Gaseous Sample Or With Change Of Physical State Patents (Class 436/181)
  • Patent number: 6337211
    Abstract: The invention relates to a system and a method for detecting antifreezing substances in a hermetic compressor.
    Type: Grant
    Filed: September 29, 1999
    Date of Patent: January 8, 2002
    Assignee: Empresa Brasileria de Compressores S./A-Embraco
    Inventor: Friedrich Georg Mittelstadt
  • Patent number: 6337213
    Abstract: An apparatus and method for the collection of respirable particles and concentration of such particles into a small fluid volume. The apparatus captures and concentrates small (1-10 &mgr;m) respirable particles into a sub-millileter volume of fluid. The method involves a two step operation, collection and concentration: wherein collection of particles is by a wetted surface having small vertical slits that act as capillary channels; and concentration is carried out by transfer of the collected particles to a small volume (sub-milliliter) container by centrifugal force whereby the particles are forced through the vertical slits and contact a non-wetted wall surface, and are deflected to the bottom where they are contained for analysis, such as a portable flow cytometer or a portable PCR DNA analysis system.
    Type: Grant
    Filed: December 8, 1999
    Date of Patent: January 8, 2002
    Assignee: The Regents of the University of California
    Inventors: Jonathan N. Simon, Steve B. Brown
  • Publication number: 20010055811
    Abstract: Mass spectrometry of large nucleic acids by infrared Matrix-Assisted Laser Desorption/Ionization (MALDI) using a liquid matrix is reported.
    Type: Application
    Filed: May 7, 1998
    Publication date: December 27, 2001
    Applicant: Franz Hillenkamp
    Inventor: FRANZ HILLENKAMP
  • Patent number: 6287872
    Abstract: The invention refers to sample support plates for the mass spectrometric analysis of large molecules, preferrable biomolecules, methods for the manufacture of such sample support plates and methods for loading the sample support plates with samples of biomolecules from solutions together with matrix substance for the ionization of the biomolecules using matrix-assisted laser desorption (MALDI). The invention consists of making the surface of the sample support plate extremely hydrophobic, whereby a favorable structure of MALDI matrix crystals for effective ionization is generated when drying the sample droplets to sample spots. Using tiny, hydrophilic anchor areas for the sample droplets in this hydrophobic environment, the pipetting process is made much easier and the sample spots can be precisely located on the sample support plates.
    Type: Grant
    Filed: December 9, 1998
    Date of Patent: September 11, 2001
    Assignee: Bruker Daltonik GmbH
    Inventors: Martin Schürenberg, Jochen Franzen
  • Publication number: 20010019845
    Abstract: A freely traversable metering head with numerous metering devices, wherein the metering devices are each provided individually or block-by-block with an activating device, and wherein a controller traversable with the metering head is designed for the independent operation of one or more activating devices. Metering devices for such a metering head and procedures for their use are also disclosed.
    Type: Application
    Filed: February 5, 2001
    Publication date: September 6, 2001
    Inventors: Klaus Bienert, Andreas Vente, Heiko Kraack, Rolf Zettl
  • Patent number: 6277649
    Abstract: A system for analysis of materials includes a sensor loop (100). The sensor loop includes sensors (130) therein. The sensor loop includes traps (120, 140). Sample material is desorbed from a first trap, moved past the sensors and collected in the second trap. The material is then desorbed from the second trap, moved past the sensors and again collected in the first trap. The amount and rate of flow of the sample material past the sensors is controlled, and the repeated exposure of the sensors to the sample material enhances sensitivity.
    Type: Grant
    Filed: August 2, 1999
    Date of Patent: August 21, 2001
    Inventor: Michael Markelov
  • Publication number: 20010014478
    Abstract: A method and apparatus are provided for collecting a sample gaseous mercury, to differentiate between different gaseous mercury components. A quartz denuder module is provided having a coated extended surface for adsorbing reactive gaseous mercury. After collection of a sample, the coating it is heated to desorb the mercury as elemental gaseous mercury, which can then be detected and measured in conventional analyzer. During the sampling phase, as reactive gaseous mercury is removed from the sample flow in the denuder, the sample can then be passed to the analyzer for detection of elemental gaseous mercury. Where particulate mercury may be present, a filter trap can be provided downstream from the denuder. Separate steps can be provided for heating and pyrolysis of particulate mercury, for separate measurement in the analyzer. The pump module can be configured to a past the gas sample through scrubbers, to generate zero air as a flushing gas.
    Type: Application
    Filed: September 2, 1998
    Publication date: August 16, 2001
    Inventors: FRANK H. SCHAEDLICH, DANIEL R. SCHNEEBERGER
  • Patent number: 6254828
    Abstract: Gases flow to individual gas analysis cells. The cells are sequentially aligned with an infrared detector, which senses the composition and quantities of the gas components. Each elongated cell is tapered inward toward the center from cell windows at the ends. Volume is reduced from a conventional cell, while permitting maximum interaction of gas with the light beam. Reduced volume and angulation of the cell inlets provide rapid purgings of the cell, providing shorter cycles between detections. For coal and other high molecular weight samples, from 50% to 100% oxygen is introduced to the tubes. Cells are suspended from adjustable holders on a frame which is spaced from a table. The table is moved by a linear motor and a fixed platen. Sides of the table are shielded to prevent electromagnetic and magnetic motor interference with detected results. The entire table, cells, mounting plate and linear motor are mounted in a housing with aligned holes for the analysis energy source and detector.
