Up Diffusion Of Dopant From Substrate Into Epitaxial Layer Patents (Class 438/358)
  • Patent number: 10607984
    Abstract: According to an embodiment, a bipolar transistor is disclosed for Electrostatic discharge (ESD) management in integrated circuits. The bipolar transistor enables vertical current flow in a bipolar transistor cell configured for ESD protection. The bipolar transistor includes a selectively embedded P-type floating buried layer (PBL). The floating P-region is added in a standard NPN cell. During an ESD event, the base of the bipolar transistor extends to the floating P-region with a very small amount of current. The PBL layer can provide more holes to support the current resulting in decreased holding voltage of the bipolar transistor. With the selective addition of floating P-region, the current scalability of the bipolar transistor at longer pulse widths can be significantly improved.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: March 31, 2020
    Assignee: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Yang Xiu, Aravind C. Appaswamy, Akram Salman, Mariano Dissegna
  • Patent number: 9490127
    Abstract: A method includes: forming a front surface structure of a semiconductor element on a front surface side of a semiconductor substrate; forming crystal defects in the semiconductor substrate by implanting charged particles into the semiconductor substrate; subjecting the semiconductor substrate to a heat treatment after having formed the crystal defects; attaching a supporting plate on the front surface side of the semiconductor substrate after the heat treatment; thinning the semiconductor substrate by grinding a back surface side of the semiconductor substrate to which the supporting plate has been attached; and forming a back surface structure of the semiconductor element on a back surface of the thinned semiconductor substrate.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: November 8, 2016
    Assignee: Toyota Jidosha Kabushiki Kaisha
    Inventors: Kunihito Kato, Shuhei Oki, Takahiro Ito
  • Patent number: 8927319
    Abstract: There is disclosed methods of making photosensitive devices, such as flexible photovoltaic (PV) devices, through the use of epitaxial liftoff. Also described herein are methods of preparing flexible PV devices comprising a structure having a growth substrate, wherein the selective etching of protective layers yields a smooth growth substrate that us suitable for reuse.
    Type: Grant
    Filed: January 25, 2013
    Date of Patent: January 6, 2015
    Assignee: The Regents of the University of Michigan
    Inventors: Stephen R. Forrest, Jeramy Zimmerman, Kyusang Lee, Kuen-Ting Shiu
  • Patent number: 8647929
    Abstract: Semiconductor devices and methods of manufacturing thereof are disclosed. A preferred embodiment includes a semiconductor device comprising a workpiece, the workpiece including a first region and a second region proximate the first region. A first material is disposed in the first region, and at least one region of a second material is disposed within the first material in the first region, the second material comprising a different material than the first material. The at least one region of the second material increases a first stress of the first region.
    Type: Grant
    Filed: February 9, 2010
    Date of Patent: February 11, 2014
    Assignee: Infineon Technologies AG
    Inventor: Jin-Ping Han
  • Patent number: 8581339
    Abstract: A bipolar junction transistor and a manufacturing method for the same are provided. The bipolar junction transistor includes a well region, an emitter electrode, a base electrode, a collector electrode, and a conductive layer. The emitter electrode, the base electrode and the collector electrode are separated from each other by the well region. The conductive layer is on the well region between the base electrode and the collector electrode.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: November 12, 2013
    Assignee: Macronix International Co., Ltd.
    Inventors: Chin-Wei Chang, Ching-Lin Chan, Chin-Shien Lu, Ming-Tung Lee, Shuo-Lun Tu
  • Patent number: 8574995
    Abstract: The present disclosure provides methods of semiconductor device fabrication for 3D devices. One method includes provide a substrate having a recess and forming a doping layer on the substrate and in the recess. The substrate is then annealed. The annealing drives dopants of a first type from the doping layer into the substrate. This can form a doped region that may be the source/drain extension of the 3D device. An epitaxial region is then grown in the recess. The epitaxial region can form the source/drain region of the 3D device.
    Type: Grant
    Filed: November 10, 2011
    Date of Patent: November 5, 2013
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventor: Pei-Ren Jeng
  • Patent number: 8372716
    Abstract: In one embodiment, a semiconductor device is formed having vertical localized charge-compensated trenches, trench control regions, and sub-surface doped layers. The vertical localized charge-compensated trenches include at least a pair of opposite conductivity type semiconductor layers. The trench control regions are configured to provide a generally vertical channel region electrically coupling source regions to the sub-surface doped layers. The sub-surface doped layers are further configured to electrically connect the drain-end of the channel to the vertical localized charge compensation trenches. Body regions are configured to isolate the sub-surface doped layers from the surface of the device.
