Including Diode Patents (Class 438/328)
-
Patent number: 11990505Abstract: A transient-voltage-suppression protection device and a manufacturing process therefor, and an electronic product. The transient-voltage-suppression protection device includes a substrate, a first trap, a second trap, a first injection region, and a second injection region, where the first trap and the second trap are sequentially arranged on the substrate from left to right at an interval, have a same doping type that is opposite to a doping type of the substrate, and are respectively provided with the first injection region and the second injection region with opposite doping types. The electronic product includes the transient-voltage-suppression protection device. In the solutions described, protection can be triggered and started at a lower voltage; the capacitance is small, and the manufacturing process is simple.Type: GrantFiled: April 29, 2020Date of Patent: May 21, 2024Assignee: WILL SEMICONDUCTOR CO., LTD.SHANGHAIInventors: Fusheng Zhang, Chengzong Xu
-
Patent number: 11610882Abstract: A semiconductor device includes a semiconductor substrate in which a first region having a freewheeling diode arranged therein, second regions having an IGBT arranged therein, and a withstand-voltage retention region surrounding the first region and the second regions in plan view are defined. The semiconductor substrate has a first main surface and a second main surface. The semiconductor substrate includes an anode layer having a first conductivity type, which is arranged in the first main surface of the first region, and a diffusion layer having the first conductivity type, which is arranged in the first main surface of the withstand-voltage retention region adjacently to the anode layer. A first trench is arranged in the first main surface on a side of the anode layer with respect to a boundary between the anode layer and the diffusion layer.Type: GrantFiled: May 15, 2020Date of Patent: March 21, 2023Assignee: Mitsubishi Electric CorporationInventors: Hiroyuki Nakamura, Shinya Soneda
-
Patent number: 11430883Abstract: An insulation film includes a first opening portion in at least one of a cell region and a termination region, and a second opening portion in an interface region. The second opening portion has an opening ratio lower than an opening ratio of the first opening portion. The semiconductor device includes a first impurity layer of a second conductivity type, and a second impurity layer of the second conductivity type. The first impurity layer is disposed on a surface of a semiconductor substrate below the first opening portion. The second impurity layer has impurity concentration lower than impurity concentration of the first impurity layer, and is disposed on the surface of the semiconductor substrate below the second opening portion.Type: GrantFiled: December 3, 2019Date of Patent: August 30, 2022Assignee: Mitsubishi Electric CorporationInventor: Ayanori Gatto
-
Patent number: 10923570Abstract: A semiconductor device comprises: an n-type semiconductor substrate; a p-type anode region formed in the semiconductor substrate on its front surface side; an n-type field stop region formed in the semiconductor substrate on its rear surface side with protons as a donor; and an n-type cathode region formed in the semiconductor substrate to be closer to its rear surface than the field stop region is, wherein a concentration distribution of the donor in the field stop region in its depth direction has a first peak, and a second peak that is closer to the rear surface of the semiconductor substrate than the first peak is, and has a concentration lower than that of the first peak, and a carrier lifetime in at least a partial region between the anode region and the cathode region is longer than carrier lifetimes in the anode region.Type: GrantFiled: June 4, 2019Date of Patent: February 16, 2021Assignee: FUJI ELECTRIC CO., LTD.Inventors: Hiroki Wakimoto, Hiroshi Takishita, Takashi Yoshimura, Takahiro Tamura, Yuichi Onozawa
-
Patent number: 9224729Abstract: A semiconductor device includes: a first well provided in a semiconductor substrate; a second well provided in the semiconductor substrate, so as to be isolated from the first well; a Schottky barrier diode formed in the first well; and a PN junction diode formed in the second well, with an impurity concentration of the PN junction thereof set higher than an impurity concentration of the Schottky junction of the Schottky barrier diode, and being connected antiparallel with the Schottky barrier diode.Type: GrantFiled: June 17, 2014Date of Patent: December 29, 2015Assignee: FUJITSU SEMICONDUCTOR LIMITEDInventors: Dai Kanai, Taiji Ema, Kazushi Fujita
-
Patent number: 9202886Abstract: A Schottky diode includes a deep well formed in a substrate, an isolation layer formed in the substrate, a first conductive type guard ring formed in the deep well along an outer sidewall of the isolation layer and located at a left side of the isolation layer, a second conductive type well formed in the deep well along the outer sidewall of the isolation layer and located at a right side of the isolation layer, an anode electrode formed over the substrate and coupled to the deep well and the guard ring, and a cathode electrode formed over the substrate and coupled to the well. A part of the guard ring overlaps the isolation layer.Type: GrantFiled: August 7, 2014Date of Patent: December 1, 2015Assignee: MAGNACHIP SEMICONDUCTOR, LTD.Inventor: Jin-Yeong Son
