Including Isolation Structure Patents (Class 438/353)
  • Patent number: 6902975
    Abstract: Methods of fabricating memory devices having non-volatile and volatile memory are provided. A substrate is provided, wherein the substrate has a non-volatile memory region and a volatile memory region. The non-volatile memory region has a storage device, such as a split-gate transistor, that is fabricated in substantially the same process steps as a storage capacitor of the volatile memory region. The reduction of process steps allow mixed memory to be fabricated in a cost effective manner.
    Type: Grant
    Filed: October 15, 2003
    Date of Patent: June 7, 2005
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Kuo-Chi Tu
  • Patent number: 6902971
    Abstract: A semiconductor fabrication process and the resulting integrated circuit include forming a gate electrode (116) over a gate dielectric (104) over a semiconductor substrate (102). A spacer film (124) exhibiting a tensile stress characteristic is deposited over the gate electrode (116). The stress characteristics of at least a portion of the spacer film is then modulated (132, 192) and the spacer film (124) is etched to form sidewall spacers (160, 162) on the gate electrode sidewalls. The spacer film (124) is an LPCVD silicon nitride in one embodiment. Modulating (132) the spacer film (124) includes implanting Xenon or Germanium into the spacers (160) at an implant energy sufficient to break at least some of the silicon nitride bonds. The modulation implant (132) may be performed selectively or non-selectively either before or after etching the spacer film (124).
    Type: Grant
    Filed: July 21, 2003
    Date of Patent: June 7, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventor: Paul A. Grudowski
  • Patent number: 6900105
    Abstract: In a semiconductor manufacturing method, an emitter region (211) and a base enhancement region (207) are formed to provide linear voltage, capacitance and low resistance characteristics. In the manufacturing method, a semiconductor device (200) is formed on a silicon substrate layer (101) with an epitaxial layer (203). Trenches (233) are cut into the epitaxial layer (203) and filled with oxide (601) to provide reduced junction capacitance and reduced base resistance. The emitter region (211) and the base enhancement region (207) are simultaneously formed through an anneal process.
    Type: Grant
    Filed: August 2, 2002
    Date of Patent: May 31, 2005
    Assignee: Freescale Semiconductor, Inc.
    Inventors: John L. Freeman, Jr., Raymond J. Balda, Robert A. Pryor, Joseph L. Petrucci, Jr., Robert J. Johnsen
  • Patent number: 6876054
    Abstract: An electronic device, a method of manufacturing an electronic device and an integrated circuit that employs at least one such electronic device to couple first and second circuits together in an isolated fashion. In one embodiment, the electronic device includes a first conductive channel, a second conductive channel and an isolation layer. The isolation layer is formed from and over the first conductive channel, interposing the first conductive channel and the second conductive channel and configured both to isolate the second conductive channel electrically from the first conductive channel and transfer momentum between charge carriers in the first conductive channel and charge carriers in the second conductive channel.
    Type: Grant
    Filed: July 29, 2003
    Date of Patent: April 5, 2005
    Assignee: Agere Systems Inc.
    Inventors: Shye Shapira, William B. Wilson, Gerard Zaneski
  • Patent number: 6872447
    Abstract: The pressure-sensitive adhesive sheet for surface protection has a three-layered film formed by laminating a layer A, a layer B and a layer C in this order and a pressure-sensitive adhesive layer formed on the layer C; wherein the layer A contains a polyethylene in an amount of at least 60% by weight based on a total weight of the layer A; the layer B contains a polypropylene type polymer in an amount of at least 50% by weight of based on a total weight of the layer B; and the layer C contains a hydrogenated styrene/diene type hydrocarbon copolymer in an amount of at least 10% by weight based on the total weight of the layer C. This sheet has excellent weathering resistance to undergo neither chalking nor fracture in the substrate at peeling, even after a prolonged outdoor exposure, develops less corona odor to enable extended operation of applying it, and can be manufactured inexpensively with reduced manufacturing process, since no anchor coat treating procedure is required.
    Type: Grant
    Filed: July 11, 2000
    Date of Patent: March 29, 2005
    Assignee: Nichiban Company Limited
    Inventors: Mikihiro Endo, Syuji Ichimura, Kazuhiro Kono, Yoshinaga Tsuzuki
  • Patent number: 6830977
    Abstract: A method of forming an isolation trench in a semiconductor includes forming a first isolation trench portion having a first depth and having a first sidewall intersecting a surface of the semiconductor at a first angle. The method also includes forming a second isolation trench portion within and extending below the first isolation trench portion. The second isolation trench portion has a second depth and includes a second sidewall. The second sidewall intersects the first sidewall at an angle with respect to the surface that is greater than the first angle. A dielectric material fills the first and second isolation trench portions.
    Type: Grant
    Filed: August 31, 2000
    Date of Patent: December 14, 2004
    Assignee: Micron Technology, Inc.
