Having Step Of Storing Electrical Charge In Gate Dielectric Patents (Class 438/288)
-
Patent number: 11031510Abstract: A semiconductor device including a field effect transistor (FET) device includes a substrate and a channel structure formed of a two-dimensional (2D) material over the substrate. Source and drain contacts are formed partially over the 2D material. A first dielectric layer is formed at least partially over the channel structure and at least partially over the source and drain contacts. The first dielectric layer is configured to trap charge carriers. A second dielectric layer is formed over the first dielectric layer, and a gate electrode is formed over the second dielectric layer.Type: GrantFiled: December 16, 2019Date of Patent: June 8, 2021Assignees: TAIWAN SEMICONDUCTOR MANUFACTURING CO., LTD., NATIONAL CHIAO TUNG UNIVERSITYInventors: Tuo-Hung Hou, Samuel C. Pan, Pang-Shiuan Liu
-
Patent number: 11004861Abstract: Embodiments of a method for forming a three-dimensional (3D) memory device includes the following operations. First, an initial channel hole is formed in a stack structure of a plurality first layers and a plurality of second layers alternatingly arranged over a substrate. An offset is formed between a side surface of each one of the plurality of first layers and a side surface of each one of the plurality of second layers on a sidewall of the initial channel hole to form a channel hole. A semiconductor channel is formed by filling the channel hole with a channel-forming structure, the semiconductor channel having a memory layer including a plurality of first memory portions each surrounding a bottom of a respective second layer and a plurality of second memory portions each connecting adjacent first memory portions.Type: GrantFiled: August 14, 2019Date of Patent: May 11, 2021Assignee: YANGTZE MEMORY TECHNOLOGIES CO., LTD.Inventor: Li Hong Xiao
-
Patent number: 10998338Abstract: Some embodiments include a ferroelectric transistor having an active region which includes a first source/drain region, a second source/drain region, and a body region between the first and second source/drain regions. The body region has a different semiconductor composition than at least one of the first and second source/drain regions to enable replenishment of carrier within the body region. An insulative material is along the body region. A ferroelectric material is along the insulative material. A conductive gate material is along the ferroelectric material.Type: GrantFiled: November 13, 2018Date of Patent: May 4, 2021Assignee: Micron Technology, Inc.Inventors: Kamal M. Karda, Durai Vishak Nirmal Ramaswamy, Haitao Liu
-
Patent number: 10396206Abstract: A method of manufacturing a semiconductor device includes the formation of an oxide spacer layer to modify the critical dimension of a gate cut opening in connection with a replacement metal gate process. The oxide spacer layer is deposited after etching a gate cut opening in an overlying hard mask such that the oxide spacer layer is deposited onto sidewall surfaces of the hard mask within the opening and directly over the top surface of a sacrificial gate. The oxide spacer may also be deposited into recessed regions within an interlayer dielectric located adjacent to the sacrificial gate. By filling the recessed regions with an oxide, the opening of trenches through the oxide spacer layer and the interlayer dielectric to expose source/drain junctions can be simplified.Type: GrantFiled: July 7, 2017Date of Patent: August 27, 2019Assignee: GLOBALFOUNDRIES INC.Inventors: Ashish Kumar Jha, Haiting Wang, Wei Hong, Wei Zhao, Tae Jeong Lee, Zhenyu Hu
-
Patent number: 9893073Abstract: A semiconductor nonvolatile memory element is used to form a constant current source in a semiconductor integrated circuit device. The semiconductor nonvolatile memory element includes a control gate electrode, a floating gate electrode, source/drain terminals, a thin first gate insulating film, and a second gate insulating film that is thick enough not to be broken down even when a voltage higher than an operating voltage of the semiconductor integrated circuit device is applied thereto, the first and second gate insulating films being formed below the control gate electrode. Thus, provided is a normally on type semiconductor nonvolatile memory element in which a threshold voltage can be regulated through injection of a large amount of charge with respect to the operating voltage from a drain terminal into the floating gate electrode via the second gate insulating film, and injected carriers do not leak in an operating voltage range.Type: GrantFiled: February 22, 2017Date of Patent: February 13, 2018Assignee: SII SEMICONDUCTOR CORPORATIONInventors: Hirofumi Harada, Shinjiro Kato
-
Patent number: 9500773Abstract: A photoconductive switch having a wide bandgap material substrate between opposing electrodes, and a doped dielectric filler that is in contact with both the electrodes and the substrate at the triple point. The dielectric filler material is doped with a conductive material to make it partially or completely conducting, to minimize the field enhancement near the triple point both when the substrate is not conducting in the “off” state and when the substrate is rendered conducting by radiation in the “on” state.Type: GrantFiled: June 7, 2013Date of Patent: November 22, 2016Assignee: Lawrence Livermore National Security, LLCInventor: George J. Caporaso
-