-
Patent number: 9123608Abstract: A backside illuminated CMOS image sensor comprises a photo active region formed over a substrate using a front side ion implantation process and an extended photo active region formed adjacent to the photo active region, wherein the extended photo active region is formed by using a backside ion implantation process. The backside illuminated CMOS image sensor may further comprise a laser annealed layer on the backside of the substrate. The extended photo active region helps to increase the number of photons converted into electrons so as to improve quantum efficiency.Type: GrantFiled: March 9, 2012Date of Patent: September 1, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Shiu-Ko JangJian, Volume Chien, Szu-An Wu
-
Patent number: 9111750Abstract: A monolithically integrated semiconductor assembly is presented. The semiconductor assembly includes a substrate including silicon carbide (SiC), and gallium nitride (GaN) semiconductor device is fabricated on the substrate. The semiconductor assembly further includes at least one transient voltage suppressor (TVS) structure fabricated in or on the substrate, wherein the TVS structure is in electrical contact with the GaN semiconductor device. The TVS structure is configured to operate in a punch-through mode, an avalanche mode, or combinations thereof, when an applied voltage across the GaN semiconductor device is greater than a threshold voltage. Methods of making a monolithically integrated semiconductor assembly are also presented.Type: GrantFiled: June 28, 2013Date of Patent: August 18, 2015Assignee: General Electric CompanyInventors: Avinash Srikrishnan Kashyap, Peter Micah Sandvik, Rui Zhou
-
Patent number: 9105567Abstract: An integrated circuit structure includes a semiconductor doped area (NWell) having a first conductivity type, and a layer (PSD) that overlies a portion of said doped area (NWell) and has a doping of an opposite second type of conductivity that is opposite from the first conductivity type of said doped area (NWell), and said layer (PSD) having a corner in cross-section, and the doping of said doped area (NWell) forming a junction beneath said layer (PSD) with the doping of said doped area (NWell) diluted in a vicinity below the corner of said layer (PSD). Other integrated circuits, substructures, devices, processes of manufacturing, and processes of testing are also disclosed.Type: GrantFiled: May 3, 2013Date of Patent: August 11, 2015Assignee: TEXAS INSTRUMENTS INCORPORATEDInventor: Ming-Yeh Chuang
-
Patent number: 9059705Abstract: A non-volatile field programmable gate array includes a logic component, a transistor device comprising a gate structure, a first impurity region, and a second impurity region, the first impurity region coupled to the reconfigurable logic component, and a resistive switching device comprising a bottom electrode coupled to the first impurity region, a top electrode spatially extending in a first direction, and a resistive switching element coupled to the top electrode and to the bottom electrode at an intersecting region between the bottom electrode and the top electrode, wherein the resistive switching device stores a resistance state from a plurality of resistance states that indicates a configuration code for the reconfigurable logic component.Type: GrantFiled: June 30, 2011Date of Patent: June 16, 2015Assignee: CROSSBAR, INC.Inventor: Frank Edelhaeuser
-
Patent number: 9018069Abstract: A semiconductor structure and a method for manufacturing the same are provided. The semiconductor structure comprises a diode. The diode comprises a first doped region, a second doped region and a third doped region. The first doped region and the third doped region have a first conductivity type. The second doped region has a second conductivity type opposite to the first conductivity type. The second doped region and the third doped region are separated from each other by the first doped region. The third doped region has a first portion and a second portion adjacent to each other. The first portion and the second portion are respectively adjacent to and away from the second doped region. A dopant concentration of the first portion is bigger than a dopant concentration of the second portion.Type: GrantFiled: September 9, 2013Date of Patent: April 28, 2015Assignee: Macronix International Co., Ltd.Inventors: Chieh-Chih Chen, Cheng-Chi Lin, Shih-Chin Lien, Shyi-Yuan Wu
-
Patent number: 9018070Abstract: The present invention discloses a transient voltage suppressor (TVS) circuit, and a diode device therefor and a manufacturing method thereof. The TVS circuit is for coupling to a protected circuit to limit amplitude of a transient voltage which is inputted to the protected circuit. The TVS circuit includes a suppressor device and at least a diode device. The diode device is formed in a substrate, which includes: a well formed in the substrate; a separation region formed beneath the upper surface; a anode region and a cathode region, which are formed at two sides of the separation region beneath the upper surface respectively, wherein the anode region and the cathode region are separated by the separation region; and a buried layer, which is formed in the substrate below the well with a higher impurity density and a same conductive type as the well.Type: GrantFiled: September 10, 2014Date of Patent: April 28, 2015Assignee: Richtek Technology Corporation, R.O.C.Inventors: Tsung-Yi Huang, Jin-Lian Su
-