    Type: Grant
    Filed: May 2, 2011
    Date of Patent: February 12, 2013
    Assignee: Semiconductor Components Industries, LLC
    Inventors: Gary H. Loechelt, Peter J. Zdebel
  • Patent number: 8129249
    Abstract: Integrated transistor and method for the production is disclosed. An explanation is given of, inter alia, a transistor having an electrically insulating isolating trench extending from a main area in the direction of a connection region remote from the main area. Moreover, the transistor contains an auxiliary trench extending from the main area as far as the connection region remote from the main area. The transistor requires a small chip area and has outstanding electrical properties.
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: March 6, 2012
    Assignee: Infineon Technologies AG
    Inventors: Karlheinz Mueller, Klaus Roeschlau
  • Patent number: 8119471
    Abstract: A method for manufacturing a semiconductor device including a vertical double-diffusedmetal-oxide-semiconductor (VDMOS) transistor includes preparing a semiconductor substrate and injecting a first impurity of a second conductivity type to a first region, injecting a second impurity to a second region that is located inside and is narrower than the first region, and forming an epitaxial layer on the semiconductor substrate and forming the semiconductor layer constituted by the semiconductor substrate and the epitaxial layer, and at a same time, diffusing the first and the second impurities injected in a first impurity injection and a second impurity injection to form a buried layer of the second conductivity type.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: February 21, 2012
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroki Fujii
  • Patent number: 8076725
    Abstract: An impurity buried layer constructed by two buried regions formed by impurities of identical type exist, a buried region formed by an impurity having a slow diffusion speed is provided on the entire surface of a transistor formation region, and a buried region formed by an impurity having a fast diffusion speed is provided inwardly from beneath the inside end of an isolation insulating film serving as a region on which an electric field concentrates partially.
    Type: Grant
    Filed: May 15, 2008
    Date of Patent: December 13, 2011
    Assignee: Renesas Electronics Corporation
    Inventor: Hiroki Fujii
  • Patent number: 7732331
    Abstract: The present invention provides a method of fabricating a semiconductor device, which could advance the commercialization of semiconductor devices with a copper interconnect. In a process of metal interconnect line fabrication, a TiN thin film combined with an Al intermediate layer is used as a diffusion barrier on trench or via walls. For the formation, Al is deposited on the TiN thin film followed by copper filling the trench. Al diffuses to TiN layer and reacts with oxygen or nitrogen, which will stuff grain boundaries efficiently, thereby blocking the diffusion of copper successfully.
    Type: Grant
    Filed: November 16, 2004
    Date of Patent: June 8, 2010
    Assignee: ASM International N.V.
    Inventors: Ki-Bum Kim, Pekka J. Soininen, Ivo Raaijmakers
  • Patent number: 7727845
    Abstract: An ultra shallow junction (USJ) FET device and method for forming the same with improved control over SDE or LDD doped region interfaces to improve device performance and reliability is provided, the method including providing a semiconductor substrate; forming a gate structure comprising a gate dielectric, an overlying gate electrode, and first offset spacers adjacent either side of the gate electrode; forming at least one doped semiconductor layer comprising dopants over a respective source and drain region adjacent the respective first offset spacers; forming second offset spacers adjacent the respective first offset spacers; and, thermally treating the at least one semiconductor layer to cause out-diffusion of the dopants to form doped regions in the semiconductor substrate.
    Type: Grant
    Filed: October 24, 2005
    Date of Patent: June 1, 2010
    Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chih-Hao Wang, Yen-Ping Wang, Steve Ming Ting, Yi-Chun Huang
  • Patent number: 7696019
    Abstract: Semiconductor devices and methods of manufacturing thereof are disclosed. A preferred embodiment includes a semiconductor device comprising a workpiece, the workpiece including a first region and a second region proximate the first region. A first material is disposed in the first region, and at least one region of a second material is disposed within the first material in the first region, the second material comprising a different material than the first material. The at least one region of the second material increases a first stress of the first region.