    Type: Grant
    Filed: April 19, 1993
    Date of Patent: July 3, 2001
    Inventor: Robert B. LaCount
  • Patent number: 6248595
    Abstract: The invention relates to apparatus and a method for measuring NOx in biochemical processes, and to apparatus and methods for real time measuring the nitrification and/or denitrification rate of a liquid with or without suspended solids.
    Type: Grant
    Filed: April 23, 1999
    Date of Patent: June 19, 2001
    Assignee: BioChem Technology, Inc.
    Inventors: Jaw Fang Lee, Sergey K. Maneshin, Marcus E. Kolb, Xin Yang
  • Patent number: 6228657
    Abstract: An airborne hazardous material reader device capable of receiving a collection element. The reader device has a body forming a slot area for receiving the collection element. The body has a crushing mechanism located within the slot area for breaking ampules attached to the collection element containing chemical testing reagents, a micro-pump positioned proximate to the slot area for controlling the temperature next to the collection element, a diode reading component incorporated within the body for distinguishing color changes from the release of chemical testing reagents from the broken ampules, an indicator for indicating the presence of a hazardous material when the diode reading component distinguishes color changes and a microprocessor that coordinates the sequence of the reader device. A method for airborne hazardous material detection also is disclosed.
    Type: Grant
    Filed: September 1, 1999
    Date of Patent: May 8, 2001
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: James A. Genovese, Patrick M. Nolan
  • Publication number: 20010000334
    Abstract: A collector and method for collecting samples of liquid from at least one source of liquid for automated analysis of the samples. The collector has at least one receptacle for receiving liquid from the source of liquid and holding a quantity of the liquid for obtaining a sample. Each receptacle has an inlet for delivery of liquid from the respective source of liquid and an open top sized to admit the sample collection device into the receptacle. The collector also has a spillway in fluid communication with the open top of the receptacle for receiving excess liquid spilling over the open top of the receptacle. The collector is constructed so that liquid continuously flows through the collector. A drain of the collector receives liquid from the spillway for draining the liquid from the collector.
    Type: Application
    Filed: December 5, 2000
    Publication date: April 19, 2001
    Inventors: Kenneth Ruth, Philip Schmidt
  • Patent number: 6207462
    Abstract: A method and apparatus are disclosed for analyzing the aggregate content of asphalt-aggregate compositions. The method includes placing a preheated, preweighed container carrying a sample of an asphalt-aggregate composition into a preheated furnace with the preheated furnace being warmer than the preheated sample, continuing to heat the furnace while drawing air through the furnace at a rate that avoids impeding the heating of the furnace or the sample until the sample in the container reaches its combustion temperature and the combustion of the sample becomes exothermic, initiating a second draw of air around rather than through the furnace to moderate the exterior temperature of the furnace, accelerating the draw through the furnace to increase the rate of combustion of the exothermic reaction, and reweighing the container and sample after combustion is complete.
    Type: Grant
    Filed: November 6, 1998
    Date of Patent: March 27, 2001
    Assignee: CEM Corporation
    Inventors: David Allan Barclay, Ali Regimand
  • Patent number: 6200819
    Abstract: An apparatus adapted for analyzing exhaust emissions by using a small fraction of a continuously-extracted exhaust sample combined with a pollutant-free diluent through a system of critical flow orifices at a predetermined and precisely controlled flow ratio. A small quantity of gas is extracted from the diluted exhaust gas available which is diluted with the contaminant-free air or nitrogen to produce a mixture having a dew point below ambient air temperature and satisfying the flow requirements of the analysis system. The diluted sample may then be analyzed to obtain the total mass of pollutants through identification of the instantaneous exhaust concentration rate and the exhaust mass flow rate or through identification of the concentration of pollutants collected in a sample bag and the total exhaust volume.
    Type: Grant
    Filed: February 23, 1996
    Date of Patent: March 13, 2001
    Assignee: Horiba Instruments, Inc.
    Inventors: R. Neal Harvey, Allen F. Dageforde
  • Patent number: 6190917
    Abstract: A method and apparatus are disclosed for analyzing asphalt-aggregate compositions. The method includes directing sufficient microwave radiation from a microwave source to a sample of an asphalt-aggregate composition to ignite the asphalt in the composition and to thereafter entirely combust the asphalt in the sample. The apparatus includes a source of microwave radiation, a cavity in communication with the microwave source, a sample holder in the cavity for holding a sample of an asphalt-aggregate composition during exposure to microwaves from the source, thermal insulation between the sample holder and the remainder of the cavity, and means for minimizing or eliminating any undesired combustion products generated by the burning asphalt.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: February 20, 2001
    Assignee: CEM Corporation
    Inventors: David Allan Barclay, Ali Regimand
  • Patent number: 6187597
    Abstract: Electronic odor detecting device (electronic nose) provided with a number of sensors. The gas that is to be subjected to the detection is brought to pass a number of similar or different sensors distributed on a surface. Between the sensors or actually extending between and past the sensors is a catalyst. The catalyst may be arranged on an opposing wall in a detection cell or in the same surface as the sensors. Constituents of the gas that react with the catalyst result in a different signal pattern for the sensors, depending on their location in relation to the catalyst. Since different substances in the gas will react with different rates in the presence of the catalyst, the sensed pattern will change along the catalytic surface. This makes it possible to evaluate a gas mixture with great precision and with a more limited number of sensors in comparison to prior art.
