Having Lateral Bipolar Transistor Patents (Class 438/325)
  • Patent number: 9117759
    Abstract: A method of creating a trench having a portion of a bulb-shaped cross-section in silicon is disclosed. The method comprises forming at least one trench in silicon and forming a liner in the at least one trench. The liner is removed from a bottom surface of the at least one trench to expose the underlying silicon. A portion of the underlying exposed silicon is removed to form a cavity in the silicon. At least one removal cycle is conducted to remove exposed silicon in the cavity to form a bulb-shaped cross-sectional profile, with each removal cycle comprising subjecting the silicon in the cavity to ozonated water to oxidize the silicon and subjecting the oxidized silicon to a hydrogen fluoride solution to remove the oxidized silicon. A semiconductor device structure comprising the at least one trench comprising a cavity with a bulb-shaped cross-sectional profile is also disclosed.
    Type: Grant
    Filed: August 10, 2011
    Date of Patent: August 25, 2015
    Assignee: MICRON TECHNOLOGY, INC.
    Inventors: Sanjeev Sapra, Cheng-Shun Chen, Hung-Ming Tsai, Sheng-Wei Yang
  • Patent number: 9054150
    Abstract: The invention relates to a semiconductor component comprising a semiconductor body, an insulation on the semiconductor body and a cell array arranged at least partly within the semiconductor body. The cell array has at least one p-n junction and at least one contact connection. The insulation is bounded in lateral direction of the semiconductor body by a circumferential diffusion barrier.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: June 9, 2015
    Assignee: Infineon Technologies AG
    Inventors: Markus Zundel, Gabriela Brase, Peter Nelle, Guenther Schindler
  • Patent number: 8796100
    Abstract: The present invention discloses a method of manufacturing an N-type LDMOS device. The method comprises forming a gate above the semiconductor substrate; forming a body, comprising forming a Pwell apart from the gate and forming a Pbase partly in the Pwell, wherein the Pbase is wider and shallower than the Pwell; and forming an N-type source and a drain contact region. Wherein the body curvature of the LDMOS device is controlled by adjusting the layout width of the Pwell.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: August 5, 2014
    Assignee: Monolithic Power Systems, Inc.
    Inventor: Jeesung Jung
  • Patent number: 8791500
    Abstract: A semiconductor device having a lateral insulated gate bipolar transistor includes a first conductivity type drift layer, a second conductivity type collector region formed in a surface portion of the drift layer, a second conductivity type channel layer formed in the surface portion of the drift layer, a first conductivity type emitter region formed in a surface portion of the channel layer, and a hole stopper region formed in the drift layer and located between the collector region and the emitter region. Holes are injected from the collector region into the drift layer and flow toward the emitter region through a hole path. The hole stopper region blocks a flow of the holes and narrows the hole path to concentrate the holes.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: July 29, 2014
    Assignee: DENSO CORPORATION
    Inventors: Youichi Ashida, Shigeki Takahashi
  • Patent number: 8431450
    Abstract: An LDMOS transistor includes a gate including a conductive material over an insulator material, a source including a first impurity region and a second impurity region, a third impurity region, and a drain including a fourth impurity region and a fifth impurity region. The first impurity region is of a first type, and the second impurity region is of an opposite second type. The third impurity region extends from the source region under the gate and is of the first type. The fourth impurity region is of the second type, the fifth impurity region is of the second type, and the fourth impurity region impinges the third impurity region.
    Type: Grant
    Filed: January 10, 2011
    Date of Patent: April 30, 2013
    Assignee: Volterra Semiconductor Corporation
    Inventors: Marco A. Zuniga, Budong You, Yang Lu
  • Patent number: 8252655
    Abstract: In a method of forming a semiconductor cell structure, a first insulating layer may be formed on a semiconductor substrate. A connection pattern may be formed in the first insulating layer. Second and third insulating layers may be sequentially formed on the connection pattern. The third insulating layer may be etched at least twice and the second insulating layer may be etched at least once to form a through hole in the second and third insulating layers. The through hole may expose the connection pattern.
