Having Selenium Or Tellurium Elemental Semiconductor Component Patents (Class 438/102)
  • Patent number: 12150295
    Abstract: Provided are a memory and a method for manufacturing the same, and relates to the technical field of semiconductors. The manufacturing method of a memory comprises: providing a substrate; forming a plurality of sacrificial pillars arranged at intervals between each two adjacent ones of the bit line isolation walls; forming a supplementary layer on surfaces of the sacrificial pillars; performing ion implantation to the supplementary layer; etching the supplementary layer; forming insulating pillars between adjacent sacrificial pillars; removing the sacrificial pillars and the remaining supplementary layer; and forming a plurality of node contact plugs in the contact holes.
    Type: Grant
    Filed: February 7, 2022
    Date of Patent: November 19, 2024
    Assignee: CHANGXIN MEMORY TECHNOLOGIES, INC.
    Inventor: Jingwen Lu
  • Patent number: 12150392
    Abstract: A tunable nonvolatile resistive element, wherein the device conductance is modulated by changing the length of a contact between a phase change material and a resistive liner. By choosing the contact length to be less than the transfer length a linear modulation of the conductance is obtained.
    Type: Grant
    Filed: December 22, 2020
    Date of Patent: November 19, 2024
    Assignee: International Business Machines Corporation
    Inventors: Guy M. Cohen, Takashi Ando, Nanbo Gong
  • Patent number: 12075627
    Abstract: An integrated circuit, a system, and a method to integrate phase change memory and magnetoresistive random access memory within a same integrated circuit in a system. The integrated circuit may include an MRAM and a PCM. The MRAM may include an MRAM bottom electrode, an MRAM stack, and an MRAM top electrode. The PCM may include a PCM bottom electrode, where the PCM bottom electrode has a lower height than the MRAM bottom electrode, a phase change material, and a PCM top electrode.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: August 27, 2024
    Assignee: International Business Machines Corporation
    Inventors: Ruilong Xie, Alexander Reznicek, Wei Wang, Tao Li, Tsung-Sheng Kang
  • Patent number: 12010934
    Abstract: A selection element including, in a first portion, a stack of amorphous layers, the thickness of each layer in the stack being smaller than or equal to 20 nm.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: June 11, 2024
    Assignee: Commissariat à l'Énergie Atomique et aux Énergies Alternatives
    Inventors: Gabriele Navarro, Mathieu Bernard, Chiara Sabbione, Marie-Claire Cyrille, Camille Laguna
  • Patent number: 11929117
    Abstract: In certain aspects, a memory device includes a bit line, a plurality of memory cells coupled with the bit line, and N selectors, where N is a positive integer greater than 1, and N word lines. Each one of the plurality of memory cells includes N phase-change memory (PCM) elements. Each one of the N selectors is coupled with a respective one of the N PCM elements. Each one of the N word lines is coupled with a respective one of the N selectors.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: March 12, 2024
    Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.
    Inventor: Xuwen Pan
  • Patent number: 11895934
    Abstract: A phase change memory (PCM) structure including a bottom electrode, a first dielectric spacer disposed above and in contact with the bottom electrode, the first dielectric spacer comprising a vertical seam, a PCM layer disposed above the first dielectric spacer, and a heater element disposed in the seam and in contact with the bottom electrode.
    Type: Grant
    Filed: August 25, 2021
    Date of Patent: February 6, 2024
    Assignee: International Business Machines Corporation
    Inventors: Kangguo Cheng, Chanro Park, Julien Frougier, Ruilong Xie
  • Patent number: 11888034
    Abstract: Transistor structures employing metal chalcogenide channel materials may be formed where a chalcogen is introduced into at least a portion of a precursor material that comprises reactive metal(s). The precursor material may be substantially metallic, or may be a metallic oxide (e.g., an oxide semiconductor). The metal(s) may be transition, Group II, Group III, Group V elements, or alloys thereof. An oxide of one or more such metals (e.g., IGZO) may be converted into a chalcogenide (e.g., IGZSx or IGZSex) having semiconducting properties. The chalcogenide formed in this manner may be only a few monolayers in thickness (and may be more thermally stable than many oxide semiconductors. Where not all of the precursor material is converted, a transistor structure may retain the precursor material, for example as part of a transistor channel or a gate dielectric. Backend transistors including metal chalcogenide channel materials may be fabricated over silicon CMOS circuitry.