    Type: Grant
    Filed: January 23, 1998
    Date of Patent: February 13, 2001
    Assignee: Nordic Sensor Technologies AB
    Inventors: Ingemar Lundström, Hans Sundgren
  • Patent number: 6187596
    Abstract: An indicator system provides a visual indication of the cumulative level of an airborne contaminant. The indicator is a transparent sheath with support medium having an acidic surface and treated with a color pH indicator. As a basic contaminant is adsorbed by the medium, the medium color changes. As additional contaminant is adsorbed, the color front progresses the length of the indicator. The indicator system may be used with an adsorptive filter system to predict the life of adsorption bed assemblies. A sample flow is taken upstream of the adsorption beds and is passed through the indicator. Preferably, the flow rate is calibrated so that the rate of the color change in the indicator is proportional to the rate of depletion of the adsorption bed. By monitoring the indicator, an accurate prediction of adsorption bed life may be made.
    Type: Grant
    Filed: October 29, 1998
    Date of Patent: February 13, 2001
    Assignee: Donaldson Company, Inc.
    Inventors: Andrew J. Dallas, Kristine Marie Graham, Timothy H. Grafe
  • Patent number: 6180414
    Abstract: A breath test for determining the rate of metabolism of a drug is described. First, a safe and effective amount of the drug, preferably appropriately labelled and most preferably isotopically-labelled, is administered to a subject. After a suitable time period, the exhaled breath of the subject is analyzed to determine the concentration of a metabolite. The concentration of the metabolite is then used to determine the rate of metabolism of the drug. A breath test kit is also described. Such a breath test kit would include an item or items necessary for performing at least one of the methods of determining the rate of metabolism of a drug in a subject. For example, such a breath test kit could include an isotopically-labelled drug to be administered to the subject.
    Type: Grant
    Filed: June 28, 1999
    Date of Patent: January 30, 2001
    Assignee: Oridion Medical Ltd.
    Inventor: Daniel E. Katzman
  • Patent number: 6174497
    Abstract: The present invention relates to an improvement in a detection system used for continuously measuring the release of a drug from a pharmaceutical dosage form having a singular dissolution vessel or multiple dissolution vessels containing a dissolution medium and a measuring device for detecting the amount of drug released at a given time, the improvement being a mixing shaft and a probe placed within the mixing shaft or outside the individual dissolution vessels, the probe capable of measuring the dissolution characteristics using UV, IR, near-IR, fluorescence, electrochemical, and Raman spectroscopy techniques. The present invention also relates to a method for predicting the dissolution curve provided by a controlled release pharmaceutical dosage form by taking continuous measurements of the amount of drug released from a dosage form for a portion of the time over which the drug is expected to be released and predicting the remainder of the dissolution curve based on the values obtained.
    Type: Grant
    Filed: August 21, 1997
    Date of Patent: January 16, 2001
    Assignee: Euro-Celtique, S.A.
    Inventors: Kurt Roinestad, Frank S. Cheng, Philip J. Palermo, Kevin Bynum
  • Patent number: 6174732
    Abstract: A method for producing and sampling chemical agent vapor comprising the steps of placing neat chemical agent in a reservoir, purging the chemical agent in the reservoir with a dry air, and analyzing the air stream exiting the reservoir. A MINICAMS having a removable PCT may be used to analyze the air stream exiting the reservoir. The method may further comprise the steps of changing the relative humidity conditions and testing chemical agent detectors.
    Type: Grant
    Filed: September 10, 1998
    Date of Patent: January 16, 2001
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Kwok Y. Ong, Jacob L. Barnhouse, Juan C. Cajigas
  • Patent number: 6171552
    Abstract: The present invention provides for a hydride formation analytical apparatus which forms hydrides of target components contained in a sample liquid and then analyzes them. The hydride formation analytical apparatus comprises a sample-introducing part, a reagent-introducing part, a reaction part, a gas-liquid separating part and a detecting part, wherein an acid-feeding part and a reducing agent-feeding part are part of the reagent-introducing part; the hydride gas of the sample is formed by the aid of the acid and the reducing agent fed into the above reaction part; and this is introduced into the detecting part for analysis.