    Type: Grant
    Filed: May 17, 2010
    Date of Patent: August 28, 2012
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Keun-Hee Bai, Chul-Ho Shin, Shin-Hye Kim, Sang-Kuk Kim
  • Patent number: 8173510
    Abstract: An integrated circuit (200) includes one of more transistors (210) on or in a substrate (10) having semiconductor surface layer, the surface layer having a top surface. At least one of the transistors are drain extended metal-oxide-semiconductor (DEMOS) transistor (210). The DEMOS transistor includes a drift region (14) in the surface layer having a first dopant type, a field dielectric (23) in or on a portion of the surface layer, and a body region of a second dopant type (16) within the drift region (14). The body region (16) has a body wall extending from the top surface of the surface layer downwards along at least a portion of a dielectric wall of an adjacent field dielectric region. A gate dielectric (21) is on at least a portion of the body wall. An electrically conductive gate electrode (22) is on the gate dielectric (21) on the body wall.
    Type: Grant
    Filed: February 15, 2011
    Date of Patent: May 8, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Taylor Rice Efland
  • Patent number: 8148228
    Abstract: A method for manufacturing a semiconductor device that comprises implanting a first dopant type in a well region of a substrate to form implanted sub-regions that are separated by non-implanted areas of the well region. The method also comprises forming an oxide layer over the well region, such that an oxide-converted first thickness of the implanted sub-regions is greater than an oxide-converted second thickness of the non-implanted areas. The method further comprises removing the oxide layer to form a topography feature on the well region. The topography feature comprises a surface pattern of higher and lower portions. The higher portions correspond to locations of the non-implanted areas and the lower portions correspond to the implanted sub-regions.
    Type: Grant
    Filed: April 5, 2007
    Date of Patent: April 3, 2012
    Assignee: Texas Instruments Incorporated
    Inventors: Sameer Pendharkar, Binghua Hu, Xinfen Celia Chen
  • Patent number: 7888732
    Abstract: An integrated circuit (200) includes one of more transistors (210) on or in a substrate (10) having semiconductor surface layer, the surface layer having a top surface. At least one of the transistors are drain extended metal-oxide-semiconductor (DEMOS) transistor (210). The DEMOS transistor includes a drift region (14) in the surface layer having a first dopant type, a field dielectric (23) in or on a portion of said surface layer, and a body region of a second dopant type (16) within the drift region (14). The body region (16) has a body wall extending from the top surface of the surface layer downwards along at least a portion of a dielectric wall of an adjacent field dielectric region. A gate dielectric (21) is on at least a portion of the body wall. An electrically conductive gate electrode (22) is on the gate dielectric (21) on the body wall.
    Type: Grant
    Filed: April 11, 2008
    Date of Patent: February 15, 2011
    Assignee: Texas Instruments Incorporated
    Inventors: Marie Denison, Taylor Rice Efland
  • Publication number: 20090283831
    Abstract: An electrostatic discharge (ESD) protection circuit includes a triggering diode that includes a junction between a P-grade (PG) region and an N-well. The PG region has a dopant profile equivalent to a P-drain dopant profile of a PMOS transistor having a breakdown voltage represented by V whereby the triggering diode for conducting a current when a voltage greater than the breakdown voltage V is applied. In an exemplary embodiment, the dopant profile of the PG region includes two dopant implant profiles that include a shallow implant profile with a higher dopant concentration and a deep implant profile with a lower dopant concentration.
    Type: Application
    Filed: May 16, 2008
    Publication date: November 19, 2009
    Inventor: Shekar Mallikarjunaswamy
  • Patent number: 7456069
    Abstract: A method in the fabrication of an I2L circuit comprises (i) forming a common base of a lateral bipolar transistor and emitter of a vertical bipolar multicollector transistor, a common collector of the lateral transistor and base of the vertical multicollector transistor, and an emitter of the lateral transistor in a substrate; (ii) forming, from a first deposited polycrystalline layer, a contact region for the common collector/base and a contact region for the emitter of the lateral transistor; (iii) forming an isolation structure for electric isolation of the polycrystalline contact region for the common collector/base; and (iv) forming, from a second deposited polycrystalline layer, a contact region for the common base/emitter and multiple collectors of the vertical multicollector transistor.
    Type: Grant
    Filed: October 6, 2005
    Date of Patent: November 25, 2008
    Assignee: Infineon Technologies AG
    Inventors: Ted Johansson, Hans Norstroem
  • Patent number: 7192838
    Abstract: Method of producing complementary SiGe bipolar transistors. In a method of producing complementary SiGe bipolar transistors, interface oxide layers (38, 58) for NPN and PNP emitters (44, 64), are separately formed and emitter polysilicon (40, 60) is separately patterned, allowing these layers to be optimized for the respective conductivity type.