    Type: Grant
    Filed: June 7, 2019
    Date of Patent: January 30, 2024
    Assignee: Intel Corporation
    Inventors: Abhishek A. Sharma, Ashish Agarwal, Urusa Alaan, Christopher Jezewski, Kevin Lin, Carl Naylor
  • Patent number: 11864473
    Abstract: Provided is a resistive random-access memory device, including a dielectric layer located on a substrate, a first electrode which is a column located on the dielectric layer, a second electrode covering a top surface and a sidewall of the first electrode, and a variable resistance layer sandwiched between the top surface of the first electrode and the second electrode and between the sidewall of the first electrode and the second electrode and located between the second electrode and the dielectric layer.
    Type: Grant
    Filed: August 17, 2021
    Date of Patent: January 2, 2024
    Assignee: United Microelectronics Corp.
    Inventors: Wen-Jen Wang, Chun-Hung Cheng, Chuan-Fu Wang
  • Patent number: 11817148
    Abstract: Techniques are provided for programming a self-selecting memory cell that stores a first logic state. To program the memory cell, a pulse having a first polarity may be applied to the cell, which may result in the memory cell having a reduced threshold voltage. During a duration in which the threshold voltage of the memory cell may be reduced (e.g., during a selection time), a second pulse having a second polarity (e.g., a different polarity) may be applied to the memory cell. Applying the second pulse to the memory cell may result in the memory cell storing a second logic state different than the first logic state.
    Type: Grant
    Filed: March 2, 2022
    Date of Patent: November 14, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Hernan A. Castro, Innocenzo Tortorelli, Agostino Pirovano, Fabio Pellizzer
  • Patent number: 11818967
    Abstract: A phase change random access memory (PCRAM) device includes a memory cell overlying an inter-metal dielectric (IMD) layer, a protection coating, and a first sidewall spacer. The memory cell includes a bottom electrode, a top electrode and a phase change element between the top electrode and the bottom electrode. The protection coating is on an outer sidewall of the phase change element. The first sidewall spacer is on an outer sidewall of the protection coating. The first sidewall spacer has a greater nitrogen atomic concentration than the protection coating.
    Type: Grant
    Filed: June 13, 2022
    Date of Patent: November 14, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD.
    Inventors: Yu-Chao Lin, Yuan-Tien Tu, Shao-Ming Yu, Tung-Ying Lee
  • Patent number: 11808828
    Abstract: The present disclosure relates to a magnonic magnetoresistance (MMR) device and an electronic equipment including the same. According to one embodiment, a core structure of a MMR device may include: a first ferromagnetic insulating layer (Ferro-magnetic Insulator, FMI1); a two-dimensional conductive material layer (Spacer) set on the first ferromagnetic insulating layer; and a second ferromagnetic insulating layer (Ferro-magnetic Insulator, FMI2) set on the two-dimensional conductive material layer. The MMR device of the present disclosure may enhance interface effect in spin electron transmission and thus improve performance of the MMR device.
    Type: Grant
    Filed: March 15, 2021
    Date of Patent: November 7, 2023
    Assignee: Institute of Physics, Chinese Academy of Sciences
    Inventors: Xiufeng Han, Yaowen Xing
  • Patent number: 11763857
    Abstract: A memory device includes transistors and a memory cell array disposed over and electrically coupled to the transistors. The memory cell array includes word lines, bit line columns, and data storage layers interposed between the word lines and the bit line columns. A first portion of the word lines on odd-numbered tiers of the memory cell array is oriented in a first direction, and a second portion of the word lines on even-numbered tiers of the memory cell array is oriented in a second direction that is angularly offset from the first direction. The bit line columns pass through the odd-numbered tiers and the even-numbered tiers, and each of the bit line columns is encircled by one of the data storage layers. A semiconductor die and a manufacturing method of a semiconductor structure are also provided.
    Type: Grant
    Filed: July 28, 2021
    Date of Patent: September 19, 2023
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Jung-Piao Chiu, Yu-Sheng Chen
  • Patent number: 11765988
    Abstract: A method for making a memory device, includes: forming a first dielectric layer over a bottom electrode; forming a first void extending through the first dielectric layer to expose a portion of an upper boundary of the bottom electrode; forming a first conductive structure lining along respective sidewalls of the first void and the exposed portion of the upper boundary of the bottom electrode; filling the first void with the first dielectric layer; and forming a phase change material layer over the first dielectric layer to cause the phase change material layer to contact at least a portion of a sidewall of the first conductive structure.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: September 19, 2023
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Hsu Yen, Yu-Chuan Hsu, Chen-Hui Yang
  • Patent number: 11715520
    Abstract: Systems, methods, and apparatus related to spike current suppression in a memory array. In one approach, a memory device includes a memory array having a cross-point memory architecture. The memory array has access lines (e.g., word lines and/or bit lines) configured to access memory cells of the memory array. Each access line has left and right portions. A conductive layer is positioned in the access line between the left and right portions. The conductive layer is formed in a socket that has been etched or otherwise formed in the access line to provide an opening. This opening is filled by the conductive layer. The conductive layer electrically connects the left and right portions of the access line to a via. A driver is electrically connected to the via for generating a voltage on the access line for accessing one or more memory cells.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: August 1, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Robert Douglas Cassel, Sundaravadivel Rajarajan, Srivatsan Venkatesan, Iniyan Soundappa Elango
  • Patent number: 11711989
    Abstract: An embodiment of the invention may include a semiconductor structure. The semiconductor structure may include a phase change element located above a heater. The heater may include a conductive element surrounding a dielectric element. The dielectric element may include an air gap.