Patent number: 9018068Abstract: A nonvolatile resistive memory element includes a novel switching layer and methods of forming the same. The switching layer includes a material having bistable resistance properties and formed by bonding silicon to oxygen or nitrogen. The switching layer may include at least one of SiOx, SiOxNy, or SiNx. Advantageously, the SiOx, SiOxNy, and SiNx generally remain amorphous after thermal anneal processes are used to form the devices, such as ReRAM devices.Type: GrantFiled: April 24, 2013Date of Patent: April 28, 2015Assignee: Intermolecular, Inc.Inventors: Randall J. Higuchi, Chien-Lan Hsueh, Yun Wang
-
Publication number: 20150097269Abstract: The present invention discloses a transient voltage suppression (TVS) device and a manufacturing method thereof. The TVS device includes: a conductive layer; a P-type semiconductor substrate, which is formed on the conductive layer; an N-type buried layer, which is formed on the semiconductor substrate; a P-type lightly doped layer, which is formed on the buried layer; a P-type cap region, which is formed on the lightly doped layer; and an N-type reverse region, which is formed on the cap region, wherein a Zener diode includes the reverse region and the cap region, and an NPN bipolar junction transistor (BJT) includes the reverse region, the cap region, the lightly doped layer and the buried layer.Type: ApplicationFiled: October 8, 2013Publication date: April 9, 2015Applicant: RICHTEK TECHNOLOGY CORPORATIONInventors: Tsung-Yi Huang, Wu-Te Weng
-
Patent number: 9000516Abstract: A super-junction device including a unit region is disclosed. The unit region includes a heavily doped substrate; a first epitaxial layer over the heavily doped substrate; a second epitaxial layer over the first epitaxial layer; a plurality of first trenches in the second epitaxial layer; an oxide film in each of the plurality of first trenches; and a pair of first films on both sides of each of the plurality of first trenches, thereby forming a sandwich structure between every two adjacent ones of the plurality of first trenches, the sandwich structure including two first films and a second film sandwiched therebetween, the second film being formed of a portion of the second epitaxial layer between the two first films of a sandwich structure. A method of forming a super-junction device is also disclosed.Type: GrantFiled: September 5, 2013Date of Patent: April 7, 2015Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.Inventor: Shengan Xiao
-
Publication number: 20150085407Abstract: Protection device structures and related fabrication methods and devices are provided. An exemplary device includes a first interface, a second interface, a first protection circuitry arrangement coupled to the first interface, and a second protection circuitry arrangement coupled between the first protection circuitry arrangement and the second interface. The second protection circuitry arrangement includes a first transistor and a diode coupled to the first transistor, wherein the first transistor and the diode are configured electrically in series between the first protection circuitry arrangement and the second interface.Type: ApplicationFiled: September 23, 2013Publication date: March 26, 2015Inventors: WEIZE CHEN, PATRICE M. PARRIS
-
Publication number: 20150084154Abstract: Methods and apparatus for ESD structures. A semiconductor device includes a first active area containing an ESD cell coupled to a first terminal and disposed in a well; a second active area in the semiconductor substrate, the second active area comprising a first diffusion of the first conductivity type for making a bulk contact to the well; and a third active area in the semiconductor substrate, separated from the first and second active areas by another isolation region, a portion of the third active area comprising an implant diffusion of the first conductivity type within a first diffusion of the second conductivity type and adjacent a boundary with the well of the first conductivity type; wherein the third active area comprises a diode coupled to the terminal and reverse biased with respect to the well of the first conductivity type.Type: ApplicationFiled: December 3, 2014Publication date: March 26, 2015Inventors: Yu-Ying Hsu, Tzu-Heng Chang, Jen-Chou Tseng, Ming-Hsiang Song, Johannes Van Zwol, Taede Smedes
-
Patent number: 8963246Abstract: There is provided a semiconductor device and a method for manufacturing a semiconductor device. Within the N-type semiconductor layer formed from a high resistance N-type substrate, the P-type well diffusion layer and P-type extraction layer are formed and are fixed to ground potential. Due thereto, a depletion layer spreading on the P-type well diffusion layer side does not reach the interlayer boundary between the P-type well diffusion layer and the buried oxide film. Hence, the potential around the surface of the P-type well diffusion layer is kept at a ground potential. Accordingly, when the voltages are applied to the backside of the N-type semiconductor layer and a cathode electrode, a channel region at the MOS-type semiconductor formed as a P-type semiconductor layer is not activated. Due thereto, leakage current that may occur independently of a control due to the gate electrode of a transistor can be suppressed.Type: GrantFiled: March 9, 2011Date of Patent: February 24, 2015Assignees: Inter-University Research Institute Corporation High Energy Accelerator Research Organization, LAPIS Semiconductor Co., Ltd.Inventors: Yasuo Arai, Masao Okihara, Hiroki Kasai