    Type: Grant
    Filed: August 26, 2004
    Date of Patent: March 20, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Philipp Steinmann, Scott Balster, Badih El-Kareh, Thomas Scharnagl
  • Patent number: 7098113
    Abstract: A power lateral PNP device is disclosed which includes an epitaxial layer; a first and second collector region embedded in the epitaxial layer; an emitter region between the first and second collector regions. Therefore slots are placed in each of the regions. Accordingly, in a first approach the standard process flow will be followed until reaching the point where contact openings and metal are to be processed. In this approach slots are etched that are preferably 5 to 6 um deep and 5 to 6 um wide. These slots are then oxidized and will be subsequently metalized. When used for making metal contacts to the buried layer or for ground the oxide is removed from the bottom of the slots by an anisotropic etch. Subsequently when these slots receive metal they will provide contacts to the buried layer where this is desired and to the substrate when a ground is desired. In a second approach the above-identified process is completed up through the slot process without processing the lateral PNPs.
    Type: Grant
    Filed: March 13, 2003
    Date of Patent: August 29, 2006
    Assignee: Micrel, Inc.
    Inventors: John Durbin Husher, Ronald L. Schlupp
  • Patent number: 7084485
    Abstract: A method of manufacturing a semiconductor component includes: providing a semiconductor substrate (210, 510); forming a trench (130, 430) in the semiconductor substrate to define a plurality of active areas separated from each other by the trench; forming a buried layer (240, 750) in the semiconductor substrate underneath a portion of the trench, where the buried layer is at least partially contiguous with the trench; after forming the buried layer, depositing an electrically insulating material (133, 810) in the trench; forming a collector region (150, 950) in one of the plurality of active areas, where the collector region forms a contact to the buried layer; forming a base structure over the one of the plurality of active areas; and forming an emitter region over the one of the plurality of active areas.
    Type: Grant
    Filed: December 31, 2003
    Date of Patent: August 1, 2006
    Assignee: Freescale Semiconductor, Inc.
    Inventor: James A. Kirchgessner
  • Patent number: 7061031
    Abstract: A method of fabricating a high-sensitivity image sensor is disclosed. The disclosed method comprises: etching a predetermined region of active silicon and a buried oxide layer by using a mask over an SOI substrate to expose an N-type silicon substrate; implanting P-type ions into the exposed N-type silicon substrate to form a P-type region; forming crossed active silicon by patterning the rest of the active silicon not etched while the active silicon is etched to expose the N-type silicon substrate; implanting P-type ions into first two predetermined regions facing each other of the crossed active silicon to form P-type regions; implanting N-type ions into second two predetermined regions facing each other except for the P-type regions of the crossed active silicon to form N-type regions; forming a gate oxide layer and a gate electrode on the crossed active silicon; and forming a connection part to connect the P-type region of the crossed active silicon to the P-type region of the silicon substrate.
    Type: Grant
    Filed: December 30, 2004
    Date of Patent: June 13, 2006
    Assignee: Korea Electronics Technology Institute
    Inventor: Hoon Kim
  • Patent number: 7026221
    Abstract: A method of forming a semiconductor device, including forming first and second semiconductor layers of first conductivity type each disposed in a transistor forming region spaced apart from each other by a predetermined distance, so that the first semiconductor layer has a concentration higher than the second semiconductor layer; vapor-phase diffusing an impurity of second conductivity type into side faces of the second semiconductor layer which are exposed in the spaced region; embedding a non-doped semiconductor layer between the first and second semiconductor layers in the spaced region; and performing heat treatment to change the non-doped semiconductor layer into first conductivity type, a region of the vapor phase diffused side faces into the first conductivity type, and another region of the vapor phase diffused side faces into an intrinsic base region.
    Type: Grant
    Filed: January 29, 2003
    Date of Patent: April 11, 2006
    Assignee: Oki Electric Industry Co., Ltd.