    Type: Grant
    Filed: March 23, 2021
    Date of Patent: July 25, 2023
    Assignee: International Business Machines Corporation
    Inventors: Injo Ok, Alexander Reznicek, Soon-Cheon Seo, Youngseok Kim, Timothy Mathew Philip
  • Patent number: 11683940
    Abstract: A variable resistance memory device and a method of manufacturing the same, the variable resistance memory device including a substrate including a first memory region and a second memory region; a plurality of first memory cells on the first memory region; and a plurality of second memory cells on the second memory region, wherein each of the first memory cells includes a first resistance element and a selection element, each of the second memory cells includes a second resistance element, and a maximum value of a variable resistance of the second resistance element is less than a maximum value of a variable resistance of the first resistance element.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: June 20, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventor: Dongkyu Lee
  • Patent number: 11647638
    Abstract: A memory cell design is disclosed. In an embodiment, the memory cell structure includes at least one memory bit layer stacked between top and bottom electrodes. The memory bit layer provides a storage element for a corresponding memory cell. One or more additional conductive layers may be included between the memory bit layer and either, or both, of the top or bottom electrodes to provide a better ohmic contact. In any case, a dielectric liner structure is provided on sidewalls of the memory bit layer. The liner structure includes a dielectric layer, and may also include a second dielectric layer on a first dielectric layer. Either or both first dielectric layer or second dielectric layer comprises a high-k dielectric material. As will be appreciated, the dielectric liner structure effectively protects the memory bit layer from lateral erosion and contamination during the etching of subsequent layers beneath the memory bit layer.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: May 9, 2023
    Assignee: Intel Corporation
    Inventors: Anna Maria Conti, Fabio Pellizzer, Agostino Pirovano, Kolya Yastrebenetsky
  • Patent number: 11640937
    Abstract: In a method for forming a semiconductor device, a plurality of conductive lines is formed as a part of a first wiring level of the semiconductor device. The first wiring level is positioned over a first level having a plurality of transistor devices. The plurality of conductive lines extends parallel to the first level. In addition, a programmable horizontal bridge is formed that extends parallel to the first level, and electrically connects a first conductive line and a second conductive line of the plurality of conductive lines in the first wiring level. The programmable horizontal bridge is formed based on a programmable material that changes phase between a conductive state and a non-conductive state according to a current pattern delivered to the programmable horizontal bridge.
    Type: Grant
    Filed: June 2, 2021
    Date of Patent: May 2, 2023
    Assignee: Tokyo Electron Limited
    Inventors: H. Jim Fulford, Mark I. Gardner, Anton J. deVilliers
  • Patent number: 11574107
    Abstract: A method of manufacturing a semiconductor device includes forming a transistor layer with an M*1st layer that overlays the transistor layer with one or more first conductors that extend in a first direction. Forming an M*2nd layer that overlays the M*1st layer with one or more second conductors which extend in a second direction. Forming a first pin in the M*2nd layer representing an output pin of a cell region. Forming a long axis of the first pin substantially along a selected one of the one or more second conductors. Forming a majority of the total number of pins in the M*1st layer, the forming including: forming second, third, fourth and fifth pins in the M*1st layer representing corresponding input pins of the circuit; and forming long axes of the second to fifth pins substantially along corresponding ones of the one or more first conductors.
    Type: Grant
    Filed: June 4, 2021
    Date of Patent: February 7, 2023
    Assignee: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Pin-Dai Sue, Po-Hsiang Huang, Fong-Yuan Chang, Chi-Yu Lu, Sheng-Hsiung Chen, Chin-Chou Liu, Lee-Chung Lu, Yen-Hung Lin, Li-Chun Tien, Yi-Kan Cheng
  • Patent number: 11557723
    Abstract: A semiconductor device is provided. The semiconductor device includes a substrate a substrate, a first electrode structure on the substrate, the first electrode structure including first insulating patterns and first electrode patterns, the first insulating patterns alternately stacked with the first electrode patterns, a second electrode pattern on a sidewall of the first electrode structure, and a data storage film on a sidewall of the second electrode pattern. The data storage film has a variable resistance.