Patent number: 9281365Abstract: According to one embodiment, a semiconductor device includes a first semiconductor region, a second semiconductor region, a third semiconductor region, a first electrode, a first insulating section, and a second insulating section. The first semiconductor region includes silicon carbide, is of a first conductivity type and includes first and second parts. The second semiconductor region includes silicon carbide, is of a second conductivity type and is provided on the second part. The third semiconductor region includes silicon carbide, is of the first conductivity type and is provided on the second semiconductor region. The first electrode is provided on the first part and the third semiconductor region. The first insulating section is provided on the third semiconductor region and juxtaposed with the first electrode. The second insulating section is provided between the first electrode and the first part and between the first electrode and the first insulating section.Type: GrantFiled: August 20, 2014Date of Patent: March 8, 2016Assignee: Kabushiki Kaisha ToshibaInventors: Ryosuke Iljima, Kazuto Takao, Chiharu Ota, Tatsuo Shimizu, Takashi Shinohe
-
Patent number: 9166013Abstract: A nonvolatile memory device having a plurality of unit cells, each of the plurality of unit cells includes a first transistor suitable for having a fixed threshold voltage, and a second transistor suitable for coupling to the first transistor in parallel and having a variable threshold voltage.Type: GrantFiled: September 6, 2013Date of Patent: October 20, 2015Assignee: SK Hynix Inc.Inventor: Sung-Kun Park
-
Patent number: 9040405Abstract: A method of forming a semiconductor device including forming a dielectric material layer on a semiconductor layer, forming a gate electrode material layer on the dielectric material layer, forming mask features on the gate electrode material layer, forming a spacer layer on and at sidewalls of the mask features and on the gate electrode material layer between the mask features, removing the spacer layer from the gate electrode material layer between the mask features, and etching the gate electrode material layer and dielectric material layer using the hard mask features as an etch mask to obtain gate electrode structures. A semiconductor device including first and second gate electrode structures, each covered by a cap layer that comprises a mask material surrounded at the sidewalls thereof by a spacer material different from the mask material, and the distance between the first and second electrode structures is at most 100 nm.Type: GrantFiled: October 1, 2013Date of Patent: May 26, 2015Assignee: GLOBALFOUNDRIES Inc.Inventors: Tom Hasche, Sven Beyer, Gerhard Lembach, Alexander Ebermann
-
Patent number: 9035397Abstract: A method for manufacturing a gate structure may include the following steps: providing a stack on a substrate, the first stack including (from top to bottom) a dummy layer, a first TiN layer, a TaN layer, a second TiN layer, a high-k first dielectric layer, and an interfacial layer; etching the stack to result in a remaining stack that includes at least a remaining dummy layer, a first remaining TiN layer, and a remaining TaN layer; providing an etching stop layer on the substrate; providing a second dielectric layer on the etching stop layer; performing planarization according to the remaining dummy layer; removing the remaining dummy layer and a first portion of the first remaining TiN layer using a dry etching process; removing a second portion of the first remaining TiN layer using a wet etching process; and providing a metal gate layer on the remaining TaN layer.Type: GrantFiled: June 21, 2013Date of Patent: May 19, 2015Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATIONInventors: Aileen Li, Jinghua Ni, David Han
-
Patent number: 9012290Abstract: A method includes forming a patterned gate stack for a memory device, the patterned gate stack including a gate insulation layer, a charge storage layer, a blocking insulation layer and a gate electrode, the gate insulation layer and the blocking insulation layer having an initial width. An etching process is performed on the patterned gate stack to selectively remove at least a portion of each of the gate insulation layer and the blocking insulation layer, the etching process reducing a width of each of the gate insulation layer and the blocking insulation layer from the initial width to a final width. After performing the etching process, at least one material layer is formed proximate sidewalls of the patterned gate stack, the at least one material layer laterally confining each of the gate insulation layer, the charge storage layer, the blocking insulation layer, and the gate electrode.Type: GrantFiled: July 31, 2014Date of Patent: April 21, 2015Assignee: GLOBALFOUNDRIES Singapore Pte LtdInventor: Shyue Seng Tan
-
Patent number: 8999785Abstract: Flash-to-ROM conversion is performed by converting single transistor flash memory cells to single transistor ROM cells. An S-Flash memory cell is converted to a programmed ROM cell by introducing a threshold voltage implant into the channel region of the S-Flash memory cell. Alternately, an S-Flash memory cell is converted to a programmed ROM cell by introducing a threshold voltage implant into a substrate region in alignment with an edge of the gate electrode of the S-Flash memory cell. The width of the mask through which this threshold voltage implant is performed can be varied, such that the threshold voltage implant region can have different dopant concentrations, thereby allowing multiple bits to be represented by the programmed ROM cell. In another embodiment, a Y-flash memory cell is converted to a programmed ROM cell by adjusting the length of a floating gate extension region of the Y-Flash memory cell.Type: GrantFiled: September 27, 2011Date of Patent: April 7, 2015Assignee: Tower Semiconductor Ltd.Inventors: Itzhak Edrei, Yakov Roizin
-