    Inventor: Hirokazu Fujimaki
  • Patent number: 6972237
    Abstract: A method for manufacturing a heterojunction bipolar transistor is provided. An intrinsic collector structure is formed on a substrate. An extrinsic base structure partially overlaps the intrinsic collector structure. An intrinsic base structure is formed adjacent the intrinsic collector structure and under the extrinsic base structure. An emitter structure is formed adjacent the intrinsic base structure. An extrinsic collector structure is formed adjacent the intrinsic collector structure. A plurality of contacts is formed through an interlevel dielectric layer to the extrinsic collector structure, the extrinsic base structure, and the emitter structure.
    Type: Grant
    Filed: December 1, 2003
    Date of Patent: December 6, 2005
    Assignee: Chartered Semiconductor Manufacturing Ltd.
    Inventors: Purakh Raj Verma, Shao-fu Sanford Chu, Lap Chan, Jia Zhen Zheng, Jian Xun Li
  • Patent number: 6919615
    Abstract: A semiconductor device for an integrated injection logic cell having a pnp bipolar transistor structure formed on a semiconductor substrate, wherein at least one layer of insulating films formed on a base region of the pnp bipolar transistor structure is comprised of a silicon nitride film. The semiconductor device of the present invention is advantageous in that the silicon nitride film constituting at least one layer of the insulating films formed on the base region of the pnp bipolar transistor prevents an occurrence of contamination on the surface of the base region, so that both the properties of the pnp bipolar transistor and the operation of the IIL cell can be stabilized. Further, by the process of the present invention, the above-mentioned excellent semiconductor device can be produced.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: July 19, 2005
    Assignee: Sony Corporation
    Inventor: Hirokazu Ejiri
  • Patent number: 6911715
    Abstract: A bipolar transistor in which the occurrence of Kirk effect is suppressed when a high current is injected into the bipolar transistor and a method of fabricating the bipolar transistor are described. The bipolar transistor includes a first collector region of a first conductive type having high impurity concentration, a second collector region of a first conductive type which has high impurity concentration and is formed on the first collector region, a base region of a second conductive type being formed a predetermined portion of the second collector region, and an emitter region of a first conductive type being formed in the base region. The bipolar transistor further includes the third collector region, which has higher impurity concentration than the second collector region, at the bottom of the base region.
    Type: Grant
    Filed: September 5, 2003
    Date of Patent: June 28, 2005
    Assignee: Fairchild Korea Semiconductor Ltd
    Inventors: Chan-ho Park, Jin-myung Kim, Kyeong-seok Park, Dong-ho Hyun
  • Patent number: 6861325
    Abstract: A method for fabricating a lateral bipolar junction transistor in an active area of a substrate includes forming a base structure directly on a central portion of the active area without a gate oxide layer being formed on the substrate. The method also includes implanting a first type of dopant into the active area for forming an emitter region and a collector region, and forming contacts and interconnects for the base structure and emitter and collector regions.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: March 1, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: James N. Pan, Matthew Buynoski
  • Patent number: 6835628
    Abstract: The present invention relates to an integrated circuit having a MOS capacitor. In one embodiment, a method of forming an integrated circuit comprises forming an oxide layer on a surface of a substrate, the substrate having a plurality of isolation islands. Each isolation island is used in forming a semiconductor device. Patterning the oxide layer to expose predetermined areas of the surface of the substrate. Depositing a nitride layer overlaying the oxide layer and the exposed surface areas of the substrate. Implanting ions through the nitride layer, wherein the nitride layer is an implant screen for the implanted ions. Using the nitride layer as a capacitor dielectric in forming a capacitor. In addition, performing a dry etch to form contact openings that extend through the layer of nitride and through the layer of oxide to access selected device regions formed in the substrate.
    Type: Grant
    Filed: November 5, 2001
    Date of Patent: December 28, 2004
    Assignee: Intersil Americas Inc.
    Inventor: James D. Beasom
  • Publication number: 20040209418
    Abstract: The invention relates to a method for producing high-speed vertical npn bipolar transistors and complementary MOS transistors on a chip. In order to produce these high-speed vertical npn bipolar transistors and complementary MOS transistors on a chip, all technological method steps for producing the vertical structure of the collector, base and emitter in the active region of the npn bipolar transistors as well as for laterally structuring the collector regions, base regions and emitter regions are performed before the troughs and the gate insulating layer for the MOS transistors are produced.