    Type: Grant
    Filed: October 21, 2019
    Date of Patent: January 17, 2023
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Jungho Yoon, Soichiro Mizusaki, Youngjin Cho
  • Patent number: 11532786
    Abstract: Technologies for reducing series resistance are disclosed. An example method may comprise: forming a first layer on a temporary substrate; forming a second layer on the first layer; etching the first layer and the second layer to form a trench; electroplating a top electrode via the trench, wherein the top electrode partially formed on a top surface of the second layer; removing the first layer and the second layer; forming a curable layer on the temporary substrate and the top electrode; removing the temporary substrate from the curable layer and the top electrode; forming a cross-point device on the curable layer and the top electrode; forming a bottom electrode on the cross-point device; and forming a flexible substrate on the bottom electrode.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: December 20, 2022
    Assignee: TETRAMEM INC.
    Inventor: Ning Ge
  • Patent number: 11522016
    Abstract: Three-dimensional vertical memory array cell structures and processes. In an exemplary embodiment, a 3D vertical memory array structure is formed by performing operations that include forming an array stack having alternating metal layers and insulator layers, forming a hole through the array stack to expose internal surfaces of the metal layers and internal surfaces of the insulator layers, and performing a metal-oxidation process on the internal surfaces of the metal layers to form selector devices on the internal surfaces of the metal layers. The operations also include depositing one of resistive material or phase-change material within the hole on the selector devices and the internal surfaces of the insulator layers, such that the hole is reduced to a smaller hole, and depositing conductor material in the smaller hole.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: December 6, 2022
    Inventor: Fu-Chang Hsu
  • Patent number: 11515475
    Abstract: The present disclosure generally relates to memory devices and methods of forming the same. More particularly, the present disclosure relates to resistive random-access (ReRAM) memory devices. The present disclosure provides a memory device including an opening in a dielectric structure, the opening having a sidewall, a first electrode on the sidewall of the opening, a spacer layer on the first electrode, a resistive layer on the first electrode and upon an upper surface of the spacer layer, and a second electrode on the resistive layer.
    Type: Grant
    Filed: May 14, 2020
    Date of Patent: November 29, 2022
    Assignee: GLOBALFOUNDRIES SINGAPORE PTE. LTD.
    Inventors: Curtis Chun-I Hsieh, Wei-Hui Hsu, Wanbing Yi, Yi Jiang, Kai Kang, Juan Boon Tan
  • Patent number: 11495306
    Abstract: An electronic device comprises a multi-chip package including multiple memory dice that include a memory array, charging circuitry, polling circuitry and a control unit. The charging circuitry is configured to perform one or more memory events in a high current mode using a high current level or in a low current mode using a lower current level. The polling circuitry is configured to poll a power status node common to the multiple memory dice to determine availability of the high current mode. The control unit is configured to operate the charging circuitry in the high current mode to perform the one or more memory events when the polling circuitry indicates that the high current mode is available, and operate the charging circuitry in the low current mode to perform the one or more memory events when the polling circuitry indicates that the high current mode is unavailable.
    Type: Grant
    Filed: February 15, 2021
    Date of Patent: November 8, 2022
    Assignee: Micron Technology, Inc.
    Inventors: Michele Piccardi, Xiaojiang Guo, Kalyan Chakravarthy C. Kavalipurapu
  • Patent number: 11476417
    Abstract: A phase change memory and a method of fabricating the same are provided. The phase change memory includes a lower electrode, an annular heater disposed over the lower electrode, an annular phase change layer disposed over the annular heater, and an upper electrode. The annular phase change layer and the annular heater are misaligned in a normal direction of the lower electrode. The upper electrode is disposed over the annular phase change layer, in which the upper electrode is in contact with an upper surface of the annular phase change layer. The present disclosure simplifies the manufacturing process of the phase change memory, reduces the manufacturing cost, and improves the manufacturing yield. In addition, a contact surface between the heater and the phase change layer of the phase change memory of the present disclosure is very small, so that the phase change memory has an extremely low reset current.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: October 18, 2022
    Assignees: JIANGSU ADVANCED MEMORY TECHNOLOGY CO., LTD., JIANGSU ADVANCED MEMORY SEMICONDUCTOR CO., LTD.