    Type: Grant
    Filed: January 30, 1998
    Date of Patent: January 9, 2001
    Assignee: Mitsubishi Materials Corporation
    Inventors: Minoru Takeya, Yutaka Hayashibe, Kazutoshi Shimura
  • Patent number: 6159427
    Abstract: A method and apparatus for in-line tritium-in-water monitoring in which a sample of water is vaporized at a temperature sufficient to transform it to dry water vapor substantially free of liquid water droplets. The water vapor is transferred to a tritium detection device having a chamber heated to a temperature at which there is substantially no condensation of the water vapor, the detection device comprising volume detection device adapted to detect .beta.-decay of tritium atoms in the water vapor. The volume detection device may comprise ionization chamber detector, gas scintillation counting detector and gas electron multiplier detector. The method and apparatus are preferably used to detect leaks of tritiated water from the primary to secondary side of the heat transport systems associated with certain types of nuclear reactors, and when used on an in-line, continuous basis, provide a time response as low as 10 seconds with the detection limits depending on the type of volume detection equipment used.
    Type: Grant
    Filed: April 19, 1999
    Date of Patent: December 12, 2000
    Assignee: Ontario Power Generation Inc.
    Inventor: Nazir P. Kherani
  • Patent number: 6146895
    Abstract: A method of preparing a volatile sample from a material for gas chromatographic analysis includes the steps of: introducing a vial with the material containing the volatile sample and a headspace therein into a chamber of a platen adapted to transport the vial to a location for removal of at least a portion of the volatile sample for gas chromatographic analysis; heating the material containing the volatile sample while the vial is being transported to the location for removal; agitating the vial while in the chamber to enhance a transport rate of the volatile sample from the material to the headspace of the vial; and introducing a needle to the vial to withdraw at least a portion of the volatile sample from the headspace of the vial.
    Type: Grant
    Filed: November 9, 1993
    Date of Patent: November 14, 2000
    Assignee: Tekmar Company
    Inventors: Thomas B. Green, Robert G. Westendorf
  • Patent number: 6146898
    Abstract: An apparatus and method for on-line decomposition of a hydrogen peroxide solution, for use in fabricating a semiconductor device, includes a membrane tube having a porous plug inserted in each end, with the porous plugs defining a space where a platinum catalyst is disposed. A first coupling tube is inserted into one end of the membrane tube to supply a hydrogen peroxide sample to the membrane tube. The hydrogen peroxide contained in hydrogen peroxide sample is decomposed into water and oxygen gas according to an action of the platinum catalyst. A second coupling tube is inserted into a second end of the membrane tube to discharge a diluted hydrogen peroxide solution to an analytical instrument, where the decomposed hydrogen peroxide solution is analyzed on-line.
    Type: Grant
    Filed: September 22, 1998
    Date of Patent: November 14, 2000
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sung-chul Kang, Dong-soo Lee
  • Patent number: 6146896
    Abstract: A method and apparatus for determining nitrification effectiveness of activated sludge in an aqueous solution, includes supplying equivalent quantities of an activated sludge, an aqueous solution, and a gas containing oxygen to each of first and second reaction vessels; simultaneously delivering a nitrification inhibitor to only the second reaction vessel; performing a bacterial respiration reaction in the vessels for either a preselected period of time or continuously in which case the materials are supplied per unit of time so that the bacterial respiration reaction in the first reaction vessel, where oxygen consumption as a result of total bacterial respiration occurs and includes oxygen consumption as a result of endogenous respiration, oxygen consumption as a result of nitrification, and oxygen consumption as a result of degradation of carbon compounds, may be compared with the respiration reaction in the second reaction vessel where oxygen consumption includes oxygen consumption as a result of endogenou
    Type: Grant
    Filed: September 19, 1997
    Date of Patent: November 14, 2000
    Assignee: LAR Analytik und Umweltmesstechnik GmbH
    Inventor: Ulrich Pilz
  • Patent number: 6143571
    Abstract: The method for analyzing a metal for oxygen, using inert gas carrying fusion/infrared absorption analysis, having the steps of: placing a metal analyte in a graphite crucible; heat-melting the metal analyte; extracting a gas from the melt bath; and analyzing the gas to determine the total oxygen content of the metal in the form of a plurality of separated waves, wherein the metal analyte is heated at a temperature rise rate of not more than 20.degree. C./sec in a period from a starting point A of a first wave to a peak point B of the first wave, held at a constant temperature in a period from the peak point B of the first wave to an end point C of the first wave, and, after the completion of the appearance of the first wave, is heated to melt the metal analyte for further analysis.
    Type: Grant
    Filed: July 10, 1998
    Date of Patent: November 7, 2000
    Assignee: Sanyo Special Steel Co., Ltd.
    Inventors: Yoshio Nuri, Tomoko Ise, Yoshiyuki Kato
  • Patent number: 6139801
    Abstract: The present invention relates to a gas collecting system collecting an inspection objective gas, such as a toxic gas discharged into an ambient air, and particularly to a gas collecting system which can achieve down-sizing of the system and permit implementation of analysis of gas concentration of the inspection objective gas at high precision with simple operation.