Patent number: 8987105Abstract: A method of manufacturing an SiC semiconductor device according to the present invention includes the steps of (a) by using a single mask, etching regions of an SiC semiconductor layer which serve as an impurities implantation region and a mark region, to form recesses, (b) by using the same mask as in the step (a), performing ion-implantation in the recesses of the regions which serve as the impurities implantation region and the mark region, at least from an oblique direction relative to a surface of the SiC semiconductor layer and (c) positioning another mask based on the recess of the region which serves as the impurities implantation region or the mark region, and performing well implantation in a region containing the impurities implantation region.Type: GrantFiled: April 17, 2013Date of Patent: March 24, 2015Assignee: Mitsubishi Electric CorporationInventors: Noriaki Tsuchiya, Yoichiro Tarui
-
Patent number: 8969162Abstract: Provided is a three-dimensional semiconductor device and method for fabricating the same. The device includes a first electrode structure and a second electrode structure stacked sequentially on a substrate. The first and second electrode structures include stacked first electrodes and stacked second electrodes, respectively. Each of the first and second electrodes includes a horizontal portion parallel with the substrate and an extension portion extending from the horizontal portion along a direction penetrating an upper surface of the substrate. Here, the substrate may be closer to top surfaces of the extension portions of the first electrodes than to the horizontal portion of at least one of the second electrodes.Type: GrantFiled: July 2, 2013Date of Patent: March 3, 2015Assignee: Samsung Electronics Co., Ltd.Inventors: Sung-Min Hwang, Hansoo Kim, Wonseok Cho, Jaehoon Jang
-
Patent number: 8957472Abstract: A memory device and a method of fabrication are provided. The memory device includes a semiconductor substrate and a charge trapping dielectric stack disposed over the semiconductor substrate. A gate electrode is disposed over the charge trapping dielectric stack, where the gate electrode electrically defines a channel within a portion of the semiconductor substrate. The memory device includes a pair of bitlines, where the bitlines have a lower portion and a substantially trapezoidal shaped upper portion.Type: GrantFiled: January 24, 2012Date of Patent: February 17, 2015Assignee: Spansion LLCInventors: Ashot Melik-Martirosian, Mark T. Ramsbey, Mark W. Randolph
-
Patent number: 8951873Abstract: Apparatus and related fabrication methods are provided for semiconductor device structures having silicon-encapsulated stressor regions. One semiconductor device includes a semiconductor substrate, a gate structure overlying the semiconductor substrate, stressor regions formed in the semiconductor substrate proximate the gate structure, and a silicon material overlying the stressor regions, the silicon material encapsulating the stressor regions.Type: GrantFiled: March 5, 2013Date of Patent: February 10, 2015Assignee: GLOBALFOUNDRIES, Inc.Inventors: Stefan Flachowsky, Jan Hoentschel
-
Patent number: 8900946Abstract: Nanocrystal structures formed using atomic layer deposition (ALD) processes are useful in the formation of integrated circuits such as memory devices. Rather than continuing the ALD process until a continuous layer is formed, the ALD process is halted prematurely to leave a discontinuous formation of nanocrystals which are then capped by a different material, thus forming a layer with a discontinuous portion and a bulk portion. Such nanocrystals can serve as charge-storage sites within the bulk portion, and the resulting structure can serve as a floating gate of a floating-gate memory cell. A floating gate may contain one or more layers of such nanocrystal structures.Type: GrantFiled: February 3, 2014Date of Patent: December 2, 2014Assignee: Micron Technology, Inc.Inventors: Prashant Majhi, Kyu S. Min, Wilman Tsai
-
Patent number: 8895386Abstract: A method of forming a semiconductor structure is provided. A substrate having a cell area and a periphery area is provided. An oxide material layer and a first conductive material layer are sequentially formed on the substrate in the cell and periphery areas. A patterning step is performed to form first and second stacked structures on the substrate respectively in the cell and periphery areas. First and second spacers are formed respectively on sidewalls of the first and second stacked structures. At least two first doped regions are formed in the substrate beside the first stacked structure, and two second doped regions are formed in the substrate beside the second stacked structure. A dielectric layer and a second conductive layer are formed at least on the first stacked structure. The first stacked structure, the dielectric layer, and the second conductive layer in the cell area constitute a charge storage structure.Type: GrantFiled: October 1, 2012Date of Patent: November 25, 2014Assignee: Maxchip Electronics Corp.Inventors: Chen-Chiu Hsu, Tung-Ming Lai, Kai-An Hsueh, Ming-De Huang
-
Patent number: 8883624Abstract: Memory cells including embedded SONOS based non-volatile memory (NVM) and MOS transistors and methods of forming the same are described. Generally, the method includes: forming a gate stack of a NVM transistor in a NVM region of a substrate including the NVM region and a plurality of MOS regions; and depositing a high-k dielectric material over the gate stack of the NVM transistor and the plurality of MOS regions to concurrently form a blocking dielectric comprising the high-k dielectric material in the gate stack of the NVM transistor and high-k gate dielectrics in the plurality of MOS regions. In one embodiment, a first metal layer is deposited over the high-k dielectric material and patterned to concurrently form a metal gate over the gate stack of the NVM transistor, and a metal gate of a field effect transistor in one of the MOS regions.Type: GrantFiled: March 28, 2014Date of Patent: November 11, 2014Assignee: Cypress Semiconductor CorporationInventor: Krishnaswamy Ramkumar