    Inventors: Sheng-Hung Cheng, Ming-Feng Chang, Tzu-Hao Yang
  • Patent number: 11430954
    Abstract: A mushroom-type Phase-Change Memory (PCM) device includes a substrate, a lower interconnect disposed in the substrate, a first dielectric layer disposed on the substrate, a bottom electrode disposed in the first dielectric layer and extending above an upper surface of the first dielectric layer, a type drift-mitigation liner encircling an upper portion of the bottom electrode extending above the upper surface of the first dielectric layer, a PCM element disposed on the liner and an upper surface of the bottom electrode, a top electrode disposed on the PCM element, and a second dielectric layer disposed on an exposed portion of the first dielectric layer and the top electrode, wherein the second dielectric layer is disposed on sidewalls of the liner, the PCM element, and the top electrode.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: August 30, 2022
    Assignee: International Business Machines Corporation
    Inventors: Praneet Adusumilli, Anirban Chandra, Takashi Ando, Cheng Chi, Reinaldo Vega
  • Patent number: 11408068
    Abstract: Methods for depositing tellurium-containing films on a substrate are described. The substrate is exposed to a tellurium precursor and a reactant to form the tellurium-containing film (e.g., elemental tellurium, tellurium oxide, tellurium carbide, tellurium silicide, germanium telluride, antimony telluride, germanium antimony telluride). The exposures can be sequential or simultaneous.
    Type: Grant
    Filed: February 1, 2021
    Date of Patent: August 9, 2022
    Assignee: Applied Materials, Inc.
    Inventors: Thomas Knisley, Keenan N. Woods, Mark Saly, Charles H. Winter, Apoorva Upadhyay
  • Patent number: 11264428
    Abstract: An integrated circuit comprising a self-aligned embedded phase change memory cell is described. In an example, the integrated circuit includes a bottom electrode. A conductive line is above the bottom electrode along a first direction above a substrate. A memory element is coupled between the bottom electrode and the conductive line, the memory element comprising a phase change material layer that is self-aligned with the conductive line.
    Type: Grant
    Filed: September 29, 2017
    Date of Patent: March 1, 2022
    Assignee: Intel Corporation
    Inventor: Charles C. Kuo
  • Patent number: 11101319
    Abstract: A semiconductor storage device includes first and second wirings that are in a first layer above the substrate, extend along a first direction, and are adjacent to each other along a second direction, third and fourth wirings that are in a second layer above the first layer, extend along the second direction, and are adjacent to each other along the first direction, first and second memory cells on the first wiring, and a third memory cell on the second wiring. The first to third memory cells each include a variable resistance element and a switching element. The switching element of the first memory cell includes a gate coupled to the third wiring. The switching elements of the second and third memory cells each include a gate coupled to the fourth wiring. The variable resistance elements of the first to third memory cells are formed with equal distances from each other.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: August 24, 2021
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Tadashi Miyakawa, Katsuhiko Hoya, Hiroyuki Takenaka
  • Patent number: 11094544
    Abstract: Processing methods comprising selectively orthogonally growing a first material through a mask to provide an expanded first material are described. The mask can be removed leaving the expanded first material extending orthogonally from the surface of the first material. Further processing can create a self-aligned via.
    Type: Grant
    Filed: July 25, 2019
    Date of Patent: August 17, 2021
    Assignee: Applied Materials, Inc.
    Inventors: David Thompson, Benjamin Schmiege, Jeffrey W. Anthis, Abhijit Basu Mallick, Susmit Singha Roy, Ziqing Duan, Yihong Chen, Kelvin Chan, Srinivas Gandikota
  • Patent number: 11031550
    Abstract: A memory cell includes a selection transistor having a control gate and a first conduction terminal connected to a variable-resistance element. The memory cell is formed in a wafer comprising a semiconductor substrate covered with a first insulating layer, the insulating layer being covered with an active layer made of a semiconductor. The gate is formed on the active layer and has a lateral flank covered with a second insulating layer. The variable-resistance element includes a first layer covering a lateral flank of the active layer in a trench formed through the active layer along the lateral flank of the gate and reaching the first insulating layer, and a second layer made of a variable-resistance material.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: June 8, 2021
    Assignees: STMicroelectronics (Crolles 2) SAS, STMicroelectronics (Rousset) SAS
    Inventors: Philippe Boivin, Simon Jeannot
  • Patent number: 10991880
    Abstract: A variable resistance memory device includes a substrate. A first conductive line is disposed on the substrate and extends primarily in a first direction. A second conductive line is disposed on the substrate and extends primarily in a second direction. The second direction intersects the first direction. A phase change pattern is disposed between the first conductive line and the second conductive line. A bottom electrode is disposed between the phase change pattern and the first bottom electrode includes first a first sidewall segment that connects the first conductive line and the phase change pattern to each other. The phase change pattern has a width in the first direction that decreases toward the substrate. The first sidewall segment has a first lateral surface and a second lateral surface that face each other. A lowermost portion of the phase change pattern is disposed between the first lateral surface and the second lateral surface.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: April 27, 2021
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Ilmok Park, Gwang-Hyun Baek, Seulji Song
  • Patent number: 10862031
    Abstract: In some embodiments, the present disclosure relates to an integrated chip including a phase change material disposed over a bottom electrode and configured to change from a crystalline structure to an amorphous structure upon temperature changes. A top electrode is disposed over an upper surface of the phase change material. A via electrically contacts a top surface of the top electrode. Further, a maximum width of the upper surface of the phase change material is less than a maximum width of a bottom surface of the phase change material.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: December 8, 2020
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yu Chao Lin, Jui-Ming Chen, Shao-Ming Yu, Tung Ying Lee, Yu-Sheng Chen
  • Patent number: 10811607
    Abstract: A phase change memory and a method of fabricating the same are provided. The phase change memory includes a lower electrode, an annular heater, an annular phase change layer, and an upper electrode. The annular heater is disposed over the lower electrode. The annular phase change layer is disposed over the annular heater, and the annular phase change layer and the annular heater are misaligned in a normal direction of the lower electrode. The upper electrode is disposed over the annular phase change layer. The present disclosure simplifies the manufacturing process of the phase change memory, reduces the manufacturing cost, and improves the manufacturing yield. In addition, a contact surface between the heater and the phase change layer of the phase change memory of the present disclosure is very small, so that the phase change memory has an extremely low reset current.