-
Patent number: 8946038Abstract: A method of forming one or more diodes in a fin field-effect transistor (FinFET) device includes forming a hardmask layer having a fin pattern, said fin pattern including an isolated fin area, a fin array area, and a FinFET area. The method further includes etching a plurality of fins into a semiconductor substrate using the fin pattern, and depositing a dielectric material over the semiconductor substrate to fill spaces between the plurality of fins. The method further includes planarizing the semiconductor substrate to expose the hardmask layer. The method further includes implanting a p-type dopant into the fin array area and portions of the FinFET area, and implanting an n-type dopant into the isolated fin area, a portion of the of fin array area surrounding the p-well and portions of the FinFET area. The method further includes annealing the semiconductor substrate.Type: GrantFiled: November 25, 2013Date of Patent: February 3, 2015Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chia-Hsin Hu, Sun-Jay Chang, Jaw-Juinn Horng, Chung-Hui Chen
-
Publication number: 20140319598Abstract: A transient-voltage suppressing (TVS) device disposed on a semiconductor substrate including a low-side steering diode, a high-side steering diode integrated with a main Zener diode for suppressing a transient voltage. The low-side steering diode and the high-side steering diode integrated with the Zener diode are disposed in the semiconductor substrate and each constituting a vertical PN junction as vertical diodes in the semiconductor substrate whereby reducing a lateral area occupied by the TVS device. In an exemplary embodiment, the high-side steering diode and the Zener diode are vertically overlapped with each other for further reducing lateral areas occupied by the TVS device.Type: ApplicationFiled: April 24, 2013Publication date: October 30, 2014Inventor: Madhur Bobde
-
Patent number: 8871600Abstract: Schottky barrier diodes, methods for fabricating Schottky barrier diodes, and design structures for a Schottky barrier diode. A guard ring for a Schottky barrier diode is formed with a selective epitaxial growth process. The guard ring for the Schottky barrier diode and an extrinsic base of a vertical bipolar junction diode on a different device region than the Schottky barrier diode may be concurrently formed using the same selective epitaxial growth process.Type: GrantFiled: November 11, 2011Date of Patent: October 28, 2014Assignee: International Business Machines CorporationInventors: David L. Harame, Qizhi Liu, Robert M. Rassel
-
Patent number: 8865541Abstract: An integrated circuit contains a voltage protection structure having a diode isolated DENMOS transistor with a guard element proximate to the diode and the DENMOS transistor. The guard element includes an active area coupled to ground. The diode anode is connected to an I/O pad. The diode cathode is connected to the DENMOS drain. The DENMOS source is grounded. A process of forming the integrated circuit is also disclosed.Type: GrantFiled: December 19, 2013Date of Patent: October 21, 2014Assignee: Texas Instruments IncorporatedInventors: Farzan Farbiz, Akram A. Salman
-
Patent number: 8846482Abstract: A method of forming a doped region in a III-nitride substrate includes providing the III-nitride substrate and forming a masking layer having a predetermined pattern and coupled to a portion of the III-nitride substrate. The III-nitride substrate is characterized by a first conductivity type and the predetermined pattern defines exposed regions of the III-nitride substrate. The method also includes heating the III-nitride substrate to a predetermined temperature and placing a dual-precursor gas adjacent the exposed regions of the III-nitride substrate. The dual-precursor gas includes a nitrogen source and a dopant source. The method further includes maintaining the predetermined temperature for a predetermined time period, forming p-type III-nitride regions adjacent the exposed regions of the III-nitride substrate, and removing the masking layer.Type: GrantFiled: September 22, 2011Date of Patent: September 30, 2014Assignee: Avogy, Inc.Inventors: David P. Bour, Richard J. Brown, Isik C. Kizilyalli, Thomas R. Prunty, Linda Romano, Andrew P. Edwards, Hui Nie, Mahdan Raj
-
Patent number: 8772106Abstract: Memory devices are described along with methods for manufacturing and methods for operating. A memory device as described herein includes a plurality of memory cells located between word lines and bit lines. Memory cells in the plurality of memory cells comprise a diode and a metal-oxide memory element programmable to a plurality of resistance states including a first and a second resistance state, the diode of the memory element arranged in electrical series along a current path between a corresponding word line and a corresponding bit line. The device further includes bias circuitry to apply bias arrangements across the series arrangement of the diode and the memory element of a selected memory cell in the plurality of memory cells.Type: GrantFiled: July 9, 2013Date of Patent: July 8, 2014Assignee: Macronix International Co., Ltd.Inventors: Ming-Daou Lee, Erh-Kun Lai, Kuang-Yeu Hsieh, Wei-Chih Chien, Chien Hung Yeh
-