    Type: Grant
    Filed: March 9, 2006
    Date of Patent: April 13, 2010
    Assignee: Infineon Technologies AG
    Inventor: Jin-Ping Han
  • Patent number: 7238583
    Abstract: A method for fabricating a back-illuminated semiconductor imaging device on a thin semiconductor-on-insulator substrate, and resulting imaging device. Resulting device has a monotonically varying doping profile which provides a desired electric field and eliminates a dead band proximate to the backside surface.
    Type: Grant
    Filed: February 9, 2006
    Date of Patent: July 3, 2007
    Assignee: Sarnoff Corporation
    Inventors: Pradyumna Swain, Mahalingam Bhaskaran
  • Patent number: 7202533
    Abstract: An integrated circuit structure includes a first dielectric layer disposed on a semiconductor layer, a first thin film resistor disposed on the first dielectric layer, a second dielectric layer disposed on the first dielectric layer and the first thin film resistor, and a second thin film resistor disposed on the second dielectric layer. A first layer of interconnect conductors is disposed on the second dielectric layer and includes a first interconnect conductor contacting a first contact area of the first thin film resistor, a second interconnect conductor contacting a second contact area of the first thin film resistor, and a third interconnect conductor electrically contacting a first contact area of the second thin film resistor. A third dielectric layer is disposed on the second dielectric layer. A second layer of interconnect conductors is disposed on the third dielectric layer including a fourth interconnect conductor for contacting the second interconnect conductor.
    Type: Grant
    Filed: September 29, 2005
    Date of Patent: April 10, 2007
    Assignee: Texas Instruments Incorporated
    Inventors: Eric W. Beach, Vladimir F. Drobny, Derek W. Robinson
  • Patent number: 7151035
    Abstract: A sidewall-insulation film 9 is provided on a side surface of a first opening portion 8a formed in a base extraction electrode 5B of a hetero-junction bipolar transistor, and a portion of the sidewall-insulation film 9 extends so as to protrude from a surface opposite to a semiconductor substrate 1 toward a main surface of the semiconductor substrate 1 in the base extraction electrode 5B, and protruded length thereof is set to be equal to or smaller than one half of thickness of the insulation film 4 interposed between the main surface of the semiconductor substrate 1 and a lower surface of the base extraction electrode 5B.
    Type: Grant
    Filed: April 16, 2002
    Date of Patent: December 19, 2006
    Assignee: Renesas Technology Corp.
    Inventors: Makoto Koshimizu, Yasuaki Kagotoshi, Nobuo Machida
  • Patent number: 7091100
    Abstract: In the inventive method of producing a base terminal structure for a bipolar transistor, an etch stop layer is applied on a single-crystal semiconductor substrate, a poly-crystal base terminal layer is produced on the etch stop layer and an emitter window is etched in the base terminal layer using the etch stop layer as an etch stop.
    Type: Grant
    Filed: August 12, 2004
    Date of Patent: August 15, 2006
    Assignee: Infineon Technologies AG
    Inventors: Uwe Rudolph, Martin Seck, Armin Tilke
  • Patent number: 6977426
    Abstract: In a semiconductor device comprising a first bipolar transistor and a second bipolar transistor having different voltages formed on a semiconductor substrate made by forming an epitaxial layer on a silicon substrate, in an upper part of the silicon substrate the first bipolar transistor has an N+-type first embedded diffusion layer having an impurity concentration higher than that of the epitaxial layer and the second bipolar transistor has an N-type second embedded diffusion layer having a lower impurity concentration and a deeper diffusion layer depth than the first embedded diffusion layer, whereby a high speed bipolar transistor and a high voltage bipolar transistor are formed on the same substrate.
    Type: Grant
    Filed: November 6, 1997
    Date of Patent: December 20, 2005
    Assignee: Sony Corporation
    Inventors: Takayuki Gomi, Hiroaki Ammo
  • Patent number: 6881641
    Abstract: An epitaxially grown channel layer is provided on a well structure after ion implantation steps and heat treatment steps are performed to establish a required dopant profile in the well structure. The channel layer may be undoped or slightly doped, as required, so that the finally obtained dopant concentration in the channel layer is significantly reduced compared to a conventional device to thereby provide a retrograde dopant profile in a channel region of a field effect transistor. Additionally, a barrier diffusion layer may be provided between the well structure and the channel layer to reduce up-diffusion during any heat treatments carried out after the formation of the channel layer. The final dopant profile in the channel region may be adjusted by the thickness of the channel layer, the thickness and the composition of the diffusion barrier layer and any additional implantation steps to introduce dopant atoms in the channel layer.