    Inventors: Keiji Jono, Hirokazu Ueda, Hiroyuki Watanabe
  • Patent number: 6830988
    Abstract: An isolation structure having both deep and shallow components is formed in a semiconductor workpiece by etching the workpiece to define raised precursor active device regions separated by sunken precursor isolation regions. An oxidation mask is patterned to expose the precursor isolation regions, and the unmasked precursor isolation regions are exposed to oxidizing conditions to grow field oxides as the deep isolation component. Thermal growth of these field oxides creates topography which includes shallow recesses adjacent to the raised precursor active device regions. Deposition of conformal dielectric material such as high density plasma (HDP) deposited silicon oxide over the entire surface and within the recesses creates the shallow isolation component. Following planarization of the conformal dielectric material, fabrication of the device is completed by introducing conductivity-altering dopant into raised precursor active device regions.
    Type: Grant
    Filed: August 27, 2002
    Date of Patent: December 14, 2004
    Assignee: National Semiconductor Corporation
    Inventor: Albert Bergemont
  • Patent number: 6822325
    Abstract: Temperature sensitive devices may be shielded from temperature generating devices on the same integrated circuit by appropriately providing a trench that thermally isolates the heat generating devices from the temperature sensitive devices. In one embodiment, the trench may be formed by a back side etch completely through an integrated circuit wafer. The resulting trench may be filled with a thermally insulating material.
    Type: Grant
    Filed: August 1, 2002
    Date of Patent: November 23, 2004
    Assignee: Altera Corporation
    Inventor: Ting-Wah Wong
  • Patent number: 6815801
    Abstract: The present invention provides a vertical bipolar transistor 110, a method of manufacture therefor, and an integrated circuit including the same. The vertical bipolar transistor 110 may include, in one embodiment, a second epitaxial layer 140 located over a first epitaxial layer 130, wherein the second epitaxial layer includes at least two dopant profiles 143, 147. The vertical bipolar transistor 110 may further include a collector 154, a base 156 and an emitter 158 located over or within the second epitaxial layer 140.
    Type: Grant
    Filed: February 28, 2003
    Date of Patent: November 9, 2004
    Assignee: Texas Instrument Incorporated
    Inventors: Gregory G. Romas, Darrel C. Oglesby, Jr., Scott F. Jasper, Philip Najfus, Venkatesh Govindaraju, ChunLiang Yeh, James Lisenby
  • Publication number: 20040212035
    Abstract: A semiconductor device includes a region of semiconductor material with first and second isolation trenches formed therein. The first isolation trench is lined with a first material having a low oxygen diffusion rate and is filled with an insulating material. The second isolation trench is not lined with the first material but is filled with an insulating material. A first transistor is formed adjacent the first isolation region and a second transistor formed adjacent the second isolation region.
    Type: Application
    Filed: April 25, 2003
    Publication date: October 28, 2004
    Inventors: Yee-Chia Yeo, Chih-Hsin Ko, Wen-Chin Lee, Chenming Hu
  • Patent number: 6803259
    Abstract: A silicon controlled rectifier for SiGe process. The silicon controlled rectifier comprises a substrate, a buried layer of a first conductivity type in the substrate, a well of the first conductivity type in the substrate and above the buried layer, a doped region of a second conductivity type in the well, a first conducting layer of the second conductivity type on the substrate, and a second conducting layer of the first conductivity type on the first conducting layer.
    Type: Grant
    Filed: March 31, 2003
    Date of Patent: October 12, 2004
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventor: Jian-Hsing Lee
  • Patent number: 6797579
    Abstract: A semiconductor device having a trench isolation structure and a method of fabricating the same are provided. The device has a trench region and an isolation structure. The trench region is disposed to define an active region at a predetermined region of an SOI substrate formed by sequentially stacking a buried insulating layer and an upper silicon layer on a base substrate. The isolation structure fills an inside of the trench region. The trench region has a deep trench region where the upper silicon layer penetrates to the buried insulating layer and a shallow trench region existing at an outside of the deep trench region. The method of forming a trench region with deep and shallow trench regions includes patterning an upper silicon layer of an SOI substrate. A trench oxide layer and a trench liner are conformally formed on a sidewall and a bottom of the trench region.