    Type: Application
    Filed: November 20, 2003
    Publication date: October 21, 2004
    Inventors: Dieter Knoll, Bernd Heinemann
  • Patent number: 6803259
    Abstract: A silicon controlled rectifier for SiGe process. The silicon controlled rectifier comprises a substrate, a buried layer of a first conductivity type in the substrate, a well of the first conductivity type in the substrate and above the buried layer, a doped region of a second conductivity type in the well, a first conducting layer of the second conductivity type on the substrate, and a second conducting layer of the first conductivity type on the first conducting layer.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: October 12, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jian-Hsing Lee
  • Patent number: 6790722
    Abstract: A method and structure for forming an emitter in a vertical bipolar transistor includes providing a substrate having a collector layer and a base layer over the collector layer, forming a patterning mask over the collector layer, and filling openings in the mask with emitter material in a damascene process. The CMOS/vertical bipolar structure has the collector, base regions, and emitter regions vertically disposed on one another, the collector region having a peak dopant concentration adjacent the inter-substrate isolation oxide.
    Type: Grant
    Filed: November 22, 2000
    Date of Patent: September 14, 2004
    Assignee: International Business Machines Corporation
    Inventors: Ramachandra Divakaruni, Russell J. Houghton, Jack A. Mandelman, Wilbur D. Pricer, William R. Tonti
  • Patent number: 6784065
    Abstract: A low-power bipolar transistor is formed to have an intrinsic emitter region with a sub-lithographic width, and an oxide layer that is self aligned to an overlying extrinsic emitter. The small extrinsic emitter region reduces the maximum current that can flow through the transistor, while the self-aligned oxide layer and extrinsic emitter reduces the base-to-emitter junction size and device performance variability across the wafer.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: August 31, 2004
    Assignee: National Semiconductor Corporation
    Inventor: Abdalla Aly Naem
  • Patent number: 6782526
    Abstract: A photomask designing method and apparatus, a computer readable storing medium, a photomask, a photoresist, a photosensitive resin, a base plate, a microlens, and an optical element. In the method, even though a desired depth of a photoresist pattern and a type of the photoresist are changed, the photomask can be easily designed. In a method of designing a photomask in which intensity of light radiated onto the photoresist is controlled with a fine pattern, that is, a congregation of fine areas respectively having predetermined light transmission factor, the resist sensitivity curve showing resist depth for the exposing amount of the employed photoresist and fine areas data corresponding to plural light transmission factors per predetermined halftone are previously set, and then, the depth of the resist respectively set per each of the fine areas is converted to the light exposing amount by use of the resist sensitivity curve.
    Type: Grant
    Filed: January 3, 2003
    Date of Patent: August 24, 2004
    Assignee: Ricoh Company, Ltd.
    Inventor: Yasuhiro Satoh
  • Patent number: 6767842
    Abstract: A semiconductor device wherein Si—Ge is the base of a bipolar transistor and a Silicon layer is the emitter. A method of making such a semiconductor device including steps of forming a Silicon dioxide layer on a Silicon substrate, using a photo resist application and exposure to define where a HBT device will be placed. Plasma etching the Silicon dioxide layer to define an undercut, epitaxially growing an Si—Ge layer and a Silicon layer, and continuing manufacture to form one or more bipolar and CMOS devices and define interconnect and passivation.
    Type: Grant
    Filed: July 9, 2002
    Date of Patent: July 27, 2004
    Assignee: LSI Logic Corporation
    Inventors: Robi Banerjee, Derryl J. Allman, David T. Price
  • Patent number: 6759262
    Abstract: An image sensor and method of manufacture therefor includes a substrate having pixel control circuitry. Dielectric layers on the substrate include interconnects in contact with the pixel control circuitry and with pixel electrodes. An intrinsic layer is over the pixel electrodes and has a gap provided between the pixel electrodes. An intrinsic-layer covering layer is over the intrinsic layer and a transparent contact layer over the intrinsic-layer covering and the interconnects. The intrinsic, intrinsic-layer covering, and transparent contact layer interact in different combinations to provide a pixel isolation system for the image sensor.
    Type: Grant
    Filed: December 18, 2001
    Date of Patent: July 6, 2004
    Assignee: Agilent Technologies, Inc.