    Type: Grant
    Filed: October 29, 2002
    Date of Patent: April 19, 2005
    Assignee: Advanced Micro Devices, Inc.
    Inventors: Karsten Wieczorek, Manfred Horstmann, Rolf Stephan
  • Patent number: 6768173
    Abstract: A high voltage MOS transistor is provided that is compatible with low-voltage, sub-micron CMOS and BiCMOS processes. The high voltage transistor of the present invention has dopants that are implanted into the substrate prior to formation of the epitaxial layer. The implanted dopants diffuse into the epitaxial layer from the substrate during the formation of the epitaxial layer and subsequent heating steps. The implanted dopants increase the doping concentration in a lower portion of the epitaxial layer. The implanted dopants may diffuse father into the epitaxial layer than dopants in the buried layer forming an up-retro well that prevents vertical punch-through at high operating voltages for thin epitaxial layers. In addition, the doping concentration below the gate may be light so that the threshold voltage of the transistor is low.
    Type: Grant
    Filed: January 14, 2003
    Date of Patent: July 27, 2004
    Assignee: Linear Technology Corporation
    Inventor: Francois Hebert
  • Patent number: 6756273
    Abstract: A semiconductor component includes a semiconductor layer (110) having a trench (326). The trench has first and second sides. A portion (713) of the semiconductor layer has a conductivity type and a charge density. The semiconductor component also includes a control electrode (540, 1240) in the trench. The semiconductor component further includes a channel region (120) in the semiconductor layer and adjacent to the trench. The semiconductor component still further includes a region (755) in the semiconductor layer. The region has a conductivity type different from that of the portion of the semiconductor layer. The region also has a charge density balancing the charge density of the portion of the semiconductor layer.
    Type: Grant
    Filed: March 12, 2001
    Date of Patent: June 29, 2004
    Assignee: Semiconductor Components Industries, L.L.C.
    Inventors: Peyman Hadizad, Jina Shumate, Ali Salih
  • Patent number: 6589830
    Abstract: A process forms a power semiconductor device with reduced input capacitance and improved switching speed. A substrate with an epitaxial has an oxide layer patterned to form a narrow terraced gate. A gate oxide layer is formed on the upper surface of the epitaxial layer. A layer of polysilicon is deposited on the narrow terraced gate oxide region and the gate oxide layer. The polysilicon layer is anisotropically etched to form polysilicon spacers abutting each of the two side surfaces of the narrow terraced gate region. A p-type dopant is implanted through the gate oxide layer and the polysilicon spacers and is driven in to form P-well regions in the epitaxial layer. A source mask is formed and an n-type dopant is implanted through the gate oxide layer and the polysilicon spacers. It is driven in to form N+ source regions in the P-well regions.
    Type: Grant
    Filed: September 20, 2000
    Date of Patent: July 8, 2003
    Assignee: Fairchild Semiconductor Corporation
    Inventor: Jun Zeng
  • Patent number: 6495421
    Abstract: A method is described of manufacturing a semiconductor material having a zone (200) with p-conductivity type and n-conductivity type regions with dopant concentrations and dimensions such that, when the n- and p-conductivity type regions are depleted of free charge carriers the space charge per unit area of the regions balances at least to the extent that the resulting electric field is lower than that at which avalanche breakdown would occur in the area. The method starts with a semiconductor body having adjacent a first major surface (10b) a first semiconductor region (2) of one conductivity type. A mask (3, 4, 5) is provided on the first major surface, having at least one mask area masking a part (2a) of the first region. At least a part of the unmasked first region (2) is then removed to provide at least one opening (7) in the first region.
    Type: Grant
    Filed: December 14, 2000
    Date of Patent: December 17, 2002
    Assignee: Koninklijke Philips Electronics N.V.