    Type: Grant
    Filed: May 28, 2019
    Date of Patent: October 20, 2020
    Assignees: JIANGSU ADVANCED MEMORY TECHNOLOGY CO., LTD., JIANGSU ADVANCED MEMORY SEMICONDUCTOR CO., LTD.
    Inventors: Sheng-Hung Cheng, Ming-Feng Chang, Tzu-Hao Yang
  • Patent number: 10714686
    Abstract: Variable resistance memory devices and methods of forming the same are provided. The variable resistance memory devices may include a substrate including a cell region and a peripheral region, first conductive lines on the substrate, second conductive lines traversing the first conductive lines, variable resistance structures at intersecting points of the first conductive lines and the second conductive lines, and bottom electrodes between the first conductive lines and the variable resistance structures. The cell region may include a boundary region contacting the peripheral region, and one of the first conductive lines is electrically insulated from one of the variable resistance structures that is on the boundary region and overlaps the one of the first conductive lines.
    Type: Grant
    Filed: January 12, 2018
    Date of Patent: July 14, 2020
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Sungwon Kim, Sung-Ho Eun, Ilmok Park, Junghoon Park, Seulji Song, Ji-Hyun Jeong
  • Patent number: 10714177
    Abstract: Methods, systems, and devices for operating and forming a multilevel memory cell and array are described. A multilevel memory cell includes two or more binary memory elements, which may include phase change material. Each memory element may be programmed to one of two possible states—e.g., a fully amorphous state or a fully crystalline state. By combining multiple binary memory elements in a single memory cell, the memory cell may be programmed to store more than two states. The different memory elements may be programmed by selectively melting each memory element. Selective melting may be controlled by using memory elements with different melting temperatures or using electrodes with different electrical resistances, or both.
    Type: Grant
    Filed: April 17, 2019
    Date of Patent: July 14, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Mario Allegra, Mattia Boniardi
  • Patent number: 10693066
    Abstract: Subject matter described pertains to methods, apparatuses, and circuits for programming a memory device.
    Type: Grant
    Filed: June 3, 2019
    Date of Patent: June 23, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Andrea Redaelli, Agostino Pirovano, Umberto M. Meotto
  • Patent number: 10667060
    Abstract: The present invention provides a sound generation device and a preparation method of a metal plastic part. The sound generation device comprises a metal plastic part. The metal plastic part comprises a plastic part and a metal insert that is combined with the plastic part. An oxidation film that is obtained through metal nanocrystallization and a nanopore that is formed in a surface of the oxidation film and has a pore diameter of 20-1,000 nm are arranged on a surface of the metal insert. The nanopore is filled with a resin composition from which the plastic part is made. As the nanopore is filled with the resin composition from which the plastic part is made, the metal insert and the plastic part are in close fit with each other, which greatly enhances the gluing capability of the metal insert and prevents the metal insert and the plastic part which are formed through injection molding from being separated.
    Type: Grant
    Filed: December 28, 2016
    Date of Patent: May 26, 2020
    Assignee: GOERTEK INC.
    Inventors: Qingyi Zhang, Gang Chen, Zhenjun Li, Shuangshuang Fan
  • Patent number: 10651239
    Abstract: A storage device includes: a first conductive layer; a second conductive layer; and a resistance-variable layer disposed between the first conductive layer and the second conductive layer, and including a first chalcogenide containing a first element which is either silicon or germanium. An insulating layer is disposed in a second direction perpendicular to a first direction from the first conductive layer to the second conductive layer with respect to the resistance-variable layer. A first region is disposed between the resistance-variable layer and the insulating layer, and has a third concentration of the first element higher than both a first concentration of the first element in the resistance-variable layer and a second concentration of the first element in the insulating layer.