    Type: Grant
    Filed: January 12, 2004
    Date of Patent: September 28, 2004
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Seung-Han Yoo, Jae-Min Yu, Sang-Wook Park, Tae-Jung Lee
  • Patent number: 6764922
    Abstract: An oxynitride material is used to form shallow trench isolation regions in an integrated circuit structure. The oxynitride may be used for both the trench liner and trench fill material. The oxynitride liner is formed by nitriding an initially formed oxide trench liner. The oxynitride trench fill material is formed by directly depositing a high density plasma (HDP) oxide mixture of SiH4 and O2 and adding a controlled amount of NH3 to the plasma mixture. The resultant oxynitride structure is much more resistant to trench fill erosion by wet etch, for example, yet results in minimal stress to the surrounding silicon. To further reduce stress, the nitrogen concentration may be varied by varying the proportion of O2 to NH3 in the plasma mixture so that the nitrogen concentration is maximum at the top of the fill material.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: July 20, 2004
    Assignee: International Business Machines Corporation
    Inventors: Klaus D. Beyer, Fen F. Jamin, Patrick R. Varekamp
  • Patent number: 6759303
    Abstract: A method for fabricating complementary vertical bipolar junction transistors of silicon-on-sapphire in fewer steps than required for true complimentary vertical bipolar junction transistors is disclosed. Initially a thin layer of silicon is grown on a sapphire substrate. The silicon is improved using double solid phase epitaxy. The silicon is then patterned and implanted with P+-type and N+-type dopants. Subsequently a micrometer scale N-type layer is grown that acts as the intrinsic base for both an PNP transistor and as the collector for an NPN transistor. The extrinsic base for the NPN is then formed and the emitter, collector and ohmic contact regions are next selectively masked and implanted. Conductive metal is then formed between protecting oxide to complete the complementary vertical bipolar junction transistors.
    Type: Grant
    Filed: March 5, 2002
    Date of Patent: July 6, 2004
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventor: Eric N. Cartagena
  • Patent number: 6734524
    Abstract: An electronic component includes a semiconductor substrate (110), an epitaxial semiconductor layer (120, 221, 222) over the semiconductor substrate, and a semiconductor region (130, 230) in the epitaxial semiconductor layer. The epitaxial semiconductor layer has an upper surface (123). A first portion (121) of the epitaxial semiconductor layer is located below the semiconductor region, and a second portion (122) of the epitaxial semiconductor layer is located above the semiconductor region. The semiconductor substrate and the first portion of the epitaxial semiconductor layer have a first conductivity type, and the semiconductor region has a second conductivity type. At least one electrically insulating trench (140, 240) extends from the upper surface of the epitaxial semiconductor layer into at least a portion of the semiconductor region. The semiconductor substrate has a doping concentration higher than a doping concentration of the first portion of the epitaxial semiconductor layer.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: May 11, 2004
    Assignee: Motorola, Inc.
    Inventors: Vijay Parthasarathy, Vishnu Khemka, Ronghua Zhu, Amitava Bose, Todd Roggenbauer, Paul Hui
  • Patent number: 6656812
    Abstract: A vertical bipolar transistor includes a semiconductor substrate, an extrinsic collector layer in the semiconductor substrate, an intrinsic collector on the extrinsic collector, a lateral isolating region surrounding an upper part of the intrinsic collector, an offset extrinsic collector well, a base including a semiconductor region above the intrinsic collector and above the lateral isolating region including at least one silicon layer, and a doped emitter surrounded by the base. The doped emitter may include first and second parts. The first part may be formed from single-crystal silicon and in direct contact with the upper surface of the semiconductor region in a predetermined window in the upper surface above the intrinsic collector. The second part may be formed from polycrystalline silicon. The two parts of the emitter may be separated by a separating oxide layer spaced apart from the emitter-base junction of the transistor.
    Type: Grant
    Filed: November 21, 2000
    Date of Patent: December 2, 2003
    Assignee: STMicroelectronics SA
    Inventors: Michel Marty, Didier Dutartre, Alain Chantre, Sébastien Jouan, Pierre Llinares
  • Publication number: 20030219953
    Abstract: A method for fabricating semiconductor devices, disclosed herein, comprises the steps: covering a semiconductor substrate on which there are an area of forming a first MOSFET and an area of forming a second MOSFET with an insulation layer only in the area of forming the second MOSFET; forming a first trench in which a gate electrode will be formed in the area of forming the first MOSFET, using the insulation layer as a mask; forming a first gate insulation layer on the bottom of the first trench; forming a first gate electrode by filling the first trench with a conductive layer; covering the area of forming the first MOSFET with an insulation layer; forming a second trench in which a gate electrode will be formed in the area of forming the second MOSFET; forming a second gate insulation layer whose thickness is different from the thickness of the first gate insulation layer on the bottom of the second trench; and forming a second gate electrode by filling the second trench with a conductive layer.
    Type: Application
    Filed: May 20, 2003
    Publication date: November 27, 2003
    Applicant: NEC ELECTRONICS CORPORATION
    Inventor: Satoru Mayuzumi
  • Patent number: 6639296
    Abstract: In a method of manufacturing a semiconductor device of STI structure, a semiconductor structure in which an insulating material layer is formed on a conductive layer which becomes a gate electrode, is prepared. Etching is conducted to the semiconductor structure to form a trench extending from the insulating material layer into the semiconductor substrate in accordance with a pattern of a resist film (not shown) covering an element region. Then, the insulating material layer is backed off by wet etching or the like and the gate electrode is processed while using the insulating material layer as a mask. As a result, it is possible to make the gate electrode smaller in size than the element region and to form a trench upper portion to be wider than the trench lower portion in the depth direction of the trench, thereby providing a good shape of the insulator embedded in the trench by depositing the insulator.