    Inventor: JiKui Luo
  • Publication number: 20020110640
    Abstract: A coating apparatus has a spin chuck for attracting and holding a semiconductor wafer in a horizontal state by means of vacuum. A movable beam is arranged above the spin chuck. The movable beam includes first and second nozzles integrally formed. The first nozzle is used for supplying a photo-resist liquid while the second nozzle is used for supplying a solvent for the photo-resist liquid. When a coating process is performed, the movable beam above the wafer is horizontally moved in one direction. The solvent is first supplied onto the wafer from the second nozzle, and the coating or photo-resist liquid is then supplied from the first nozzle, following the solvent. Wettability of the wafer relative to the photo-resist is increased by the solvent, prior to supply of the photo-resist liquid.
    Type: Application
    Filed: March 17, 1999
    Publication date: August 15, 2002
    Inventors: KIYOHISA TATEYAMA, KIMIO MOTODA, NORIYUKI ANAI
  • Patent number: 6365447
    Abstract: A method of making high voltage complementary bipolar and BiCMOS devices on a common substrate. The bipolar devices are vertical NPN and PNP transistors having the same structure. The fabrication process utilizes trench isolation and thus is scalable. The process uses two epitaxial silicon layers to form the high voltage NPN collector, with the PNP collector formed from a p-well diffused into the two epitaxial layers. The collector contact resistance is minimized by the use of sinker up/down structures formed at the interface of the two epitaxial layers. The process minimizes the thermal budget and therefore the up diffusion of the NPN and PNP buried layers. This maximizes the breakdown voltage at the collector-emitter junction for a given epitaxial thickness. The epitaxial layers may be doped as required depending upon the specifications for the high voltage NPN device.
    Type: Grant
    Filed: January 12, 1998
    Date of Patent: April 2, 2002
    Assignee: National Semiconductor Corporation
    Inventors: Francois Hèbert, Datong Chen, Reda Razouk
  • Patent number: 6313000
    Abstract: A vertically-isolated bipolar transistor occupying reduced surface area is fabricated by circumscribing an expected active device region within a first narrow trench. The first trench is filled with sacrificial material impermeable to diffusion of conductivity-altering dopant, and then isolation dopant of a conductivity type opposite to that of the substrate is introduced into the trench-circumscribed silicon region. The introduced isolation dopant is then thermally driven into the substrate, with lateral diffusion of isolation dopant physically constrained by the existing first narrow trench. Epitaxial silicon is then formed over the substrate, with polysilicon formed in regions overlying the filled narrow trench. A second, wider trench encompassing the first trench is etched to consume epitaxial silicon, polysilicon, and the sacrificial material. The second trench is then filled with dielectric material.
    Type: Grant
    Filed: November 18, 1999
    Date of Patent: November 6, 2001
    Assignee: National Semiconductor Corporation
    Inventor: Vassili Kitch
  • Patent number: 6297120
    Abstract: To provide a method of manufacturing a semiconductor device in which an epitaxial growth film is formed on a semiconductor substrate having a buried layer, which is capable of reducing the manufacturing time of the semiconductor device or reducing the IC chip area. The method of manufacturing a semiconductor device is characterized by including a process of selecting the concentration of the p-type conductive impurities which put the surface of the silicon semiconductor substrate into a full amorphous state and conducting doping with the impurities.
    Type: Grant
    Filed: June 4, 1999
    Date of Patent: October 2, 2001
    Assignee: Seiko Instruments Inc.
    Inventor: Sumio Koiwa
  • Patent number: 6291304
    Abstract: A new design for a high voltage bipolar transistor is disclosed. Instead of a buried subcollector (which would be N+ in an NPN device)d a buried P+ layer is used. The presence of this P+ layer results in pinch-off between itself and the bipolar base. This allows much higher breakdown voltages to be achieved. In particular, the device will not break down at the bottom of the base-collector junction which is the weak spot for conventional devices. A process for manufacturing this device is described. A particular feature of this new process is that the N type epitaxial layer that is grown over the P+ layer is only about half the thickness of its counterpart in the conventional device. The process is fully compatible with conventional BiCMOS processes and has lower cost.
    Type: Grant
    Filed: September 15, 1999
    Date of Patent: September 18, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jun-Lin Tsaz, Ruey-Hsin Liu, Jyh-Min Jiang, Jei-Feng Hwang
  • Patent number: 6184100
    Abstract: In a light receiving element and a semiconductor device manufacturing method, the low density PN junction is formed by constructing the internal composition of the photodiode with N+ type diffusion layer, N− type epitaxial layer, P− type epitaxial layer, P+ type deposit layer, and P type Si from the light receiving surface, the vacant layer to be occurred when the photodiode is reverse biased will be widened and the light receiving sensitivity and the frequency characteristic will be improved. Furthermore, since the separation of bipolar elements will be conducted by P− epitaxial layer, the efficiency in density control at the time of P− type epitaxial growth can be improved.