    Type: Grant
    Filed: March 1, 2019
    Date of Patent: May 12, 2020
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventor: Kazuhiko Yamamoto
  • Patent number: 10573812
    Abstract: Variable-resistance material memories include a buried salicide word line disposed below a diode. Variable-resistance material memories include a metal spacer spaced apart and next to the diode. Processes include the formation of one of the buried salicide word line and the metal spacer. Devices include the variable-resistance material memories and one of the buried salicided word line and the spacer word line.
    Type: Grant
    Filed: September 11, 2018
    Date of Patent: February 25, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Jun Liu, Michael P. Violette
  • Patent number: 10388866
    Abstract: Subject matter described pertains to methods, apparatuses, and circuits for programming a memory device.
    Type: Grant
    Filed: November 8, 2018
    Date of Patent: August 20, 2019
    Assignee: Micron Technology, Inc.
    Inventors: Andrea Redaelli, Agostino Pirovano, Umberto M. Meotto
  • Patent number: 10344381
    Abstract: The present invention is in the field of processes for the generation of thin inorganic films on substrates, in particular atomic layer deposition processes. In detail the present invention relates a process comprising bringing a compound of general formula (I) into the gaseous or aerosol state (Fig.) and depositing the compound of general formula (I) from the gaseous or aerosol state onto a solid substrate, wherein R1 and R4 are independent of each other an alkyl group, an aryl group or a trialkylsilyl group, R2, R3, R5 and R6 are independent of each other hydrogen, an alkyl group, an aryl group or a trialkylsilyl group, n is an integer from 1 to 3, M is Ni or Co, X is a ligand which coordinates M, and m is an integer from 0 to 4.
    Type: Grant
    Filed: July 22, 2015
    Date of Patent: July 9, 2019
    Assignee: BASF SE
    Inventors: Julia Strautmann, Rocco Paciello, Thomas Schaub, Felix Eickemeyer, Daniel Loeffler, Hagen Wilmer, Udo Radius, Johannes Berthel, Florian Hering
  • Patent number: 10276793
    Abstract: A variable resistance memory device includes a plurality of first conductive lines, each of the first conductive lines extends in a first direction, a plurality of second conductive lines are above the first conductive lines, and each of the second conductive lines extend in a second direction transverse to the first direction. A plurality of first memory cells are at intersections where the first and second conductive lines overlap each other, each of the first memory cells including a first variable resistance structure having a first variable resistance pattern, a first sacrificial pattern and a second variable resistance pattern sequentially stacked in the first direction on a first plane. A plurality of third conductive lines are above the second conductive lines, each of the third conductive lines extend in the first direction, and a plurality of second memory cells are at intersections where the second and the third conductive lines overlap each other.
    Type: Grant
    Filed: May 15, 2017
    Date of Patent: April 30, 2019
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Jae Jung, Youn-Seon Kang
  • Patent number: 10266553
    Abstract: A compound and the use thereof to prepare a functional or telechelic polyolefin is provided. The compound has the following formula (II): Y((CH2)p—B?)m??(II), wherein m=2 or 3; Y being an alkaline earth metal or zinc when m=2, Y being aluminum when m=3; B? being selected from the group comprising N(SiMe3)2; N(SiMe2CH2CH2SiMe2); C6F5; C3F7; C6F13; para-C6H4—NMe2; para-C6H4—O-Me; para-C6H4—N(SiMe3)2; and CH(OCH2CH2O); and p being an integer from 0 to 50.
    Type: Grant
    Filed: December 11, 2015
    Date of Patent: April 23, 2019
    Assignees: COMPAGNIE GENERALE DES ETABLISSEMENTS MICHELIN, MICHELIN RECHERCHE ET TECHNIQUE S.A., UNIVERSITE CLAUDE BERNARD LYON 1, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, CPE LYON FORMATION CONTINUE ET RECHERCHE
    Inventors: Guillaume Cortial, Julien Thuilliez, Christophe Boisson, Franck D'Agosto, Sébastien Norsic
  • Patent number: 10269562
    Abstract: The invention provides the use of at least one binary group 15 element compound of the general formula R1R2E-E?R3R4 (I) or R5E(E?R6R7)2 (II) as the educt in a vapor deposition process. In this case, R1, R2, R3 and R4 are independently selected from the group consisting of H, an alkyl radical (C1-C10) and an aryl group, and E and E? are independently selected from the group consisting of N, P, As, Sb and Bi. This use excludes hydrazine and its derivatives. The binary group 15 element compounds according to the invention allow the realization of a reproducible production and/or deposition of multinary, homogeneous and ultrapure 13/15 semiconductors of a defined combination at relatively low process temperatures. This makes it possible to completely waive the use of an organically substituted nitrogen compound such as 1.