    Type: Grant
    Filed: June 15, 2001
    Date of Patent: October 28, 2003
    Assignee: Kabushiki Kaisha Toshiba
    Inventors: Naoki Koido, Riichiro Shirota, Hirohisa Iizuka
  • Patent number: 6635543
    Abstract: A method and structure for selectively growing epitaxial silicon in a trench formed within a silicon-on-insulator (SOI) structure. The SOI structure includes a buried oxide layer (BOX) on a bulk silicon substrate, and a silicon layer on the BOX. A pad layer is formed on the silicon layer. The pad layer includes a pad nitride (e.g., silicon nitride) on a pad oxide (e.g., silicon dioxide), and the pad oxide has been formed on the silicon layer. A trench is formed by anisotropically etching through the pad layer, the silicon layer, the BOX, and to a depth within the bulk silicon substrate. Insulative spacers are formed on sidewalls of the trench. An epitaxial silicon layer is grown in the trench from a bottom of the trench to above the pad layer. The pad layer and portions of the epitaxial layer are removed (e.g., by chemical mechanical polishing), resulting in a planarized top surface of the epitaxial layer that is about coplanar with a top surface of the silicon layer.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: October 21, 2003
    Assignee: International Business Machines Corporation
    Inventors: Toshiharu Furukawa, Jack A. Mandelman, Dan Moy, Byeongju Park, William R. Tonti
  • Patent number: 6633073
    Abstract: Techniques to isolate noise-sensitive circuits from noise generated by nearby circuits. In one design, a quiet region is formed on a die when surrounded by a deep n-well formed on top of a p-type substrate. The deep n-well is heavily doped n-type and forms a depletion region at the junction with the p-type substrate. The depth and width of the depletion region is dependent on the doping concentration of the deep n-well and the amount of reverse bias voltage applied to the deep n-well. In general, a wider and deeper depletion region may be formed by more heavily doping the deep n-well and applying a higher reverse bias voltage. By properly constructing the deep n-well and applying a high reverse bias voltage, a deep and wide depletion region may be formed to provide a barrier against noise from entering the quiet region.
    Type: Grant
    Filed: June 29, 2001
    Date of Patent: October 14, 2003
    Assignee: RF Micro Devices, Inc.
    Inventors: Ali Rezvani, Douglas Sudjian
  • Patent number: 6627515
    Abstract: A method of forming a buried silicon oxide region in a semiconductor substrate with portions of the buried silicon oxide region formed underlying portions of a strained silicon shape, and where the strained silicon shape is used to accommodate a semiconductor device, has been developed. A first embodiment of this invention features a buried oxide region formed in a silicon alloy layer, via thermal oxidation procedures. A first portion of the strained silicon layer, protected during the thermal oxidation procedure, overlays the silicon alloy layer while a second portion of the strained silicon layer overlays the buried oxide region. A second embodiment of this invention features an isotropic dry etch procedure used to form an isotropic opening in the silicon alloy layer, with the opening laterally extending under a portion of the strained silicon layer.
    Type: Grant
    Filed: December 13, 2002
    Date of Patent: September 30, 2003
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Horng-Huei Tseng, Jyh-Chyurn Guo, Chenming Hu, Da-Chi Lin
  • Patent number: 6620654
    Abstract: A method of forming a MOS device using doped and activated n-type and p-type polysilicon layers includes forming a first doped and activated polysilicon area (either n-type or p-type) on a substrate. An isolation material layer is formed abutting the first activated area. A second doped and activated polysilicon area of opposite conductivity type from the first activated area is formed adjacent to the isolation material layer. The second activated opposite area has a height that does not exceed that of the first doped and activated polysilicon layer. Further processing may be effected to complete the MOS device. The method of the present invention eliminates ion implantation and annealing steps used in previously existing methods.
    Type: Grant
    Filed: August 28, 2001
    Date of Patent: September 16, 2003
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram
  • Patent number: 6617663
    Abstract: A planarization method includes forming a dummy pattern in a film over a substrate. The dummy pattern includes a plurality of concave and convex portions. A chemical-mechanical polishing process is applied to the film, with the dummy pattern providing planarization of enhanced uniformity in comparison with known techniques.
    Type: Grant
    Filed: March 1, 2002
    Date of Patent: September 9, 2003
    Assignee: Seiko Epson Corporation
    Inventors: Tomokazu Horie, Shinichi Sugiyama
  • Patent number: 6586818
    Abstract: A method and structure for a bipolar transistor with a semiconductor substrate having a surface and a shallow trench isolation (STI) in the surface. The STI has an edge, a crevice region in the STI adjacent the STI edge, a base region above the STI, a silicide above the base region, an emitter structure on the surface adjacent the base region, and a crevice cover between the emitter structure and the silicide. The crevice cover maintains spacing between the emitter structure and the silicide.