-
Patent number: 8877585Abstract: A method of making a semiconductor structure using a substrate having a non-volatile memory (NVM) portion, a first high voltage portion, a second high voltage portion and a logic portion, includes forming a first conductive layer over an oxide layer on a major surface of the substrate in the NVM portion, the first and second high voltage portions, and logic portion. A memory cell is fabricated in the NVM portion while the first conductive layer remains in the first and second high voltage portions and the logic portion. The first conductive layer is patterned to form transistor gates in the first and second high voltage portions. A protective mask is formed over the NVM portion and the first and second high voltage portions. A transistor gate is formed in the logic portion while the protective mask remains in the NVM portion and the first and second high voltage portions.Type: GrantFiled: August 16, 2013Date of Patent: November 4, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Asanga H. Perera, Cheong Min Hong, Sung-Taeg Kang
-
Patent number: 8859374Abstract: Semiconductor devices including non-volatile memory transistors and methods of fabricating the same to improve performance thereof are provided. In one embodiment, the method comprises: (i) forming an oxide-nitride-oxide (ONO) dielectric stack on a surface of a semiconductor substrate in at least a first region in which a non-volatile memory transistor is to be formed, the ONO dielectric stack including a multi-layer charge storage layer; (ii) forming an oxide layer on the surface of the substrate in a second region in which a metal oxide semiconductor (MOS) logic transistor is to be formed; and (iii) forming a high work function gate electrode on a surface of the ONO dielectric stack. Other embodiments are also disclosed.Type: GrantFiled: November 3, 2011Date of Patent: October 14, 2014Assignee: Cypress Semiconductor CorporationInventors: Igor Polishchuk, Sagy Levy, Krishnaswamy Ramkumar
-
Patent number: 8847300Abstract: A semiconductor device including a conductive layer, a diffusion barrier layer formed over the conductive layer, including a refractory metal compound, and acquired after a surface treatment, and a metal silicide layer formed over the diffusion barrier layer. The adhesion between a diffusion barrier layer and a metal silicide layer may be improved by increasing the surface energy of the diffusion barrier layer through a surface treatment. Therefore, although the metal silicide layer is fused in a high-temperature process, it is possible to prevent a void from being caused at the interface between the diffusion barrier layer and the metal silicide layer. Moreover, it is possible to increase the adhesion between a conductive layer and the diffusion barrier layer by increasing the surface energy of the conductive layer through the surface treatment.Type: GrantFiled: December 17, 2009Date of Patent: September 30, 2014Assignee: SK Hynix Inc.Inventors: Sung-Jin Whang, Moon-Sig Joo, Kwon Hong, Jung-Yeon Lim, Won-Kyu Kim, Bo-Min Seo, Kyoung-Eun Chang
-
Patent number: 8809186Abstract: A gate insulating film and a gate electrode of non-single crystalline silicon for forming an nMOS transistor are provided on a silicon substrate. Using the gate electrode as a mask, n-type dopants having a relatively large mass number (70 or more) such as As ions or Sb ions are implanted, to form a source/drain region of the nMOS transistor, whereby the gate electrode is amorphized. Subsequently, a silicon oxide film is provided to cover the gate electrode, at a temperature which is less than the one at which recrystallization of the gate electrode occurs. Thereafter, thermal processing is performed at a temperature of about 1000° C., whereby high compressive residual stress is exerted on the gate electrode, and high tensile stress is applied to a channel region under the gate electrode. As a result, carrier mobility of the nMOS transistor is enhanced.Type: GrantFiled: September 27, 2013Date of Patent: August 19, 2014Assignee: Renesas Electronics CorporationInventors: Hirokazu Sayama, Kazunobu Ohta, Hidekazu Oda, Kouhei Sugihara
-
Patent number: 8802526Abstract: Methods of forming non-volatile memory cell structures are described that facilitate the use of band-gap engineered gate stacks with asymmetric tunnel barriers in reverse and normal mode floating node memory cells that allow for direct tunnel programming and erase, while maintaining high charge blocking barriers and deep carrier trapping sites for good charge retention. The low voltage direct tunneling program and erase capability reduces damage to the gate stack and the crystal lattice from high energy carriers, reducing write fatigue and enhancing device lifespan. The low voltage direct tunnel program and erase capability also enables size reduction through low voltage design and further device feature scaling. Such memory cells also allow multiple bit storage. These characteristics allow such memory cells to operate within the definition of a universal memory, capable of replacing both DRAM and ROM in a system.Type: GrantFiled: March 1, 2012Date of Patent: August 12, 2014Assignee: Micron Technology, Inc.Inventor: Arup Bhattacharyya
-