Patent number: 8759880Abstract: An ultra-high voltage silicon-germanium (SiGe) heterojunction bipolar transistor (HBT), which includes: a P-type substrate; an N-type matching layer, a P-type matching layer and an N? collector region stacked on the P-type substrate from bottom up; two field oxide regions separately formed in the N? collector region; N+ pseudo buried layers, each under a corresponding one of the field oxide regions and in contact with each of the N-type matching layer, the P-type matching layer and the N? collector region; an N+ collector region between the two field oxide regions and through the N? collector region and the P-type matching layer and extending into the N-type matching layer; and deep hole electrodes, each in a corresponding one of the field oxide regions and in contact with a corresponding one of the N+ pseudo buried layers. A method of fabricating an ultra-high voltage SiGe HBT is also disclosed.Type: GrantFiled: June 6, 2013Date of Patent: June 24, 2014Assignee: Shanghai Hua Hong NEC Electronics Co., Ltd.Inventors: Jing Shi, Donghua Liu, Jun Hu, Wensheng Qian, Wenting Duan, Fan Chen
-
Publication number: 20140160827Abstract: The present invention relates to electronic memory circuits, and more particularly, to low power electronic memory circuits having low manufacturing costs. The present invention is a circuit design that utilizes two transistor types—bipolar and MOS (but, not both NMOS and PMOS) one of which can be manufactured together with the memory cell's non-linear conductive elements (such as a diode) thereby reducing the number of processing steps and masks and resulting in lower cost.Type: ApplicationFiled: December 14, 2012Publication date: June 12, 2014Inventor: Daniel Robert Shepard
-
Publication number: 20140126091Abstract: Protection device structures and related fabrication methods are provided. An exemplary protection device includes a first bipolar junction transistor, a second bipolar junction transistor, a first zener diode, and a second zener diode. The collectors of the first bipolar junction transistors are electrically coupled. A cathode of the first zener diode is coupled to the collector of the first bipolar transistor and an anode of the first zener diode is coupled to the base of the first bipolar transistor. A cathode of the second zener diode is coupled to the collector of the second bipolar transistor and an anode of the second zener diode is coupled to the base of the second bipolar transistor. In exemplary embodiments, the base and emitter of the first bipolar transistor are coupled at a first interface and the base and emitter of the second bipolar transistor are coupled at a second interface.Type: ApplicationFiled: November 8, 2012Publication date: May 8, 2014Applicant: FREESCALE SEMICONDUCTOR, INC.Inventors: Chai Ean Gill, Changsoo Hong, Rouying Zhan, William G. Cowden
-
Publication number: 20140124894Abstract: The disclosed technology relates to a semiconductor device comprising a diode junction between two semiconductor regions of different doping types. In one aspect, the diode comprises a junction formed between an upper portion of an active area and a remainder of the active area, where the active area is defined in a substrate between two field dielectric regions. The upper portion is a portion of the active area that has a width smaller than a width of the active area itself. In another aspect, the semiconductor device is an electrostatic discharge protection device (ESD) comprising such a diode. In addition, the active area has a doping profile that exhibits a maximum value at the surface of the active area, and changes to a minimum value at a first depth, where the first depth can be greater in value than half of a depth of the upper portion.Type: ApplicationFiled: October 29, 2013Publication date: May 8, 2014Applicant: IMECInventors: Geert Hellings, Mirko Scholz, Dimitri Linten
-
Patent number: 8686513Abstract: An IGBT die structure includes an auxiliary P well region. A terminal, that is not connected to any other IGBT terminal, is coupled to the auxiliary P well region. To accelerate IGBT turn on, a current is injected into the terminal during the turn on time. The injected current causes charge carriers to be injected into the N drift layer of the IGBT, thereby reducing turn on time. To accelerate IGBT turn off, charge carriers are removed from the N drift layer by drawing current out of the terminal. To reduce VCE(SAT), current can also be injected into the terminal during IGBT on time. An IGBT assembly involves the IGBT die structure and an associated current injection/extraction circuit. As appropriate, the circuit injects or extracts current from the terminal depending on whether the IGBT is in a turn on time or is in a turn off time.Type: GrantFiled: October 26, 2012Date of Patent: April 1, 2014Assignee: IXYS CorporationInventor: Kyoung Wook Seok
-
Patent number: 8680585Abstract: There is provided a light emitting diode package and a method of manufacturing the same. A light emitting diode package according to an aspect of the invention may include: an LED chip; a body part having the LED chip mounted thereon; a pair of reflective parts extending from the body part to face each other while interposing the LED chip therebetween, and reflecting light emitted from the LED chip; and a molding part provided between the pair of reflective parts to encapsulate the LED chip and having a top surface whose central region is curved inwards.Type: GrantFiled: November 11, 2010Date of Patent: March 25, 2014Assignee: Samsung Electronics Co., Ltd.Inventors: Young Sam Park, Hun Joo Hahm
-