    Type: Grant
    Filed: March 8, 2002
    Date of Patent: July 1, 2003
    Assignee: International Business Machines Corporation
    Inventor: Steven H. Voldman
  • Publication number: 20030119270
    Abstract: The present invention provides a method of manufacturing a bipolar transistor. The method may comprise forming a collector in a semiconductor wafer substrate, forming a base in the collector, implanting an oxide region withing said collector and over the base, and forming an emitter over the substrate such that the oxide region is located between the emitter and the base.
    Type: Application
    Filed: December 21, 2001
    Publication date: June 26, 2003
    Applicant: Agere Systems Guardian Corporation
    Inventors: Alan Sangone Chen, Yih-Feng Chyan, Chung Wai Leung, Yi Ma, William John Nagy
  • Publication number: 20030098493
    Abstract: An isolation trench formed in a semiconductor substrate has side walls and a bottom wall. Spacers are on the side walls and face each other for forming a narrow channel therebetween. The bottom wall and the spacers are coated with an electrically insulating material for delimiting a closed empty cavity in the channel. The isolation trench is applicable to the manufacture of integrated circuits.
    Type: Application
    Filed: October 16, 2002
    Publication date: May 29, 2003
    Applicant: STMicroelectronics S.A.
    Inventors: Michel Marty, Francois Leverd, Philippe Coronel, Joaquin Torres
  • Patent number: 6570239
    Abstract: A trench is formed in an n+ type substrate in a vertical direction from a main surface of the substrate, and a p type layer is deposited in the trench to have a recess portion. An n+ type layer is embedded in the recess portion. Accordingly, the p type layer is formed, as a resistive element, into a U-shape with ends that are ended on the main surface of the substrate. The resistive element has a resistance length corresponding to a path of the U-shape.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: May 27, 2003
    Assignee: Denso Corporation
    Inventors: Jun Sakakibara, Hitoshi Yamaguchi
  • Patent number: 6551874
    Abstract: A nitride hard mask (230) is used to isolate active areas of a DRAM cell. The shallow trench isolation (STI) method includes forming memory cells comprising deep trenches (216) on a semiconductor wafer (200). The memory cell deep trenches (216) are separated from active areas (212) by a region of substrate (212). A nitride hard mask (230) is formed over the semiconductor wafer (200). The wafer (200) is patterned with the nitride hard mask (230), and the wafer (200) is etched to remove the region of substrate (212) between the deep trenches and active areas to provide shallow trench isolation. An etch chemistry selective to the nitride hard mask (230) is used.
    Type: Grant
    Filed: June 22, 2001
    Date of Patent: April 22, 2003
    Assignee: Infineon Technologies, AG
    Inventors: John Pohl, Nirmal Chaudhary, Veit Klee, Tobias Mono, Paul Schroeder
  • Patent number: 6541345
    Abstract: Disclosed is a semiconductor device including a SOI substrate having a SOI layer, in which a structure made from a semiconductor device is buried; a thick oxide film formed on the structure by selectively oxidizing the structure using as a mask an oxidation preventive film formed both on the SOI layer and on a region in which a contact reaching the structure is to be formed; an interlayer dielectric film formed on the structure, the SOI layer and the thick oxide film; and a plurality of connection holes formed in the interlayer dielectric film and including at least a connection hole positioned on the region in which the contact is to be formed. With this semiconductor device, a contact reaching a back gate electrode can be formed without increasing an aspect ratio of the contact even when a thick oxide film is grown on the back gate electrode in the filed area by selectively oxidizing the back gate electrode in the field area.
    Type: Grant
    Filed: May 4, 1998
    Date of Patent: April 1, 2003
    Assignee: Sony Corporation
    Inventor: Hiroshi Komatsu
  • Patent number: 6531325
    Abstract: A ferroelectric memory transistor includes a substrate having active regions therein; a gate stack, including: a high-k insulator element, including a high-k cup and a high-k cap; a ferroelectric element, wherein said ferroelectric element is encapsulated within said high-k insulator element; and a top electrode located on a top portion of said high-k insulator; a passivation oxide layer located over the substrate and gate stack; and metalizations to form contacts to the active regions and the gate stack.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: March 11, 2003
    Assignee: Sharp Laboratories of America, Inc.
    Inventors: Sheng Teng Hsu, Fengyan Zhang, Tingkai Li
  • Publication number: 20030022453
    Abstract: A semiconductor device isolation structure and a fabricating method therefor are disclosed. The isolation structure includes a trench which is formed on an isolating region to define an active region. First, second, and third insulating layers are deposited in the trench. The second insulating layer has an etch selection ratio different from those of the first and third insulating layers. The edge portions of the third insulating layer which contact the side walls of the trench characteristically do not show any collapse. Therefore, when supplying a subthreshold voltage, a hump phenomenon does not occur. As a result, leakage current is kept from increasing, and the device refresh characteristic can be kept from deteriorating. Further, the third insulating layer covers the top edge portions of the trench. Therefore, the gate insulating layer (which is formed later) has a sufficient thickness. Therefore, yield voltage characteristics can be kept from deteriorating.