    Type: Grant
    Filed: September 25, 2015
    Date of Patent: April 23, 2019
    Assignee: PHILIPPS-UNIVERSITÄT MARBURG
    Inventors: Carsten Von Haenisch, Kerstin Volz, Wolfgang Stolz, Eduard Sterzer, Andreas Beyer, Dominik Keiper, Benjamin Ringler
  • Patent number: 10249491
    Abstract: Atomic Layer Deposition (ALD) is used for heteroepitaxial film growth at reaction temperatures ranging from 80-400° C. The substrate and film materials are preferably matched to take advantage of Domain Matched Epitaxy (DME). A laser annealing system is used to thermally anneal deposition layer after deposition by ALD. In preferred embodiments, a silicon substrate is overlaid with an AlN nucleation layer and laser annealed. Thereafter a GaN device layer is applied over the AlN layer by an ALD process and then laser annealed. In a further example embodiment, a transition layer is applied between the GaN device layer and the AlN nucleation layer. The transition layer comprises one or more different transition material layers each comprising a AlxGa1-xN compound wherein the composition of the transition layer is continuously varied from AlN to GaN.
    Type: Grant
    Filed: April 2, 2018
    Date of Patent: April 2, 2019
    Assignee: Ultratech, Inc.
    Inventors: Ganesh Sundaram, Andrew M. Hawryluk, Daniel Stearns
  • Patent number: 10164187
    Abstract: Subject matter described pertains to methods, apparatuses, and circuits for programming a memory device.
    Type: Grant
    Filed: December 29, 2017
    Date of Patent: December 25, 2018
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Andrea Redaelli, Agostino Pirovano, Umberto M. Meotto
  • Patent number: 10062801
    Abstract: A method of making a semiconductor device includes forming a semiconductor material stack having a sodium at an atomic concentration greater than 1×1019/cm3, depositing a transparent conductive oxide layer over the semiconductor material stack, such that sodium atoms diffuse from the semiconductor material stack into the transparent conductive oxide layer, and contacting a physically exposed surface of the transparent conductive oxide layer with a fluid to remove sodium from the transparent conductive oxide layer.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: August 28, 2018
    Assignee: BEIJING APOLLO DING RONG SOLAR TECHNOLOGY CO., LTD.
    Inventor: Dmitry Poplavskyy
  • Patent number: 9976228
    Abstract: [Problem] To provide a method for producing a colloidal crystal, wherein the method is easily controlled and is capable of dealing with a wide range of types of colloidal particle. [Solution] The method for producing a colloidal crystal in the present invention is characterized by comprising a preparation step of preparing a colloidal dispersion liquid, in which colloidal particles are dispersed in a liquid comprising an ionic surfactant and a colloidal crystal can be formed due to temperature changes, and a crystallization step of formation of a colloidal crystal by changing the temperature of the colloidal dispersion liquid from a temperature region in which the colloidal crystal is not formed to a temperature region in which the colloidal crystal is formed.
    Type: Grant
    Filed: March 3, 2012
    Date of Patent: May 22, 2018
    Assignees: PUBLIC UNIVERSITY CORPORATION NAGOYA CITY UNIVERSITY, FUJI CHEMICAL CO., LTD.
    Inventors: Junpei Yamanaka, Akiko Toyotama, Masaaki Yamamoto, Sachiko Onda, Tohru Okuzono, Fumio Uchida
  • Patent number: 9960036
    Abstract: Atomic Layer Deposition (ALD) is used for heteroepitaxial film growth at reaction temperatures ranging from 80-400° C. The substrate and film materials are preferably matched to take advantage of Domain Matched Epitaxy (DME). A laser annealing system is used to thermally anneal deposition layer after deposition by ALD. In preferred embodiments, a silicon substrate is overlaid with an AlN nucleation layer and laser annealed. Thereafter a GaN device layer is applied over the AlN layer by an ALD process and then laser annealed. In a further example embodiment, a transition layer is applied between the GaN device layer and the AlN nucleation layer. The transition layer comprises one or more different transition material layers each comprising a AlxGa1-xN compound wherein the composition of the transition layer is continuously varied from AlN to GaN.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: May 1, 2018
    Assignee: Ultratech, Inc.
    Inventors: Ganesh Sundaram, Andrew M. Hawryluk, Daniel Stearns