, 2013
    Publication date: May 7, 2015
    Inventor: Richard W. Andrews
  • Patent number: 9023650
    Abstract: A simulant that includes a carrier and DNA encapsulated in the carrier. Also a method of making a simulant including the steps of providing a carrier and encapsulating DNA in the carrier to produce the simulant.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: May 5, 2015
    Assignee: Lawrence Livermore National Security, LLC
    Inventors: George Roy Farquar, Roald N. Leif, Elizabeth Wheeler
  • Patent number: 9023281
    Abstract: Chemical indicator apparatuses containing one or more chemical indicators for use in monitoring the quality of water in an aquatic environment. The apparatuses are designed and configured to be submersible in the water that is being monitored. In some embodiments, each apparatus includes a plurality of immobilized-dye-based chemical indicators that undergo a physical change as levels of one or more constituents of the water change. Such indicators can be read by one or more suitable optical readers. These and other embodiments are designed and configured to be movable by a corresponding monitoring/measuring apparatus, for example, via a magnetically coupled drive. Also disclosed are a variety of features that can be used to provide a chemical indicator apparatus with additional functionalities.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: May 5, 2015
    Assignee: Step Ahead Innovations, Inc.
    Inventor: James E. Clark
  • Patent number: 9017953
    Abstract: The present invention encompasses methods and compositions for detecting pathogenic bacteria. Additionally, the present invention encompasses methods and compositions for catalyzing the dismutation of superoxide radicals.
    Type: Grant
    Filed: May 20, 2013
    Date of Patent: April 28, 2015
    Assignee: Washington University
    Inventors: Jeffrey P. Henderson, Chia Hung, Kaveri Chaturvedi
  • Publication number: 20150111196
    Abstract: A microfluidic chip orients and isolates components in a sample fluid mixture by two-step focusing, where sheath fluids compress the sample fluid mixture in a sample input channel in one direction, such that the sample fluid mixture becomes a narrower stream bounded by the sheath fluids, and by having the sheath fluids compress the sample fluid mixture in a second direction further downstream, such that the components are compressed and oriented in a selected direction to pass through an interrogation chamber in single file formation for identification and separation by various methods. The isolation mechanism utilizes external, stacked piezoelectric actuator assemblies disposed on a microfluidic chip holder, or piezoelectric actuator assemblies on-chip, so that the actuator assemblies are triggered by an electronic signal to actuate jet chambers on either side of the sample input channel, to jet selected components in the sample input channel into one of the output channels.
    Type: Application
    Filed: December 22, 2014
    Publication date: April 23, 2015
    Inventors: Zheng XIA, Yu ZHOU, John LARSEN, Guocheng SHAO, Shane PETERSON, Marjorie FAUST
  • Publication number: 20150105300
    Abstract: A method of processing a sample may include introducing a sample into a vessel, the vessel having proximal and distal ends, the sample being introduced into the proximal end of the vessel; incubating the sample in the vessel with a substance capable of specific binding to a preselected component of the sample; propelling components of the incubated sample, other than the preselected component, toward the proximal end of the vessel by clamping the vessel distal to the incubated sample and compressing the vessel where the incubated sample is contained; propelling the preselected component toward a distal segment of the vessel by clamping the vessel proximal to the preselected component and compressing the vessel where the preselected component is contained; and mixing the preselected component with a reagent in the distal segment of the vessel.
    Type: Application
    Filed: December 17, 2014
    Publication date: April 16, 2015
    Inventors: Shuqi Chen, Lingjun Chen
  • Patent number: 9005990
    Abstract: The present invention concerns a method of purifying colistin using reverse phase chromatography, wherein loading a column with colistin base in acetic acid and high ethanol concentration and eluting with low ethanol concentration is performed.
    Type: Grant
    Filed: September 29, 2010
    Date of Patent: April 14, 2015
    Assignee: Xellia Pharmaceuticals APS
    Inventors: Torben Koch, Carsten Overblle Petersen
  • Patent number: 9005995
    Abstract: The present invention relates to a nanoscale or microscale particle for encapsulation and delivery of materials or substances, including, but not limited to, cells, drugs, tissue, gels and polymers contained within the particle, with subsequent release of the therapeutic materials in situ, methods of fabricating the particle by folding a 2D precursor into the 3D particle, and the use of the particle in in-vivo or in-vitro applications. The particle can be in any polyhedral shape and its surfaces can have either no perforations or nano/microscale perforations. The particle is coated with a biocompatible metal, e g gold, or polymer e g parvlene, layer and the surfaces and hinges of the particle are made of any metal or polymer combinations.
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: April 14, 2015
    Assignee: The Johns Hopkins University
    Inventors: David H. Gracias, Timothy Gar-Ming Leong, Hongke Ye
  • Patent number: 9005988
    Abstract: A method for the assessment of a multiphase (aqueous and organic) sample phase, the method comprising adding at least one detection molecule to the multiphase sample; detecting a signal emitted from the detection molecule/multiphase sample mixture, the signal being detectably different when the at least one detection molecule is present in one of either an organic phase, an aqueous phase or an interface between said organic phase and said aqueous phase of the multiphase sample; and analyzing the detected signal to assess the properties of a phase or an interface between phases. A system for use in such a method, use of at least one detection molecule for the assessment of a multiphase sample, and a composition for use in the assessment of a multiphase sample are also disclosed.
    Type: Grant
    Filed: July 20, 2009
    Date of Patent: April 14, 2015
    Assignee: Lux Innovate Limited
    Inventors: Emma Perfect, Catherine Rowley-Williams, Cameron Mackenzie, Artin Moussavi
  • Patent number: 9005545
    Abstract: The present invention relates to a method for detecting the presence and/or the reaction of a biomolecule by monitoring changes of electrical property accurately according to the biological, biochemical or chemical reaction of the biomolecule, and a biochip provided for this purpose.
    Type: Grant
    Filed: December 7, 2012
    Date of Patent: April 14, 2015
    Assignee: Digital Genomics Inc.
    Inventor: Jae-Hoon Lee
  • Patent number: 8999264
    Abstract: A coating formula and method for surface coating non-porous surfaces. Microfluidic devices including said coating achieve desired properties including increased hydrophilicity, improved adhesion, stability and optical clarity.
    Type: Grant
    Filed: September 26, 2011
    Date of Patent: April 7, 2015
    Assignee: Siemens Healthcare Diagnostics Inc.
    Inventor: Michael J. Pugia