    Inventors: Jeremy A. Theil, Dietrich W. Vook, Homayoon Haddad
  • Patent number: 6596600
    Abstract: A logic circuit is formed of an I2L cell structure in which a difference of switching speeds at every collectors in a multi-collector structure is small. In a semiconductor device in which an integrated injection logic cell including a constant current source transistor and a switch transistor is formed on a common semiconductor substrate, a first semiconductor layer (13) doped with a first conductivity type impurity and a second semiconductor layer (19) doped with a second conductivity impurity are electrically isolated from each other on a semiconductor substrate. A plurality of collector electrodes of the switch transistor and a plurality of collector regions (20) based on diffusion of impurity are formed by the second semiconductor layer (19). The first semiconductor layer (13) includes a base electrode deriving portion, and a direct contact portion which directly contacts with the semiconductor substrate between a plurality of collector regions (20).
    Type: Grant
    Filed: October 30, 1998
    Date of Patent: July 22, 2003
    Assignee: Sony Corporation
    Inventor: Takayuki Gomi
  • Patent number: 6593628
    Abstract: The invention relates to an essentially discrete semiconductor device comprising a semiconductor body (10) having a first, preferably bipolar, transistor (T1) with a first region (1) forming a collector (1) of T1, and a second, preferably also bipolar, transistor (T2) with a second region (2) forming a collector (2) of T2, which transistors (T1, T2) are in a cascode configuration wherein the collector (1) of T1is connected to the emitter (4) of T2. Such a device cannot suitably be used in a base station for mobile communication. According to the invention, the first region (1) and the second region (2) are positioned next to each other within a semiconductor region (5), a part of which situated below the first region (1) is provided with a higher doping concentration at the location of T1. In this way, T1 has a low collector-emitter breakdown voltage and a high cutoff frequency, whereas for T2 said voltage and frequency are, respectively, high(er) and low(er).
    Type: Grant
    Filed: March 28, 2001
    Date of Patent: July 15, 2003
    Assignee: Koninklijke Philips Electronics N.V.
    Inventors: Ronald Dekker, Henricus Godefridus Rafael Maas, Jan Willem Slotboom, Freerk Van Rijs
  • Publication number: 20030111704
    Abstract: An image sensor and method of manufacture therefor includes a substrate having pixel control circuitry. Dielectric layers on the substrate include interconnects in contact with the pixel control circuitry and with pixel electrodes. An intrinsic layer is over the pixel electrodes and has a gap provided between the pixel electrodes. An intrinsic-layer covering layer is over the intrinsic layer and a transparent contact layer over the intrinsic-layer covering and the interconnects. The intrinsic, intrinsic-layer covering, and transparent contact layer interact in different combinations to provide a pixel isolation system for the image sensor.
    Type: Application
    Filed: December 18, 2001
    Publication date: June 19, 2003
    Inventors: Jeremy A. Theil, Dietrich W. Vook, Homayoon Haddad
  • Patent number: 6573146
    Abstract: A complementary bipolar transistor having a lateral npn bipolar transistor, a vertical and a lateral pnp bipolar transistor, an integrated injection logic, a diffusion capacitor, a polysilicon capacitor and polysilicon resistors are disclosed. The lateral pnp bipolar transistor has an emitter region and a collector region which includes high-density regions and low-density regions, and the emitter region is formed in an n type tub region. In the integrated injection logic circuit, collector regions are surrounded by a high-density p type region, and low-density p type regions are formed under the collector regions. The diffusion capacitor and the polysilicon capacitor are formed in one substrate. The diffusion regions except the regions formed by diffusing the impurities in the polysilicon resistors into the epitaxial layer are formed before forming the polysilicon resistors, and polysilicon electrodes are formed along with the polysilicon resistors.
    Type: Grant
    Filed: October 16, 2001
    Date of Patent: June 3, 2003
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Jong-Hwan Kim, Tae-Hoon Kwon, Cheol-Joong Kim, Suk-Kyun Lee
  • Patent number: 6551869
    Abstract: A lateral PNP is disclosed in which a substrate of a first conductivity type is used. On top of the substrate a buried region of a second conductivity type is formed. A lightly doped collector region is located above the buried region. The lateral PNP also includes a base region of a second conductivity type formed by a graded channel implant and a well region of a second conductivity type, the well region contacting the base region, the buried region and a base contact. Additionally, there are collector contacts and emitter contacts of a first conductivity type. The lightly doped collector region results in a large Early voltage and the base region provides for a high current gain.
    Type: Grant
    Filed: June 9, 2000
    Date of Patent: April 22, 2003
    Assignee: Motorola, Inc.