    Type: Grant
    Filed: June 13, 1997
    Date of Patent: February 6, 2001
    Assignee: Sony Corporation
    Inventor: Chihiro Arai
  • Patent number: 6171891
    Abstract: A method of forming a semiconductor memory device formed on a semiconductor substrate with an N-well and a P-well comprises the following steps. Form over a substrate the combination of a gate oxide layer and a gate layer patterned into gate stacks with sidewalls for an NMOS FET device over a P-well in the substrate and a PMOS FET device over an N-well. Form P− lightly doped S/D regions in the N-well and N− lightly doped S/D regions in the P-well. Form spacers on the sidewalls of the gate stacks. Thereafter form deep N− lightly doped S/D regions in the P-well, and form deep P− lightly doped S/D regions in the N-well. Form heavily doped P++ regions self-aligned with the gate below future P+ S/D sites to be formed self-aligned with the spacers in the N-well, and form heavily doped N++ regions self-aligned with the gate below future N+ S/D sites to be formed self-aligned with the spacers in the P-well.
    Type: Grant
    Filed: February 27, 1998
    Date of Patent: January 9, 2001
    Assignee: Taiwan Semiconductor Manufacturing Company
    Inventors: Jian-Hsing Lee, Yi-Hsun Wu, Tiaw-Ren Shih
  • Patent number: 6150225
    Abstract: A semiconductor device has a P type semiconductor substrate 1, a vertical type bipolar transistor having an N type base region 4, a lateral type bipolar transistor having an N type base region 4 formed on the semiconductor substrate 1, an N type collector region 7a, and an N type emitter region 8, and a P type insulating diffusion region 7b for isolating between vertical and lateral type bipolar transistors, at least one of collector and emitter regions of the lateral bipolar transistor having substantially same depth of the insulating diffusion region 7b.
    Type: Grant
    Filed: December 16, 1997
    Date of Patent: November 21, 2000
    Assignee: NEC Corporation
    Inventor: Seiichi Takahashi
  • Patent number: 6146957
    Abstract: Since the PN junction of a photodiode is formed of a silicon substrate having a low impurity concentration and an epitaxial layer, the width of the depletion layer in the PN junction is formed wider, the parasitic capacitance by the junction capacitance is lowered, and the diffusion length of the silicon substrate is formed longer. Besides, a buried layer containing a high impurity concentration is formed by a high energy ion implantation method in such a depth that the buried layer cannot be depleted by a reverse voltage applied to the PN junction, which is served as a region to lead out the anode, which accordingly results in a low parasitic resistance at the anode. Thereby, the invention provides a semiconductor device including a photodetector and a method of manufacturing the same that achieves a high photoelectric conversion sensitivity and an excellent frequency characteristic at the same time.
    Type: Grant
    Filed: March 31, 1998
    Date of Patent: November 14, 2000
    Assignee: Sony Corporation
    Inventor: Youichi Yamasaki
  • Patent number: 6090652
    Abstract: Disclosed is a manufacturing method of semiconductor device which can simplify the manufacturing procedures for transistors with different gate insulation film thickness in the same substrate. According to the present invention, a manufacturing method for semiconductor device having NMOS and PMOS transistors with gate insulation films of different thickness from each other, is formed by the following processes. First, a semiconductor substrate in which a low voltage NMOS transistor region, a high voltage NMOS transistor region, a low voltage PMOS transistor region, and a high voltage PMOS transistor region are defined by isolation films, is provided. Next, a N well is formed in the low and high voltage PMOS transistor regions and threshold voltage adjustment ions for high voltage PMOS transistor are then implanted into the N well.
    Type: Grant
    Filed: December 22, 1997
    Date of Patent: July 18, 2000
    Assignee: Hyundai Electronics Industries Co., Ltd.