    Type: Application
    Filed: September 30, 2002
    Publication date: January 30, 2003
    Applicant: Hynix Semiconductor Inc.
    Inventor: Sung-Kye Park
  • Publication number: 20030006476
    Abstract: A method for isolating semiconductor devices includes forming a first oxide layer outwardly from a semiconductor substrate, forming a first nitride layer outwardly from the first oxide layer, removing a portion of the first nitride layer, a portion of the first oxide layer, and a portion of the substrate to form a trench isolation region, forming a second oxide layer in the trench isolation region, forming a spin-on-glass region in the trench isolation region, annealing the spin-on-glass region, removing a portion of the spin-on-glass region to expose a shallow trench isolation region, and forming a third oxide layer in the shallow trench isolation region.
    Type: Application
    Filed: June 20, 2002
    Publication date: January 9, 2003
    Inventors: Zhihao Chen, Douglas T. Grider, Freidoon Mehrad
  • Patent number: 6503802
    Abstract: A method of fabricating an isolation structure for a semiconductor device is provided. The method includes the steps of forming a trench in a semiconductor substrate, implanting oxidation-accelerating ions into corner portions of the semiconductor substrate, forming an oxide film in the trench of the semiconductor substrate, which activates the oxidation-accelerating ions to round the corner portions of the semiconductor substrate, and filling the trench with an insulating material to fabricate the isolation structure.
    Type: Grant
    Filed: November 29, 2001
    Date of Patent: January 7, 2003
    Assignee: Hynix Semiconductor, Inc.
    Inventor: Eung-Su Kim
  • Publication number: 20030001227
    Abstract: A semiconductor device comprises a semiconductor substrate having a substrate top surface on which a device should be formed; a gate electrode having an opposed surface opposed to said substrate top surface, and electrically insulated from said semiconductor substrate by a gate insulating film, a trench formed through said gate electrode into said semiconductor substrate to electrically isolate a device region for forming a device from the remainder region of said substrate top surface, a first boundary end portion, which is defined between a substrate side surface of said semiconductor substrate forming a part of the side surface of said trench and said substrate top surface, and a second boundary end portion, which is defined between a gate side surface of said gate electrode forming another part of the side surface of said trench and said opposed surface, wherein said first boundary end portion and said second boundary end portion have spherical shapes having a curvature radius not smaller than 30 angstrom
    Type: Application
    Filed: June 27, 2002
    Publication date: January 2, 2003
    Applicant: Kabushiki Kaisha Toshiba
    Inventors: Tadashi Iguchi, Hiroaki Tsunoda, Koichi Matsuno
  • Patent number: 6498382
    Abstract: The invention relates to a semiconductor configuration in which electrodes are insulated by a gas-filled or evacuated cavity. The semiconductor configuration includes at least two rigid electrodes; body regions; an active zone; a drift path; and an insulating device electrically isolating the at least two electrodes from each another. At least one of the at least two electrodes is a trench electrode electrically connected to the active zone. The insulating device includes a structure selected from the group consisting of at least one insulating or holding layer and a pn junction. The insulating device is further formed with at least one cavity. The trench electrode is isolated from the drift path by the cavity and surrounded by the cavity.
    Type: Grant
    Filed: March 26, 2001
    Date of Patent: December 24, 2002
    Assignee: Infineon Technologies AG
    Inventors: Franz Hirler, Wolfgang Werner
  • Patent number: 6479361
    Abstract: A semiconductor device isolation structure and a fabricating method therefor are disclosed. The isolation structure includes a trench which is formed on an isolating region to define an active region. First, second, and third insulating layers are deposited in the trench. The second insulating layer has an etch selection ratio different from those of the first and third insulating layers. The edge portions of the third insulating layer which contact the side walls of the trench characteristically do not show any collapse. Therefore, when supplying a subthreshold voltage, a hump phenomenon does not occur. As a result, leakage current is kept from increasing, and the device refresh characteristic can be kept from deteriorating. Further, the third insulating layer covers the top edge portions of the trench. Therefore, the gate insulating layer (which is formed later) has a sufficient thickness. Therefore, yield voltage characteristics can be kept from deteriorating.
    Type: Grant
    Filed: March 17, 2000
    Date of Patent: November 12, 2002
    Assignee: Hynix Semiconductor Inc.
    Inventor: Sung-Kye Park
  • Publication number: 20020149084
    Abstract: The number of design processes for fabricating semiconductor devices can be reduced by parallel connection of a plurality of unit bipolar transistors Qu that are completely electrically isolated from each other in a semiconductor layer of an SOI substrate 1 to form a bipolar transistor having a large current capacity.
    Type: Application
    Filed: March 8, 2002
    Publication date: October 17, 2002
    Applicant: Hitachi, Ltd.