Patent number: 8796754Abstract: A memory structure including a memory cell is provided, and the memory cell includes following elements. A first gate is disposed on a substrate. A stacked structure includes a first dielectric structure, a channel layer, a second dielectric structure and a second gate disposed on the first gate, a first charge storage structure disposed in the first dielectric structure and a second charge storage structure disposed in the second dielectric structure. At least one of the first charge storage structure and the second charge storage structure includes two charge storage units which are physically separated. A first dielectric layer is disposed on the first gate at two sides of the stacked structure. A first source and drain and a second source and drain are disposed on the first dielectric layer and located at two sides of the channel layer.Type: GrantFiled: June 22, 2011Date of Patent: August 5, 2014Assignee: MACRONIX International Co., Ltd.Inventors: Cheng-Hsien Cheng, Wen-Jer Tsai, Shih-Guei Yan, Chih-Chieh Cheng, Jyun-Siang Huang
-
Patent number: 8779513Abstract: A non-planar semiconductor structure includes a substrate, at least two fin-shaped structures, at least an isolation structure, and a plurality of epitaxial layers. The fin-shaped structures are located on the substrate. The isolation structure is located between the fin-shaped structures, and the isolation structure has a nitrogen-containing layer. The epitaxial layers respectively cover a part of the fin-shaped structures and are located on the nitrogen-containing layer. A non-planar semiconductor process is also provided for forming the semiconductor structure.Type: GrantFiled: April 24, 2013Date of Patent: July 15, 2014Assignee: United Microelectronics Corp.Inventors: Shih-Hung Tsai, Chien-Ting Lin, Chin-Cheng Chien, Chin-Fu Lin, Chih-Chien Liu, Teng-Chun Tsai, Chun-Yuan Wu
-
Patent number: 8772116Abstract: A device and method for fabricating a capacitive component includes forming a high dielectric constant material over a semiconductor substrate and forming a scavenging layer on the high dielectric constant material. An anneal process forms oxide layer between the high dielectric constant layer and the scavenging layer such that oxygen in the high dielectric constant material is drawn out to reduce oxygen content.Type: GrantFiled: December 3, 2012Date of Patent: July 8, 2014Assignee: International Business Machines CorporationInventors: Alessandro Callegari, Ko-Tao Lee, Devendra K. Sadana, Kuen-Ting Shiu
-
Patent number: 8728888Abstract: In a manufacturing method, gate electrode materials and a hard-mask material are deposited above a substrate. First mandrels are formed on the hard-mask material in a region of cell array. A second mandrel is formed on the hard-mask material in a region of a selection gate transistor. First sidewall-masks are formed on side-surfaces of the first mandrels. A second sidewall-mask is formed on a side-surface of the second mandrel. An upper side-surface of the second sidewall-mask is exposed. A sacrificial film is embedded between the first sidewall-masks. A sacrificial spacer is formed on the upper side-surface of the second sidewall-mask. A resist film covers the second mandrel. An outer edge of the resist film is located between the first mandrel closest to the second mandrel and the sacrificial spacer. The first mandrels are removed using the resist film as a mask. And, the sacrificial film and spacer are removed.Type: GrantFiled: March 12, 2013Date of Patent: May 20, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Naoyuki Iida, Satoshi Nagashima, Nagisa Takami, Hidefumi Mukai, Yoshihiro Yanai
-
Patent number: 8697524Abstract: Methods of manufacturing vertical semiconductor devices may include forming a mold structure including sacrificial layers and insulating interlayers with a first opening formed therethrough. The sacrificial layers and the insulating interlayers may be stacked repeatedly and alternately on a substrate. The first opening may expose the substrate. Blocking layers may be formed by oxidizing portions of the sacrificial layers exposed by the first opening. A first semiconductor layer pattern, a charge trapping layer pattern and a tunnel insulation layer pattern, respectively, may be formed on the sidewall of the first opening. A second semiconductor layer may be formed on the first polysilicon layer pattern and the bottom of the first opening. The sacrificial layers and the insulating interlayers may be partially removed to form a second opening. The sacrificial layers may be removed to form grooves between the insulating interlayers. Control gate electrodes may be formed in the grooves.Type: GrantFiled: August 18, 2011Date of Patent: April 15, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Byung-Kwan You, Kwang-Soo Seol, Young-Woo Park, Jin-Soo Lim
-
Patent number: 8679927Abstract: A semiconductor structure and method to form the same. The semiconductor structure includes a substrate having a non-volatile charge trap memory device disposed on a first region and a logic device disposed on a second region. A charge trap dielectric stack may be formed subsequent to forming wells and channels of the logic device. HF pre-cleans and SC1 cleans may be avoided to improve the quality of a blocking layer of the non-volatile charge trap memory device. The blocking layer may be thermally reoxidized or nitridized during a thermal oxidation or nitridation of a logic MOS gate insulator layer to densify the blocking layer. A multi-layered liner may be utilized to first offset a source and drain implant in a high voltage logic device and also block silicidation of the nonvolatile charge trap memory device.Type: GrantFiled: August 4, 2008Date of Patent: March 25, 2014Assignee: Cypress Semiconductor CorporationInventors: Krishnaswamy Ramkumar, Fredrick B. Jenne, Sagy Levy
-