    Type: Grant
    Filed: April 5, 1999
    Date of Patent: October 31, 2000
    Assignee: Obayashi Corporation
    Inventors: Takeshi Kawachi, Masahiro Moriya, Yasue Sato
  • Patent number: 6117686
    Abstract: The present invention provides a method by which harmful trace gases in a gaseous mixture containing as such harmful halogen gases, halogenated hydrogen gases, acid gases, oxidizing gases, basic gases, organic acid gases, especially halogen gases or halogenated hydrogen gases, are detected by using tetraphenylporphyrin (TPP) and quantitated from a calibration curve constructed therefrom, where the range of detectable concentration is made adjustable so that harmful gas can be detected and quantitated over a broad range of concentration. Furthermore, this invention also provides a method for extending the accessible range of gas concentration by adjusting the sensitivity of the detector material via control of tetraphenylporphyrin concentration in matrix polymer of the detector material, by controlling the gas concentration range via measurement at a specific wavelength(s), and by the use of a plurality of detector materials with pre-set assay sensitivity.
    Type: Grant
    Filed: August 3, 1999
    Date of Patent: September 12, 2000
    Assignee: Ebara Corporation
    Inventors: Kazunari Tanaka, Chiaki Igarashi, Yoshihiko Sadaoka
  • Patent number: 6103534
    Abstract: An improved biological aerosol chemiluminescent (CL) detection system having optimal sensitivity and a method for using the same in detecting the presence of biological materials in an aerosol sample. The detection system comprises a cyclone aerosol sampler, a CL reagent injector, and a luminometer, wherein the CL reagent injector is mated with the cyclone aerosol sampler so as to deliver/introduce CL reagent thereto. The inner surface of the cyclone aerosol sampler and the inner surface of the CL reagent injector are fabricated from materials that are free of metals that would initiate a CL-based reaction with a CL reagent to be employed therein so as to provide a CL reagent path free of these metals. The entire CL reagent path in the biological aerosol CL detection apparatus is comprised of these materials. A method for determining the suitability of materials for use throughout the CL reagent path of the biological CL detection system is also taught.
    Type: Grant
    Filed: September 28, 1999
    Date of Patent: August 15, 2000
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: David A. Stenger, James P. Whelan
  • Patent number: 6087181
    Abstract: The present invention discloses a method for improving the speed and sensitivity of optical spectroscopic techniques for remote detection of trace chemical species in a carrier gas. The disclosed method can be applied to any optical spectroscopic detection technique whose sensitivity decreases as the total pressure of the sample decreases. The method employs an inert and non-absorbing buffer gas to supplement the pressure exerted by the carrier gas. This ensures that the total pressure of the sample, and hence sensitivity of the detection technique, remains high. The method is especially useful when measuring concentration of chemical species produced at small rates, and therefore should prove useful for rapid serial screening of combinatorial libraries of compounds.
    Type: Grant
    Filed: March 16, 1998
    Date of Patent: July 11, 2000
    Assignee: Symyx Technologies
    Inventor: Pejun Cong
  • Patent number: 6080586
    Abstract: The present invention discloses an improved method and apparatus for analyzing the surface of materials using sub-micron laser desorption gas phase analysis. The method uses a combination of Near-field Optical Microscopy and Time-of Flight Mass Spectroscopy.
    Type: Grant
    Filed: April 5, 1996
    Date of Patent: June 27, 2000
    Assignee: California Institute of Technology
    Inventors: John D. Baldeschwieler, Jesse L. Beauchamp, Marcel Widmer, Stephen D. O'Connor, Dmitri Kossakovski
  • Patent number: 6063638
    Abstract: Apparatus and processes for water impurity analysis and for impurity analysis of various other liquids as well. More particularly, the present invention concerns apparatus and processes for chemical oxidant and catalyst enhanced total organic carbon analysis of liquid samples for determination of the level of organic contamination of the samples. In particular the present invention concerns a novel reactor for TOC anlysis in which carbon, particularly organic carbon is oxidized to CO.sup.2 gas for further measurement by a CO.sub.2 gas detector, preferably a non-dispersive infrared analyzer. The invention also concerns a process for TOC analysis wherein by measuring the CO.sub.2 gas created by combining carbon with oxygen (either in the water, with a carrier gas of oxygen (O.sup.2), or a chemical oxidant, such as sodium persulfate, the carbon in the water sample is determined. A process and apparatus are employed for TOC analysis in which UV light having a wave length in the range of from about 3.8 to about 4.
    Type: Grant
    Filed: September 25, 1998
    Date of Patent: May 16, 2000
    Assignee: Small Family 1992 Revocable Trust
    Inventors: Robert A. Small, Walter J. Gaylor
  • Patent number: 6054323
    Abstract: An apparatus and method for assaying an asphalt-containing composite material by irradiating the sample using a radiation source having a tunable preselected wavelength selected to closely approximate the absorbance wavelength of a particular material or materials found in the composite material to reduce the overall time and temperatures ordinarily needed to combust and assay such samples.
    Type: Grant
    Filed: June 12, 1998
    Date of Patent: April 25, 2000
    Assignee: Troxler Electronics Laboratories, Inc.
    Inventors: Robert Ernest Troxler, W. Linus Dep, William Finch Troxler, Sr.