    Inventors: Yoichi Tamaki, Takayuki Iwasaki, Kousuke Tsuji, Chiyoshi Kamada
  • Patent number: 6465318
    Abstract: This invention relates to a bi-polar transistor and a procedure for its manufacture. The task of the invention is to propose a bi-polar transistor and a procedure for its manufacture that eliminates the disadvantages of conventional arrangements for a simple polysilicon technology with differential epitaxy for the manufacture of the base, in order to further improve especially the high-speed properties of a bi-polar transistor, to produce highly conductive connections between the metal contacts and the active (inner) transistor region as well as a minimized passive transistor surface, and to simultaneously avoid any additional process complexity and increased contact resistance. This invention resolves the task in that, by creating suitable epitaxy process conditions, the polysilicon layer is deposited on the insulator zone with a greater thickness than the epitaxy layer in the active transistor zone.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: October 15, 2002
    Assignee: Institut fuer Halbleiterphysik Franfurt (Oder) GmbH
    Inventors: Karl-Ernst Ehwald, Bernd Tillack, Bernd Heinemann, Dieter Knoll, Dirk Wolansky
  • Patent number: 6461977
    Abstract: An improved etching method allowing the formation of a silicon nitride film with an adequate film thickness at the sidewall portion of a pattern is disclosed. A silicon nitride film formed to cover a stepped pattern is dry-etched, employing plasma of mixed gases containing CH2F2 and O2. As a result, a sidewall spacer of the silicon nitride film is formed at the sidewall of the pattern in a self-aligned manner.
    Type: Grant
    Filed: October 13, 1999
    Date of Patent: October 8, 2002
    Assignees: Mitsubishi Denki Kabushiki Kaisha, Ryoden Semiconductor System Engineering Corporation
    Inventors: Hiroshi Matsuo, Takuji Oda, Yuichi Yokoyama, Kiyoshi Maeda, Shinya Inoue, Yuji Yamamoto
  • Publication number: 20020130382
    Abstract: A first isolating trench with a predetermined depth is formed in a region where high voltage semiconductor elements are formed on a semiconductor substrate, and a portion of the walls of the first isolating trench is etched corresponding to a depth of a second isolating trench shallower than the first isolating trench to form a third isolating trench. An oxide film filled into the third isolating trench provides isolation between the high voltage semiconductor elements. Then, the second isolating trench is formed in a region where low voltage semiconductor elements are formed, and an oxide film filled into the second isolating trench is used to provide isolation between the low voltage semiconductor elements.
    Type: Application
    Filed: December 7, 2000
    Publication date: September 19, 2002
    Applicant: NEC CORPORATION
    Inventors: Masakuni Shimizu, Eiji Io
  • Publication number: 20020132439
    Abstract: The present invention relates to a collector pin and a trench in an integrated circuit intended for high speed communication, and to a manufacturing method for these items. The collector pin is achieved by creating an area which is implantation damaged or made amorphous and at least partially doped (139) by means of ion implantation from an upper silicon surface comprised in a semiconductor structure (144) down to a depth lower than the depth of the surrounding field oxide (120), and that the semiconductor structure (144) is then heat treated.
    Type: Application
    Filed: December 31, 1998
    Publication date: September 19, 2002
    Inventors: HANS ERIK NORSTROM, SAM-HYO HONG, BO ANDERS LINDGREN, TORBJORN LARSSON
  • Patent number: 6432789
    Abstract: The present invention relates to an integrated circuit including a lateral well isolation bipolar transistor. A first portion of the upper internal periphery of the insulating well is hollowed and filled with polysilicon having the same conductivity type as the transistor base, to form a base contacting region. A second portion of the upper internal periphery of the insulating well is hollowed and filled with polysilicon having the same conductivity type as the transistor emitter, to form an emitter contacting region.
    Type: Grant
    Filed: November 30, 2000
    Date of Patent: August 13, 2002
    Assignee: SGS-Thomson Microelectronics S.A
    Inventor: Yvon Gris
  • Publication number: 20020100952
    Abstract: A semiconductor device and method of forming an isolation area in a semiconductor device including forming a trench in a semiconductor substrate and forming an insulating layer inside the trench. A nitrogen ion implantation layer is formed in the semiconductor substrate and the insulating layer using vertical ion implantation having an incident angle perpendicular to a surface of the semi-conductor substrate.
    Type: Application
    Filed: November 30, 2001
    Publication date: August 1, 2002
    Inventor: Sung-Kwon Hong
  • Patent number: 6420769
    Abstract: A manufacturing method having the steps of: depositing an upper layer of polycrystalline silicon; defining the upper layer, obtaining LV gate regions of low voltage transistors and undefined portions; forming LV source and drain regions laterally to the LV gate regions; forming a silicide layer on the LV source and drain regions, on the LV gate regions, and on the undefined portions; defining salicided HV gate regions of high voltage transistors; and forming HV source and drain regions not directly overlaid by silicide portions.