Patent number: 8669161Abstract: A device and method employing a polyoxide-based charge trapping component. A charge trapping component is patterned by etching a layered stack that includes a tunneling layer positioned on a substrate, a charge trapping layer positioned on the tunneling layer, and an amorphous silicon layer positioned on the charge trapping layer. An oxidation process grows a gate oxide layer from the substrate and converts the amorphous silicon layer into a polyoxide layer.Type: GrantFiled: February 25, 2013Date of Patent: March 11, 2014Assignee: Spansion LLCInventor: Masahiko Higashi
-
Patent number: 8659071Abstract: The invention provides a SONOS structure, a manufacturing method thereof and a semiconductor device with the SONOS structure. The SONOS structure comprises: a first tunneling oxide layer formed on a substrate, a charge storage silicon nitride layer, a second silicon oxide layer, a thin graded silicon nitride layer having graded Si/N content formed on the second silicon oxide layer, a third silicon oxide layer formed on the thin graded silicon nitride layer, and a polysilicon control gate. The Si/N content ratio of the silicon nitride of the thin graded silicon nitride layer increases gradually, wherein the silicon nitride of the graded silicon nitride layer closer to the second silicon oxide layer contains higher nitride content, and the silicon nitride of the graded silicon nitride layer closer to the third silicon oxide layer contains higher silicon content.Type: GrantFiled: December 20, 2012Date of Patent: February 25, 2014Assignee: Shanghai Huali Microelectronics CorporationInventor: Zhi Tian
-
Patent number: 8642439Abstract: A system and method for forming a semiconductor device is provided. An embodiment comprises forming a silicide region on a substrate along with a transition region between the silicide region and the substrate. The thickness of the silicide precursor material layer along with the annealing conditions are controlled such that there is a larger ratio of one atomic species within the transition region than another atomic species, thereby increasing the hole mobility within the transition region.Type: GrantFiled: April 9, 2013Date of Patent: February 4, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Jun-Nan Nian, Li-Yen Fang, Yu-Ting Lin, Shih-Chieh Chang, Yu-Ku Lin, Ying-Lang Wang
-
Patent number: 8633080Abstract: A semiconductor device includes a region in a semiconductor substrate having a top surface with a first charge storage layer on the top surface. A first conductive line is on the first charge storage layer. A second charge storage layer is on the top surface. A second conductive line is on the second charge storage layer. A third charge storage layer is on the top surface. A third conductive line is on the third charge storage layer. A fourth charge storage layer has a first side adjoining a first sidewall of the first conductive line and a second side adjoining a first sidewall of the second conductive line. A fifth charge storage layer has a first side adjoining a second sidewall of the second conductive line and a second side adjoining a first sidewall of the third conductive line. Source and drain regions are formed in the substrate on either side of the semiconductor device.Type: GrantFiled: January 12, 2011Date of Patent: January 21, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Mark D. Hall, Mehul D. Shroff
-
Patent number: 8629018Abstract: Some embodiments include NAND memory constructions. The constructions may contain semiconductor material pillars extending upwardly between dielectric regions, with individual pillars having a pair of opposing vertically-extending sides along a cross-section. First conductivity type regions may be along first sides of the pillars, and second conductivity type regions may be along second sides of the individual pillars; with the second conductivity type regions contacting interconnect lines. Vertical NAND strings may be over the pillars, and select devices may selectively couple the NAND strings with the interconnect lines. The select devices may have vertical channels directly against the semiconductor material pillars and directly against upper regions of the first and second conductivity type regions. Some embodiments include methods of forming NAND memory constructions.Type: GrantFiled: July 24, 2012Date of Patent: January 14, 2014Assignee: Micron Technology, Inc.Inventor: Sanh D. Tang
-
Patent number: 8610199Abstract: A device and method employing a polyoxide-based charge trapping component. A charge trapping component is patterned by etching a layered stack that includes a tunneling layer positioned on a substrate, a charge trapping layer positioned on the tunneling layer, and an amorphous silicon layer positioned on the charge trapping layer. An oxidation process grows a gate oxide layer from the substrate and converts the amorphous silicon layer into a polyoxide layer.Type: GrantFiled: February 25, 2013Date of Patent: December 17, 2013Assignee: Spansion LLCInventor: Masahiko Higashi
-
Patent number: 8603878Abstract: In a vertical-type memory device and a method of manufacturing the vertical-type memory device, the vertical memory device includes an insulation layer pattern of a linear shape provided on a substrate, pillar-shaped single-crystalline semiconductor patterns provided on both sidewalls of the insulation layer pattern and transistors provided on a sidewall of each of the single-crystalline semiconductor patterns. The transistors are arranged in a vertical direction of the single-crystalline semiconductor pattern, and thus the memory device may be highly integrated.Type: GrantFiled: November 9, 2012Date of Patent: December 10, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Yong-Hoon Son, Jong-Wook Lee, Jong-Hyuk Kang
-