  • Patent number: 6051189
    Abstract: A system and method for detection, identification, and monitoring of submicron sized particles, the method including the steps of collecting a sample, extracting existing submicron particles from the collected sample based on density, purifying the extracted submicron particles by concentrating the extracted submicron particles based on size, and, detecting and identifying the purified extracted submicron particles based on size and density thereby determining submicron particles present in the collected sample. The submicron particles detected and identified include viruses and virus-like agents such as prions. Thus, virus and virus-like agents can be detected and identified based only on their physical properties without the use of biochemical reagents or assays. A system for carrying out the method of detection and identification of these particles is also disclosed.
    Type: Grant
    Filed: October 1, 1997
    Date of Patent: April 18, 2000
    Assignee: The United States of America as represented by the Secretary of the Army
    Inventors: Charles H. Wick, David M. Anderson
  • Patent number: 6051436
    Abstract: A method for detecting nitro-containing compositions (e.g. nitrate/nitrite materials) in water samples and on solid substrates. In a water sample, ultraviolet light is applied to the sample so that dissolved nitro compositions therein will photolytically dissociate into gaseous nitrogen oxides (NO.sub.2(g) and/or NO.sub.(g)). A carrier gas is then introduced into the sample to generate a gaseous stream which includes the carrier gas combined with any gaseous nitrogen oxides. The carrier gas is thereafter directed into a detector. To detect nitro-compositions on solid substrates, ultraviolet light is applied thereto. A detector is then used to detect any gaseous nitrogen oxides which are photolytically generated during ultraviolet illumination. An optional carrier gas may be applied to the substrate during illumination to produce a gaseous stream which includes the carrier gas and any gaseous nitrogen oxides. The gaseous stream is then supplied to the detector.
    Type: Grant
    Filed: August 3, 1994
    Date of Patent: April 18, 2000
    Assignee: Lockheed Idaho Technologies Company
    Inventors: William K. Reagen, Gregory D. Lancaster, Judy K. Partin, Glenn A. Moore
  • Patent number: 6037179
    Abstract: Method and apparatus are disclosed for improved transfer of ionizing particles from a source chamber to a detection zone in an ionization chamber in an ionization detector. An ionization detector includes a source chamber, an inlet for introducing detector gas to the source chamber, a transitional structure including a flow guide that directs detector gas flow between the source chamber and the adjacent ionization chamber, an inlet for introducing sample gas containing an analyte into the ionization chamber, and an outlet port for exhausting the mixture of the sample gas and the detector gas. The aspect ratio of the flow guide causes the linear velocity of the detector gas stream to be highest at a throat in the flow guide and to decrease as the detector gas stream approaches a detection zone in the ionization chamber, thereby suppressing analyte diffusion from the ionization chamber through the flow guide.
    Type: Grant
    Filed: April 30, 1998
    Date of Patent: March 14, 2000
    Assignee: Hewlett-Packard Company
    Inventor: Mahmoud F. Abdel-Rahman
  • Patent number: 6037184
    Abstract: A method and apparatus for taking a sample from a flowing suspension formed by polymer particles and hydrocarbon diluent in a olefin polymerization process including at least one filter situated at a plane of an inside surface of a transfer conduit between reactors. Each filter includes perforations or pores having a size to prevent substantially any of the catalyst used in the polymerization process from passing through the filter, e.g., smaller than the smallest particle size of a catalyst used in the polymerization process. The pore or perforation size of each filter is preferably 0.1-10 .mu.m, preferably between 0.2-1 .mu.m. A pressure difference permits at least partial vaporization of the sample as it passes through the filter.
    Type: Grant
    Filed: November 10, 1997
    Date of Patent: March 14, 2000
    Assignee: Borealis Polymers OY
    Inventors: Kari Matilainen, Ari Palmroos, Auli Nummila-Pakarinen, Markku Savolainen, Timo Blomqvist, Jouni Takakarhu, Klaus Nyfors
  • Patent number: 6037181
    Abstract: The present invention relates to a method and apparatus for determining blood oxygen transport, and to measure lipid levels by correlating these levels with the rate at which oxygen diffuses through the red blood cell membrane.
    Type: Grant
    Filed: January 12, 1998
    Date of Patent: March 14, 2000
    Inventors: Henry Buchwald, Hector J. Menchaca, Van Michalek, Thomas J. O'Dea, Thomas D. Rohde
  • Patent number: 6018983
    Abstract: Method and apparatus for freon and other refrigerant matching, particularly for servicing of air conditioning systems for automotive applications. The matching process is based upon the comparison of resistance or infrared absorption or other data readings of a gas-sensing resistance or infrared absorption or other transducer applied to the refrigerant fluid under test and corresponding data from reference refrigerants.