    Type: Grant
    Filed: May 18, 2001
    Date of Patent: July 16, 2002
    Assignee: STMicroelectronics S.r.l.
    Inventors: Matteo Patelmo, Nadia Galbiati, Giovanna Dalla Libera, Bruno Vajana
  • Publication number: 20020086478
    Abstract: A method for fabricating a trench isolation for electrically active components in a semiconductor component. A mask is applied to a semiconductor substrate. Subsequently, a trench having side walls is formed in the semiconductor substrate by performing a dry etching process using at least one etching gas such that during the dry etching process, polymers are produced that at least partly cover the side walls of the trench and thereby at least partially protect the side walls against an etching attack from the etching gas. The etching gas is provided with a compound that is selected from the group consisting of at least one hydrocarbon compound and a fluorinated hydrocarbon compound. The trench is filled with an insulating oxide.
    Type: Application
    Filed: September 11, 2001
    Publication date: July 4, 2002
    Inventors: Ines Uhlig, Jens Zimmermann, Stephan Wege
  • Publication number: 20020064912
    Abstract: A trench is formed on a primary surface of a semiconductor substrate, and is filled with trench material to separate the surface region of the semiconductor substrate into plural active regions. At least a portion of the surface of the trench material adjoining the semiconductor substrate is depressed by a predetermined depth with reference to the primary surface of the semiconductor device. Thus, prevented is a decrease in a drain current of a semiconductor device having a trench isolation structure.
    Type: Application
    Filed: February 28, 2000
    Publication date: May 30, 2002
    Inventor: Shigeki Komori
  • Patent number: 6368931
    Abstract: The present invention relates to a method of forming an isolation trench that comprises forming a recess in a substrate and forming a film upon the sidewall under conditions that cause the film to have a tensile load. The method includes filling the recess with a material that imparts a compressive load upon the film under conditions that oppose the tensile load. The present invention is particularly well suited for shallow isolation trench filling in the 0.13 micron geometry range, and smaller.
    Type: Grant
    Filed: March 27, 2000
    Date of Patent: April 9, 2002
    Assignee: Intel Corporation
    Inventors: Kelin J. Kuhn, Ian R. Post
  • Patent number: 6351019
    Abstract: An isolation and gate planarization method for an integrated circuit chip and chips designed by the method. The method comprises generating a dummy gate conductor (GC) shape and biasing it to the underlying well. The method may further comprise generating an active area (AA) dummy shape underlying the GC dummy shape. Biasing may be to the same voltage as the underlying well, or may be to a different voltage to create a decoupling capacitor. The biasing may be accomplished by implanting a well contact on an active area shape, the contact being N+ over an N-well or P+ over a P-well.
    Type: Grant
    Filed: June 1, 2000
    Date of Patent: February 26, 2002
    Assignee: International Business Machines Corporation
    Inventors: John K. DeBrosse, Matthew R. Wordeman
  • Patent number: 6335230
    Abstract: A method of forming a MOS device using doped and activated n-type and p-type polysilicon layers wherein a first doped and activated polysilicon layer (either n-type and p-type) is patterned on a substrate. An isolation material layer is formed abutting the first doped and activated polysilicon layer in the corners formed at the junction between the first doped and activated polysilicon layer and the substrate. A second doped and activated polysilicon layer (either n-type or p-type) is applied over the first doped and activated polysilicon layer and the isolation material layer. The second doped and activated polysilicon layer is planarized to the height of the first doped and activated polysilicon layer. The first and second doped and activated polysilicon layers are etched to substantially bifurcate the first and second doped and activated polysilicon layers. Further processing steps known in the art are utilized to complete the MOS device.
    Type: Grant
    Filed: January 4, 2000
    Date of Patent: January 1, 2002
    Assignee: Micron Technology, Inc.
    Inventor: Salman Akram
  • Patent number: 6333235
    Abstract: A method for fabricating bipolar transistor frequently used in high frequency circuit is disclosed herein. The foregoing method includes the following steps. First, a first oxide layer is formed on a p-type substrate, followed by developing a first photoresist pattern on the first oxide layer. A first, doped region is formed in the exposed substrate by a first implanting step. The first doped region comprises a n+ buried layer. Stripping of the first photoresist pattern, and annealing of the n+ buried layer follow. Removal of the first oxide layer to expose the n+ buried layer and a portion of the p-type substrate follows thereafter. These steps are followed by growing a first epitaxial layer on the n+ buried layer and a portion of the substrate, then a second epitaxial layer is formed on the first epitaxial layer. The first epitaxial layer is made of epitaxial n-type silicon, and the second epitaxial layer is made of in situ epitaxial p-type SiGe.
    Type: Grant
    Filed: April 12, 2000
    Date of Patent: December 25, 2001
    Assignee: Industrial TechnologyResearch Institute
    Inventors: Chwan-Ying Lee, Tzuen-Hsi Huang