Patent number: 8642421Abstract: A light-emitting diode (LED) structure fabricated with a SixNy layer responsible for providing increased light extraction out of a surface of the LED is provided. Such LED structures fabricated with a SixNy layer may have increased luminous efficiency when compared to conventional LED structures fabricated without a SixNy layer. Methods for creating such LED structures are also provided.Type: GrantFiled: January 20, 2012Date of Patent: February 4, 2014Assignee: SemiLEDS Optoelectronics Co., Ltd.Inventor: Chuong Anh Tran
-
Patent number: 8617958Abstract: Some embodiments include methods of forming diodes. A stack may be formed over a first conductive material. The stack may include, in ascending order, a sacrificial material, at least one dielectric material, and a second conductive material. Spacers may be formed along opposing sidewalls of the stack, and then an entirety of the sacrificial material may be removed to leave a gap between the first conductive material and the at least one dielectric material. In some embodiments of forming diodes, a layer may be formed over a first conductive material, with the layer containing supports interspersed in sacrificial material. At least one dielectric material may be formed over the layer, and a second conductive material may be formed over the at least one dielectric material. An entirety of the sacrificial material may then be removed.Type: GrantFiled: November 26, 2012Date of Patent: December 31, 2013Assignee: Micron Technology, Inc.Inventors: Gurtej Sandhu, Bhaskar Srinivasan
-
Patent number: 8609502Abstract: In a method of manufacturing a semiconductor device, a semiconductor substrate of a first conductivity type having first and second surfaces is prepared. Second conductivity type impurities for forming a collector layer are implanted to the second surface using a mask that has an opening at a portion where the collector layer will be formed. An oxide layer is formed by enhanced-oxidizing the collector layer. First conductivity type impurities for forming a first conductivity type layer are implanted to the second surface using the oxide layer as a mask. A support base is attached to the second surface and a thickness of the semiconductor substrate is reduced from the first surface. An element part including a base region, an emitter region, a plurality of trenches, a gate insulating layer, a gate electrode, and a first electrode is formed on the first surface of the semiconductor substrate.Type: GrantFiled: June 18, 2013Date of Patent: December 17, 2013Assignee: DENSO CORPORATIONInventors: Masaki Koyama, Yutaka Fukuda
-
Patent number: 8610241Abstract: Diodes and bipolar junction transistors (BJTs) are formed in IC devices that include fin field-effect transistors (FinFETs) by utilizing various process steps in the FinFET formation process. The diode or BJT includes an isolated fin area and fin array area having n-wells having different depths and a p-well in a portion of the fin array area that surrounds the n-well in the isolated fin area. The n-wells and p-well for the diodes and BJTs are implanted together with the FinFET n-wells and p-wells.Type: GrantFiled: June 12, 2012Date of Patent: December 17, 2013Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chia-Hsin Hu, Sun-Jay Chang, Jaw-Juinn Horng, Chung-Hui Chen
-
Patent number: 8587224Abstract: Provided are a variable field effect transistor (FET) designed to suppress a reduction of current between a source and a drain due to heat while decreasing a temperature of the FET, and an electrical and electronic apparatus including the variable gate FET. The variable gate FET includes a FET and a gate control device that is attached to a surface or a heat-generating portion of the FET and is connected to a gate terminal of the FET so as to vary a voltage of the gate terminal. A channel current between the source and drain is controlled by the gate control device that varies the voltage of the gate terminal when the temperature of the FET increases above a predetermined temperature.Type: GrantFiled: June 28, 2013Date of Patent: November 19, 2013Assignee: Electronics and Telecommunications Research InstituteInventors: Hyun-Tak Kim, Bongjun Kim
-
Lateral super junction device with high substrate-drain breakdown and built-in avalanche clamp diode
Patent number: 8575695Abstract: This invention discloses configurations and methods to manufacture lateral power device including a super-junction structure with an avalanche clamp diode formed between the drain and the gate. The lateral super-junction structure reduces on-resistance, while the structural enhancements, including an avalanche clamping diode and an N buffer region, increase the breakdown voltage between substrate and drain and improve unclamped inductive switching (UIS) performance.Type: GrantFiled: November 30, 2009Date of Patent: November 5, 2013Assignee: Alpha and Omega Semiconductor IncorporatedInventors: Madhur Bobde, Anup Bhalla, Hamza Yilmaz, Wilson Ma, Lingpeng Guan, Yeeheng Lee, John Chen -
Patent number: 8536679Abstract: In the case of adjacent high voltage nodes in which one node is protected by a lateral BJT clamp, the irreversible burnout due to transient latch-up between the two adjacent high voltage pins of the structure is avoided by increasing the base contact region by including a sinker connected to the base.Type: GrantFiled: August 27, 2010Date of Patent: September 17, 2013Assignee: National Semiconductor CorporationInventor: Vladislav Vashchenko
-