    Type: Grant
    Filed: April 27, 1998
    Date of Patent: February 1, 2000
    Assignee: Sun Electric U.K. Limited
    Inventors: Barbara L. Jones, Paul Smith, Stephen J. Davis
  • Patent number: 6007777
    Abstract: An analytical instrument measures carbon content of a liquid sample. The instrument includes a sample inlet, a reagent inlet, a rinsing solution inlet, a reaction chamber, a waste outlet and a syringe pump. A multiple port valve has a plurality of ports which are coupled to the sample inlet, the reagent inlet, the rinse solution inlet, the reaction chamber and the waste outlet. The valve also includes a primary port coupled to the syringe pump and selectively fluidically couplable to each of the remaining ports.
    Type: Grant
    Filed: May 5, 1998
    Date of Patent: December 28, 1999
    Assignee: Tekmar Company
    Inventors: Michael W. Purcell, Sheng Sheng Yang, John Trifone Martin, Richard R. Reckner, Jeffrey L. Harris
  • Patent number: 5981289
    Abstract: A hydrogen sulfide analyzer that continuously samples waste water from a waste stream or reservoir and measures the concentration of purgeable H.sub.2 S present (H.sub.2 SP) This information, when combined with the volume of water present, provides a control quality signal that regulates the feed rate of the destructor chemical into the waste stream. This results in chemical savings for the user. A second result is the reduction in odor complaints and the corrosion problems associated with H.sub.2 S emissions. The analyzer measures only the purgeable H.sub.2 S contained in the liquid sample. The analyzer violently agitates the sample containing dissolved H.sub.2 S in solution to simulate actual conditions at points of agitation in the waste water stream. It also provides nearly optimal partial pressure conditions for the H.sub.2 S to exit the solution as a free gas. Any H.sub.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: November 9, 1999
    Assignee: Isco, Inc.
    Inventors: Paul G. Wright, David J. Shannon, Lowell R. Nickolaus, Randy J. Forman, Clifford L. McDonald, Bennett K. Horenstein
  • Patent number: 5981912
    Abstract: An electrically heatable hollow-body furnace with a secondary surface on which an analyte of a sample can be condensed prior to being atomized. The furnace is constructed in two sections which are capable of being electrically heated independently of one another. The secondary surface is defined by a surface of one of the sections. A process for atomizing an analyte of a sample to be examined, utilizing the device according to the following steps: introducing the sample into a hollow-body furnace having a secondary surface, condensing the analyte on the secondary surface and atomizing the analyte.
    Type: Grant
    Filed: September 11, 1998
    Date of Patent: November 9, 1999
    Assignee: Bodenseewerk Perkin-Elmer GmbH
    Inventors: Albert Gilmutdinov, Michael Sperling, Bernhard Welz
  • Patent number: 5976467
    Abstract: An indicator system provides a visual indication of the cumulative level of an airborne contaminant. An indicator has a transparent sheath with support medium treated with acid and a pH indicator, as the contaminant is adsorbed, the color changes along the medium. The indicator system may be used with an adsorptive filter system to predict the life of adsorption bed assemblies. A sample flow is taken upstream of the adsorption beds and is calibrated with a flow meter and valve. By monitoring the indicator, an accurate prediction of adsorption bed life may be made.
    Type: Grant
    Filed: July 11, 1997
    Date of Patent: November 2, 1999
    Assignee: Donaldson Company, Inc.
    Inventors: Andrew J. Dallas, Kristine Marie Graham, Timothy H. Grafe
  • Patent number: 5976890
    Abstract: The invention relates to a method for the quantitative determination of deuterium in samples containing hydrogen, and to a reduction oven for reducing gaseous or liquid substances containing hydrogen, which may be coupled directly to an isotope ratio mass spectrometer (IRMS), thereby permitting an online-coupled, reliable deuterium determination which can be automatized.
    Type: Grant
    Filed: June 6, 1997
    Date of Patent: November 2, 1999
    Assignee: UFZ-Umweltforschungszentrum Leipzig-Halle GmbH
    Inventors: Matthias Gehre, Reiner Hofling, Peter Kowski
  • Patent number: 5962335
    Abstract: A breath test for determining the rate of metabolism of a drug is described. First, a safe and effective amount of the drug, preferably appropriately labelled and most preferably isotopically-labelled, is administered to a subject. After a suitable time period, the exhaled breath of the subject is analyzed to determine the concentration of a metabolite. The concentration of the metabolite is then used to determine the rate of metabolism of the drug. A breath test kit is also described. Such a breath test kit would include an item or items necessary for performing at least one of the methods of determining the rate of metabolism of a drug in a subject. For example, such a breath test kit could include an isotopically-labelled drug to be administered to the subject.
    Type: Grant
    Filed: January 3, 1997
    Date of Patent: October 5, 1999
    Assignee: Oridion Medical Ltd.
    Inventor: Daniel E. Katzman
  • Patent number: 5942439
    Abstract: The present invention provides a method for preparing a VOC sample for carbon and chlorine isotope ratio analysis by mass spectrometer. A VOC sample is placed in a combustion tube and reacted with CuO to form CO.sub.2 and CuCl. The CO.sub.2 is then extracted and analyzed for the carbon isotope ratio. The CuCl is separated from the excess CuO and reacted with CH.sub.3 I to form CH.sub.3 Cl, extracted and analyzed for chlorine isotope ratio.