    Inventors: Francis K. Chai, Vida Ilderem Burger, Carl S. Kyono, Sharanda L. Bigelow, Rainer Thoma
  • Patent number: 6501152
    Abstract: A lateral NPN transistor (LPNP) (102) having the lightly doped drain extension implant blocked from the emitter region (118) but not the collector region (120). Accordingly, the emitter region (118) has a more abrupt junction for high emitter injection efficiency while the collector region (120) has a lightly doped region for reduced base depletion.
    Type: Grant
    Filed: August 10, 1999
    Date of Patent: December 31, 2002
    Assignee: Texas Instruments Incorporated
    Inventor: F. Scott Johnson
  • Patent number: 6489211
    Abstract: A method of manufacturing a semiconductor component includes providing a composite substrate (300) with a dielectric portion and a semiconductor portion and growing an epitaxial layer (400) over the composite substrate. The epitaxial layer has a polycrystalline portion (402) over the dielectric portion of the composite substrate and also has a monocrystalline portion (401) over the semiconductor portion of the composite substrate. A first dopant is diffused into the monocrystalline portion of the epitaxial layer to form an emitter region in the monocrystalline portion of the epitaxial layer while a second dopant is simultaneously diffused into the monocrystalline portion of the epitaxial layer to form an enhanced portion of the base region.
    Type: Grant
    Filed: March 1, 2000
    Date of Patent: December 3, 2002
    Assignee: Motorola, Inc.
    Inventors: John L. Freeman, Jr., Raymond J. Balda, Robert A. Pryor, James D. Paulsen, Robert J. Johnsen
  • Patent number: 6395610
    Abstract: A bipolar transistor includes an oxide layer having graded portions with greatly reduced stress on a silicon substrate. The method of making the oxide preferably includes growing a first oxide portion by upwardly ramping the silicon substrate to a first temperature lower than a glass transition temperature, and exposing the silicon substrate to an oxidizing ambient at the first temperature and for a first time period. Also, the method includes growing a second oxide portion between the first oxide portion and the silicon substrate by exposing the silicon substrate to an oxidizing ambient at a second temperature higher than the glass transition temperature for a second time period. The second oxide portion may have a thickness in a range of about 2 to 75% of a total thickness of the graded, grown, oxide layer. The step of upwardly ramping preferably includes upwardly ramping the temperature at a relatively high ramping rate to reduce any oxide formed during the upward ramping.
    Type: Grant
    Filed: June 20, 2000
    Date of Patent: May 28, 2002
    Assignee: Lucent Technologies Inc.
    Inventors: Kumar Pradip Roy, Ranbir Singh
  • Patent number: 6232193
    Abstract: An integrated injection logic device is provided in which each collector of an I2L gate is isolated by a field oxide (“FOX”), or by other suitable isolation such as, for example, an isolation trench. The connection of the base to the collectors, between the base contact region and the bottom of the collectors, is made underneath the field oxide using a buried p type layer (TN3 in the Figures illustrating the invention). Because both silicide and heavy implant p+ implant is present at the base contact point only, the recombination current is reduced. This reduces the current loss when compared to the current loss of the known device. Additionally, current gain is also improved by placing a deep base implant close to the emitter of the upside own NPN transistor in the integrated logic device. The area of the base and the area of the collectors is decoupled, i.e.
    Type: Grant
    Filed: August 15, 2000
    Date of Patent: May 15, 2001
    Assignee: Philips Electronics North America Corporaiton
    Inventors: Chun-Yu Chen, Gilles Marcel Ferru, Serge Bardy
  • Patent number: 6162695
    Abstract: A method for fabricating a buried layer pinched collector bipolar, (BPCB), device, sharing several process steps with simultaneously formed CMOS devices, has been developed. The BPCB device fabrication sequence features the use of field ring regions, placed in an N well region, and located between a base and collector region. The use of the field ring results in an increase in collector-emitter breakdown voltage, as a result of the reduction in local dopant concentration in the N well region. This phenomena, the reduction the local dopant concentration in the N well region, in the vicinity of the field ring region, allows a higher N well dopant concentration to be used, resulting in increased frequency responses, (Ft), of the BPCB device, when compared to counterparts fabricated without the field ring regions, and thus with a lower N well dopant concentration.