Patent number: 8586475Abstract: A gate insulating film and a gate electrode of non-single crystalline silicon for forming an nMOS transistor are provided on a silicon substrate. Using the gate electrode as a mask, n-type dopants having a relatively large mass number (70 or more) such as As ions or Sb ions are implanted, to form a source/drain region of the nMOS transistor, whereby the gate electrode is amorphized. Subsequently, a silicon oxide film is provided to cover the gate electrode, at a temperature which is less than the one at which recrystallization of the gate electrode occurs. Thereafter, thermal processing is performed at a temperature of about 1000° C., whereby high compressive residual stress is exerted on the gate electrode, and high tensile stress is applied to a channel region under the gate electrode. As a result, carrier mobility of the nMOS transistor is enhanced.Type: GrantFiled: January 16, 2013Date of Patent: November 19, 2013Assignee: Renesas Electronics CorporationInventors: Hirokazu Sayama, Kazunobu Ohta, Hidekazu Oda, Kouhei Sugihara
-
Patent number: 8575675Abstract: A nonvolatile memory device includes a first channel comprising a pair of first pillars vertically extending from a substrate and a first coupling portion positioned under the pair of first pillars and coupling the pair of first pillars, a second channel adjacent to the first channel comprising a pair of second pillars vertically extending from the substrate and a second coupling portion positioned under the pair of second pillars and coupling the pair of second pillars, a plurality of gate electrode layers and interlayer dielectric layers alternately stacked along the first and second pillar portions, and first and second trenches isolating the plurality of gate electrode layers between the pair of first pillar portions and between the pair of second pillar portions, respectively.Type: GrantFiled: December 21, 2011Date of Patent: November 5, 2013Assignee: Hynix Semiconductor Inc.Inventors: Sun-Mi Park, Byung-Soo Park, Sang-Hyun Oh
-
Patent number: 8574992Abstract: A vertical interconnect architecture for a three-dimensional (3D) memory device suitable for low cost, high yield manufacturing is described. Conductive lines (e.g. word lines) for the 3D memory array, and contact pads for vertical connectors used for couple the array to decoding circuitry and the like, are formed as parts of the same patterned level of material. The same material layer can be used to form the contact pads and the conductive access lines by an etch process using a single mask. By forming the contact pads concurrently with the conductive lines, the patterned material of the contact pads can protect underlying circuit elements which could otherwise be damaged during patterning of the conductive lines.Type: GrantFiled: September 22, 2011Date of Patent: November 5, 2013Assignee: Macronix International Co., Ltd.Inventors: Shih-Hung Chen, Yen-Hao Shih, Hang-Ting Lue
-
Patent number: 8569182Abstract: A method of fabricating a three-dimensional semiconductor device includes forming a stacked structure, and the stacked structure includes a first layer, a second layer, a third layer, and a fourth layer sequentially stacked on a substrate. The method also includes forming a sacrificial spacer on a sidewall of the stacked structure such that the sacrificial spacer exposes a sidewall of the third layer, and recessing the exposed sidewall of the third layer thereby forming a recess region between the second and fourth layers.Type: GrantFiled: January 3, 2012Date of Patent: October 29, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Sang-Yong Park, Eunsun Youm
-
Patent number: 8569798Abstract: The present invention provides a transistor and a method for forming the same. The method includes: providing a semiconductor substrate having a semiconductor layer formed thereon, the semiconductor layer and the semiconductor substrate having different crystal orientations; forming a dummy gate structure on the semiconductor layer; forming a source region and a drain region in the semiconductor substrate and the semiconductor layer and at opposite sides of the dummy gate structure; forming an interlayer dielectric layer on the semiconductor layer, which is substantially flush with the dummy gate structure; removing the dummy gate structure and the semiconductor layer beneath the dummy gate structure, forming an opening in the interlayer dielectric layer and the semiconductor layer, the semiconductor substrate being exposed at a bottom of the opening; forming a metal gate structure in the opening. Saturation current of the transistor is raised, and performance of a semiconductor device is promoted.Type: GrantFiled: June 21, 2013Date of Patent: October 29, 2013Assignee: Semiconductor Manufacturing International (Beijing) CorporationInventor: Fumitake Mieno
-
Patent number: 8552490Abstract: A nonvolatile memory device and a manufacturing method thereof are provided. The manufacturing method includes the following steps. First, a substrate is provided. Then, a tunneling dielectric layer is formed on the substrate, and a dummy gate is form on the tunneling dielectric layer. Subsequently, an interlayer dielectric layer is formed around the dummy gate, and the dummy gate is removed to form an opening. Following that, a charge storage layer is formed on the inner side wall of the opening, and the charge storage layer covers the tunneling dielectric layer. Moreover, an inter-gate dielectric layer is formed on the charge storage layer, and a metal gate is formed on the inter-gate dielectric layer. Accordingly, a stacked gate structure of the nonvolatile memory device includes the tunneling dielectric layer, the charge storage layer, the inter-gate dielectric layer, and the metal gate.Type: GrantFiled: June 18, 2010Date of Patent: October 8, 2013Assignee: United Microelectronics Corp.Inventors: Chih-Jen Huang, Chien-Hung Chen