    Type: Grant
    Filed: August 28, 1997
    Date of Patent: August 24, 1999
    Assignee: The United States of America as represented by the United States Department of Energy
    Inventors: Ben D. Holt, Neil C. Sturchio
  • Patent number: 5932482
    Abstract: A headspace autosampling apparatus (92) for generating and delivering gaseous samples to a gas chromatograph or other instrument. The vials are delivered one at a time through a vial delivery mechanism (160) to a heated zone (146) wherein the substances (94, 96) to be analyzed reach equilibrium with the headspace (100, 102) above the samples in the vials. The vials are generally cylindrical and extend horizontally to facilitate attainment of equilibrium rapidly upon heating. The vials are also preferably rotated about their longitudinal axis prior to sampling so as to achieve a film effect on the interior walls of the vials which further aids in attainment of equilibrium. The apparatus is operative to first pressurize the headspace in the vial with an inert gas, and then to place said headspace in fluid communication with the inlet of a gas chromatograph wherein analyses in the headspace volume are analyzed to determine the composition thereof.
    Type: Grant
    Filed: August 10, 1998
    Date of Patent: August 3, 1999
    Inventor: Michael Markelov
  • Patent number: 5922610
    Abstract: The present invention is drawn to a system to be used for measuring NO levels in exhaled breathing air. The system comprises: (i) a face mask that tightly covers the nose and/or mouth of the individual that the mask is intended to be used on; (ii) an inlet unit for inhaled breathing air, (iii) an outlet unit for exhaled breathing air, (iv) a non-rebreathing valve through which inhaled and exhaled breathing air, respectively, passes, and (v) a measuring unit for NO connected to the outlet unit. The present invention furthers encompasses a method for the diagnosis in mammals of inflammatory conditions in the airways. The characteristic feature is that nitric oxide NO is measured in exhaled breathing air and a found abnormal level is taken as an indication of an inflammatory condition in the airways.
    Type: Grant
    Filed: January 5, 1996
    Date of Patent: July 13, 1999
    Assignee: Aerocrine AB
    Inventors: Kjell Alving, Edward Weitzberg, Jan Lundberg
  • Patent number: 5911953
    Abstract: A solid object carrying a catalyzer thereon is placed in a closed reaction chamber into which test gases are supplied and is heated up to a temperature of 1000.degree. C. Adsorbates are formed on the surface of the solid object under the test gas flow in the closed reaction chamber. Infrared radiations radiated from the adsorbates are emitted through an infrared-transmissive window hermetically formed on a wall of the closed reaction chamber, and are analyzed by an infrared radiation spectrometer and observed by a microscope. The infrared-transmissive window is cooled down by a cooling device attached thereto so that the temperature of the window does not exceed a certain level, e.g., 200.degree. C. Thus, the adsorbates formed on the solid object can be detected and analyzed under conditions where the test gas is actually flowing and the temperature of the solid object is elevated up to a high level.
    Type: Grant
    Filed: June 2, 1997
    Date of Patent: June 15, 1999
    Assignees: Nippon Soken, Inc., Horiba, Inc.
    Inventors: Itsuhei Ogata, Atsuhiro Sumiya, Tsukasa Satake
  • Patent number: 5910450
    Abstract: A process for enriching substance emissions released from an object in the form of gases, vapors or aerosols, wherein the substance emissions are fed to an adsorption layer by diffusion or penetration and are enriched in the adsorption layer. The substance emission of an object is selectively detected according to the present invention by the adsorption layer being fixed on the surface of the object emitting pollutant, which surface is to be analyzed, by means of an adhesive tape projecting over the adsorption layer on all sides to offer adhesive surfaces for application to the object and to hermetically seal the adsorption layer against the ambient air. A nondestructive adsorption system is also provided, with direct or immediately following analysis for the rapid qualitative and/or quantitative determination of pollutants (e.g., gases, vapors, dusts) by means of a chemical or biological reaction, in which, e.g.
    Type: Grant
    Filed: August 6, 1996
    Date of Patent: June 8, 1999
    Assignee: Dragerwerk Aktiengesellschaft
    Inventors: Andreas Manns, Thomas Wuske, Dirk Zastrow, Sabine Grantz
  • Patent number: RE37485
    Abstract: The system for analyzing multiple samples includes a plurality of portable of sample supports each for accommodating a plurality of samples thereon, and an identification mechanism for identifying each sample location on each of the plurality of sample supports. The mass spectrometer is provided for analyzing each of the plurality of samples when positioned within a sample receiving chamber, and a laser source strikes each sample with a laser pulse to desorb and ionize sample molecules. The support transport mechanism provided provides for automatically inputting and outputting each of the sample supports from the sample receiving chamber of the mass spectrometer. A vacuum lock chamber receives the sample supports and maintains at least one of the sample supports within a controlled environment while samples on another of the plurality of sample supports are being struck with laser pulses.
    Type: Grant
    Filed: March 11, 1998
    Date of Patent: December 25, 2001
    Assignee: PerSeptive Biosystems, Inc.
    Inventor: Marvin L. Vestal