    Type: Grant
    Filed: August 18, 1999
    Date of Patent: December 19, 2000
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jei-Feng Hwang, Jun-Lin Tsai, Ruey-Hsin Liou, Kuo-Chio Liu
  • Patent number: 6146956
    Abstract: The invention relates to a process for making a lateral PNP bipolar electronic device integrated monolithically on a semiconductor substrate together with other bipolar devices of the NPN type, said device being incorporated to an electrically insulated multilayer structure. The device includes a semiconductor substrate doped with impurities of the P type; a first buried layer doped with impurities of the N type to form a base region; and a second layer, overlying the first and having conductivity of the N type, to form an active area with opposite collector and emitter regions being formed in said active area and separated by a base channel region. The width of the base channel region is defined essentially by a contact opening formed above an oxide layer deposited over the base channel region. Advantageously, the contact opening is formed by shifting an emitter mask.
    Type: Grant
    Filed: May 29, 1998
    Date of Patent: November 14, 2000
    Assignee: STMicroelectronics, S.r.l.
    Inventors: Angelo Pinto, Carlo Alemanni
  • Patent number: 6140194
    Abstract: A manufacturing method for semiconductor components is disclosed which will allow better precision in the definition of the doped areas of the components and the separation of differently doped areas. A selectively shaped area of, for example, polysilicon, defining the area or areas to be doped, is deposited on the component before masks are applied. This makes the positioning of masks less critical because they only have to be positioned within the area of the polysilicon layer. In this way, an accuracy of 0.1 .mu.m or better can be achieved.
    Type: Grant
    Filed: March 3, 1998
    Date of Patent: October 31, 2000
    Assignee: Telefonaktiebolaget LM Ericsson (publ)
    Inventors: H.ang.kan Sjodin, Anders Soderbarg, Nils Ogren, Ivar Hamberg, Dimitri Olofsson, Karin Andersson
  • Patent number: 6051873
    Abstract: An oxide film mask 6b of a desired shape is formed on the surface of a polysilicon film 5a which becomes a base electrode and the top of the polysilicon film 5a is isotropically etched with the mask 6b, then the polysilicon film 5a is anisotropically etched with the same mask 6b for exposing an epitaxial layer 3.
    Type: Grant
    Filed: January 14, 1998
    Date of Patent: April 18, 2000
    Assignee: Mitsubishi Denki Kabushiki Kaisha
    Inventor: Yasuki Yoshihisa
  • Patent number: 5915186
    Abstract: In a semiconductor device manufacturing method for forming first and second bipolar transistors on a semiconductor substrate 1, a link base layer 5 for connecting a graft base layer (graft base layer 8) of the first bipolar transistor and an intrinsic base layer 12 to each other, and at least a part of a base layer 6 of the second bipolar transistor are formed simultaneously with each other, and then the link base layer 5 in a region where the intrinsic base layer 12 will be formed is removed by an etching treatment, and then by a selective epitaxial growth method, the intrinsic base layer 12 is formed in the region where the link base layer 5 is removed.
    Type: Grant
    Filed: December 18, 1997
    Date of Patent: June 22, 1999
    Assignee: Sony Corporation
    Inventor: Takayuki Gomi
  • Patent number: 5646016
    Abstract: Provided is a fusion molecule comprising a DNA sequence encoding a thioredoxin-like protein fused to a DNA sequence encoding a second peptide or protein. The peptide or protein may be fused to the amino terminus of the thioredoxin-like molecule, the carboxyl terminus of the thioredoxin-like molecule, or within the thioredoxin-like molecule, for example at the active-site loop of said molecule. The fusion molecule may be modified to introduce one or more metal-binding/chelating amino-acid residues to aid in purification. Expression of this fusion molecule under the control of a regulatory sequence capable of directing its expression in a desired host cell, produces high levels of stable and soluble fusion protein. The fusion protein, located in the bacterial cytoplasm, may be selectively released from the cell by osmotic shock or freeze/thaw procedures. It may be optionally cleaved to liberate the soluble, correctly folded heterologous protein from the thioredoxin-like portion.
    Type: Grant
    Filed: December 10, 1993
    Date of Patent: July 8, 1997
    Assignee: Genetics Institute, Inc.
    Inventors: John McCoy, Elizabeth DiBlasio-Smith, Kathleen Grant, Edward R. LaVallie