-
Patent number: 8546215Abstract: A memory device comprising a vertical transistor includes a digit line that is directly coupled to the source regions of each memory cell. Because an electrical plug is not used to form a contact between the digit line and the source regions, a number of fabrication steps may be reduced and the possibility for manufacturing defects may also be reduced. In some embodiments, a memory device may include a vertical transistor having gate regions that are recessed from an upper portion of a silicon substrate. With the gate regions recessed from the silicon substrate, the gate regions are spaced further from the source/drain regions and, accordingly, cross capacitance between the gate regions and the source/drain regions may be reduced.Type: GrantFiled: March 1, 2013Date of Patent: October 1, 2013Assignee: Micron Technology, Inc.Inventors: Gordon Haller, Sanh Dang Tang, Steve Cummings
-
Patent number: 8530305Abstract: Methods, devices, and systems associated with charge storage structures in semiconductor devices are described herein. In one or more embodiments, a method of forming nanodots includes forming at least a portion of a charge storage structure over a material by reacting a single-source precursor and a reactant, where the single-source precursor includes a metal and a semiconductor.Type: GrantFiled: April 19, 2010Date of Patent: September 10, 2013Assignee: Micron Technology, Inc.Inventor: Jaydeb Goswami
-
Patent number: 8513075Abstract: A manufacturing method for manufacturing a semiconductor device includes depositing a spacer material on a semiconductor substrate, the substrate includes an NMOS region and a PMOS region, each region has a gate formed thereon. The method further includes covering the NMOS region with a first mask, forming a spacer for the PMOS gate by etching the spacer material, forming a recess in the PMOS region by etching, and growing SiGe or SiGe with in-situ-doped B in the recess of the PMOS region to form a PMOS source/drain region. The method further includes performing an anisotropic wet etching on the recess. After growing SiGE or SiGe with in-situ-doped B, the method further includes covering the PMOS region with a second mask and forming a spacer for the NMOS gate by etching the spacer material. The spacer for the PMOS and NMOS gate has a different critical dimension.Type: GrantFiled: November 29, 2011Date of Patent: August 20, 2013Assignee: Semiconductor Manufacturing International CorporationInventors: Yonggen He, Jingang Wu, Haibiao Yao
-
Patent number: 8507968Abstract: A memory device (100) includes a semiconductor wire including a source region (132), a drain region (134), and a channel region (130) between the source region (132) and the drain region (134). A gate structure that overlies the channel region includes a memristive portion (120) and a conductive portion (110) overlying the memristive portion (120).Type: GrantFiled: January 30, 2009Date of Patent: August 13, 2013Assignee: Hewlett-Packard Development Company, L.P.Inventors: Dmitri B. Strukov, Philip J. Kuekes, Duncan Stewart, Zhiyong Li
-
Patent number: 8492213Abstract: The invention discloses a semiconductor device which comprises an NMOS transistor and a PMOS transistor formed on a substrate; and grid electrodes, source cathode doped areas, drain doped areas, and side walls formed on two sides of the grid electrodes are arranged on the NMOS transistor and the PMOS transistor respectively. The device is characterized in that the side walls on the two sides of the grid electrode of the NMOS transistor possess tensile stress, and the side walls on the two sides of the grid electrode of the PMOS transistor possess compressive stress. The stress gives the side walls a greater role in adjusting the stress applied to channels and the source/drain areas, with the carrier mobility further enhanced and the performance of the device improved.Type: GrantFiled: August 5, 2011Date of Patent: July 23, 2013Assignee: Semiconductor Manufacturing International (Beijing) CorporationInventor: Fumitake Mieno
-
Patent number: 8481385Abstract: A memory device comprising a vertical transistor includes a digit line that is directly coupled to the source regions of each memory cell. Because an electrical plug is not used to form a contact between the digit line and the source regions, a number of fabrication steps may be reduced and the possibility for manufacturing defects may also be reduced. In some embodiments, a memory device may include a vertical transistor having gate regions that are recessed from an upper portion of a silicon substrate. With the gate regions recessed from the silicon substrate, the gate regions are spaced further from the source/drain regions and, accordingly, cross capacitance between the gate regions and the source/drain regions may be reduced.Type: GrantFiled: May 11, 2012Date of Patent: July 9, 2013Assignee: Micron Technology, Inc.Inventors: Haller A. Gordon, Tang D. Sanh, Cummings Steven
-
Patent number: 8460996Abstract: An integrated circuit with devices having dielectric layers with different thicknesses. The dielectric layers include a high-k dielectric and some of the dielectric layers include an oxide layer that is formed from an oxidation process. Each device includes a layer including germanium or carbon located underneath the electrode stack of the device. A silicon cap layers is located over the layer including germanium or carbon.Type: GrantFiled: October 31, 2007Date of Patent: June 11, 2013Assignee: Freescale Semiconductor, Inc.Inventors: Gauri V. Karve, Mark D. Hall, Srikanth B. Samavedam