Patent number: 8530318Abstract: In some aspects, a method of fabricating a memory cell is provided that includes: (1) fabricating a first conductor above a substrate; (2) selectively fabricating a carbon nano-tube (“CNT”) material above the first conductor by: (a) fabricating a CNT seeding layer on the first conductor, wherein the CNT seeding layer comprises silicon-germanium (“Si/Ge”), (b) planarizing a surface of the deposited CNT seeding layer, and (c) selectively fabricating CNT material on the CNT seeding layer; (3) fabricating a diode above the CNT material; and (4) fabricating a second conductor above the diode. Numerous other aspects are provided.Type: GrantFiled: March 25, 2009Date of Patent: September 10, 2013Assignee: SanDisk 3D LLCInventor: April D. Schricker
-
Patent number: 8516693Abstract: The present invention discloses a printed circuit board. The printed circuit board is made by the method of providing a substrate; forming a first circuit on the substrate; depositing a thin film on the substrate; building an electronic component on the substrate by the thin film and allowing the electronic component to electrically connect the first circuit; forming a blanket dielectric layer enclosing the electronic component; and removing the substrate.Type: GrantFiled: April 9, 2009Date of Patent: August 27, 2013Assignee: Mutual-Tek Industries Co., Ltd.Inventor: Jung-Chien Chang
-
Patent number: 8518799Abstract: A process of making semiconductor-on-glass substrates having a relatively stiff (e.g. relatively high Young's modulus of 125 or higher) stiffening layer between the silicon film and the glass in an ion implantation thin film transfer process by depositing a stiffening layer or layers on one of the donor wafer or the glass substrate in order to eliminate the canyons and pin holes that otherwise form in the surface of the transferred silicon film during the thin film transfer process. The new stiffening layer may be formed of a material, such as silicon nitride, that also serves as an efficient barrier against penetration of sodium and other harmful impurities from the glass substrate into the silicon film.Type: GrantFiled: December 14, 2012Date of Patent: August 27, 2013Assignees: Corning Incorporated, S.O.I TEC Silicon on Insulator TechnologiesInventors: Nadia Ben Mohamed, Ta-Ko Chuang, Jeffrey Scott Cites, Daniel Delprat, Alex Usenko
-
Patent number: 8513083Abstract: Disclosed herein are various methods of forming an anode and a cathode of a substrate diode by performing angled ion implantation processes. In one example, the method includes performing a first angled ion implantation process to form a first doped region in a bulk layer of an SOI substrate for one of the anode or the diode and, after performing the first angled ion implantation process, performing a second angled ion implantation process to form a second doped region in the bulk layer of the SOI substrate for the other of the anode and the diode, wherein said first and second angled ion implantation process are performed through the same masking layer.Type: GrantFiled: August 26, 2011Date of Patent: August 20, 2013Assignee: GLOBALFOUNDRIES Inc.Inventors: Peter Baars, Thilo Scheiper
-
Patent number: 8507352Abstract: In a method of manufacturing a semiconductor device, a semiconductor substrate of a first conductivity type having first and second surfaces is prepared. Second conductivity type impurities for forming a collector layer are implanted to the second surface using a mask that has an opening at a portion where the collector layer will be formed. An oxide layer is formed by enhanced-oxidizing the collector layer. First conductivity type impurities for forming a first conductivity type layer are implanted to the second surface using the oxide layer as a mask. A support base is attached to the second surface and a thickness of the semiconductor substrate is reduced from the first surface. An element part including a base region, an emitter region, a plurality of trenches, a gate insulating layer, a gate electrode, and a first electrode is formed on the first surface of the semiconductor substrate.Type: GrantFiled: November 30, 2009Date of Patent: August 13, 2013Assignee: DENSO CORPORATIONInventors: Masaki Koyama, Yutaka Fukuda
-
Patent number: 8502478Abstract: Provided are a variable field effect transistor (FET) designed to suppress a reduction of current between a source and a drain due to heat while decreasing a temperature of the FET, and an electrical and electronic apparatus including the variable gate FET. The variable gate FET includes a FET and a gate control device that is attached to a surface or a heat-generating portion of the FET and is connected to a gate terminal of the FET so as to vary a voltage of the gate terminal. A channel current between the source and drain is controlled by the gate control device that varies the voltage of the gate terminal when the temperature of the FET increases above a predetermined temperature.Type: GrantFiled: April 18, 2011Date of Patent: August 6, 2013Assignee: Electronics and Telecommunications Research InstituteInventors: Hyun Tak Kim, Bong Jun Kim
-
Patent number: 8476140Abstract: A diode and memory device including the diode, where the diode includes a conductive portion and another portion formed of a first material that has characteristics allowing a first decrease in a resistivity of the material upon application of a voltage to the material, thereby allowing current to flow there through, and has further characteristics allowing a second decrease in the resistivity of the first material in response to an increase in temperature of the first material.Type: GrantFiled: January 18, 2012Date of Patent: July 2, 2013Assignee: Micron Technology, Inc.Inventors: Gurtej Sandhu, Bhaskar Srinivasan
-
Patent number: 8455980Abstract: The self heating of a high-performance bipolar transistor that is formed on a fully-isolated single-crystal silicon region of a silicon-on-insulator (SOI) structure is substantially reduced by forming a Schottky structure in the same fully-isolated single-crystal silicon region as the bipolar transistor is formed.Type: GrantFiled: July 8, 2011Date of Patent: June 4, 2013Assignee: National Semiconductor CorporationInventor: Jeffrey A. Babcock
-
Publication number: 20130127017Abstract: A Reverse Bipolar Junction Transistor (RBJT) integrated circuit comprises a bipolar transistor and a parallel-coupled distributed diode. The bipolar transistor involves many N-type collector regions. Each N-type collector region has a central hole so that P-type material from an underlying P-type region extends up into the hole. A collector metal electrode covers the central hole forming a diode contact at the top of the hole. When the distributed diode conducts, current flows from the collector electrode, down through the many central holes in the many collector regions, through corresponding PN junctions, and to an emitter electrode disposed on the bottom side of the IC. The RBJT and distributed diode integrated circuit has emitter-to-collector and emitter-to-base reverse breakdown voltages exceeding twenty volts. The collector metal electrode is structured to contact the collector regions, and to bridge over the base electrode, resulting in a low collector-to-emitter voltage when the RBJT is on.Type: ApplicationFiled: November 17, 2011Publication date: May 23, 2013Applicant: IXYS CorporationInventor: Kyoung Wook Seok
-
Publication number: 20130119505Abstract: Schottky barrier diodes, methods for fabricating Schottky barrier diodes, and design structures for a Schottky barrier diode. A guard ring for a Schottky barrier diode is formed with a selective epitaxial growth process. The guard ring for the Schottky barrier diode and an extrinsic base of a vertical bipolar junction diode on a different device region than the Schottky barrier diode may be concurrently formed using the same selective epitaxial growth process.Type: ApplicationFiled: November 11, 2011Publication date: May 16, 2013Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: David L. Harame, Qizhi Liu, Robert M. Rassel
-
Patent number: 8390092Abstract: An area-efficient, high voltage, single polarity ESD protection device (300) is provided which includes an p-type substrate (303); a first p-well (308-1) formed in the substrate and sized to contain n+ and p+ contact regions (310, 312) that are connected to a cathode terminal; a second, separate p-well (308-2) formed in the substrate and sized to contain only a p+ contact region (311) that is connected to an anode terminal; and an electrically floating n-type isolation structure (304, 306, 307-2) formed in the substrate to surround and separate the first and second semiconductor regions. When a positive voltage exceeding a triggering voltage level is applied to the cathode and anode terminals, the ESD protection device triggers an inherent thyristor into a snap-back mode to provide a low impedance path through the structure for discharging the ESD current.Type: GrantFiled: November 12, 2010Date of Patent: March 5, 2013Assignee: Freescale Semiconductor, Inc.Inventors: Amaury Gendron, Chai Ean Gill, Vadim A. Kushner, Rouying Zhan
-
Patent number: 8390090Abstract: Provided is a semiconductor device with a high breakdown voltage yield of a bipolar transistor and a high bandwidth and quantum efficiency of a light receiving element. An optical semiconductor device includes monolithically integrated transistor and light receiving element. The light receiving element includes a p-type semiconductor layer, an n-type epitaxial layer formed on the p-type semiconductor layer, and an n-type diffusion layer formed on the n-type epitaxial layer. An n-type impurity concentration of the n-type diffusion layer is 3×1018 cm?3 or less at a depth of 0.12 ?m or more below a surface of the n-type diffusion layer, 1×1016 cm?3 or more at a depth of 0.4 ?m or less below the surface, and 1×1016 cm?3 or less at a depth of 0.8 ?m or more below the surface, and an interface between the p-type semiconductor layer and the n-type epitaxial layer is located at a depth of 0.9 ?m to 1.5 ?m below the surface.Type: GrantFiled: November 18, 2009Date of Patent: March 5, 2013Assignee: NEC CorporationInventor: Takao Morimoto
-
Patent number: 8378392Abstract: A trench Metal Oxide Semiconductor Field Effect Transistor with improved body region structures is disclosed. By forming the inventive body region structures with concave-arc shape with respect to epitaxial layer, a wider interfaced area between the body region and the epitaxial layer is achieved, thus increasing capacitance between drain and source Cds. Moreover, the invention further comprises a Cds enhancement doped region interfaced with said body region having higher doping concentration than the epitaxial layer to further enhancing Cds without significantly impact breakdown voltage.Type: GrantFiled: April 7, 2010Date of Patent: February 19, 2013Assignee: Force Mos Technology Co., Ltd.Inventor: Fu-Yuan Hsieh