    Inventor: Jae-Kap Kim
  • Patent number: 6057184
    Abstract: A semiconductor device and method of fabrication for such device in which a P- epitaxial layer is positioned above a P++ substrate. A P++ buried layer implant is positioned within the device between the P++ substrate and the P- epitaxial layer. A connecting p+ implant is placed within the epitaxial layer above the buried p+ blanket layer implant. In one exemplary embodiment, the device includes a shallow P-well with the P+ connecting implant in a position within the epitaxial layer connecting the shallow P-well and the buried P+ blanket implant layer.
    Type: Grant
    Filed: March 21, 1997
    Date of Patent: May 2, 2000
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey Scott Brown, Stephen Scott Furkay, Robert John Gauthier, Jr., Xiaowei Tian, Minh Ho Tong, Steven Howard Voldman
  • Patent number: 5976942
    Abstract: An epitaxial layer with a doping of approximately 10.sup.12 atoms per cm.sup.2 is used in accordance with the resurf condition for the high-voltage circuit element in high-voltage integrated circuits of the resurf type. If the circuit comprises a zone which is provided in the epitaxial layer, which is of the same conductivity type as the substrate, and to which a high voltage is applied, the doping between this zone and the substrate must in addition be sufficiently high for preventing punch-through between the zone and the substrate. A known method of complying with these two requirements is to make the epitaxial layer very thick. It is found in practice, however, that this method is often not very well reproducible. According to the invention, the epitaxial layer is provided in the form of a high-ohmic layer which is doped from the upper side (3a) and from a buried layer (3b).
    Type: Grant
    Filed: December 19, 1996
    Date of Patent: November 2, 1999
    Assignee: U.S. Philips Corporation
    Inventor: Adrianus W. Ludikhuize
  • Patent number: 5976940
    Abstract: In a semiconductor device comprising a first bipolar transistor and a second bipolar transistor having different voltages formed on a semiconductor substrate made by forming an epitaxial layer on a silicon substrate, in an upper part of the silicon substrate the first bipolar transistor has an N.sup.+ -type first embedded diffusion layer having an impurity concentration higher than that of the epitaxial layer and the second bipolar transistor has an N-type second embedded diffusion layer having a lower impurity concentration and a deeper diffusion layer depth than the first embedded diffusion layer, whereby a high speed bipolar transistor and a high voltage bipolar transistor are formed on the same substrate.
    Type: Grant
    Filed: December 10, 1996
    Date of Patent: November 2, 1999
    Assignee: Sony Corporation
    Inventors: Takayuki Gomi, Hiroaki Ammo
  • Patent number: 5899714
    Abstract: Integrated circuits suitable for high-performance applications, especially mixed signal products that have analog and digital sections, are fabricated from a semiconductor structure in which lower buried regions of opposite conductivity types are situated along a lower semiconductor interface between a semiconductive substrate and an overlying lower semiconductive layer. An upper buried region of a selected conductivity type is situated along an upper semiconductor interface between the lower semiconductive layer and an overlying upper semiconductive layer. Another upper buried region of opposite conductivity type to the first-mentioned upper buried region is preferably situated along the upper semiconductor interface. The upper semiconductive layer contains P-type and N-type device regions in which transistor zones are situated. The semiconductor structure is configured so that at least one of each of the P-type and N-type device regions is electrically isolated from the substrate.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: May 4, 1999
    Assignee: National Semiconductor Corporation
    Inventors: Douglas R. Farrenkopf, Richard B. Merrill, Samar Saha, Kevin E. Brehmer, Kamesh Gadepally, Philip J. Cacharelis
  • Patent number: 5895249
    Abstract: An integrated edge structure for a high voltage semiconductor device comprising a PN junction represented by a diffused region of a first conductivity type extending from a semiconductor device top surface is described. The edge structure comprises a first, lightly doped ring of the first conductivity type obtained in a first, lightly doped epitaxial layer of a second conductivity type and surrounding said diffused region, and a second, lightly doped ring of the first conductivity type, comprising at least one portion superimposed on and merged with said first ring, obtained in a second, lightly doped epitaxial layer of the second conductivity type grown over the first epitaxial layer.
    Type: Grant
    Filed: February 20, 1996
    Date of Patent: April 20, 1999
    Assignee: Consorzio per la Ricerca sulla Microelettronica nel Mezzogiorno
    Inventors: Raffaele Zambrano, Salvatore Leonardi, Giovanna Cacciola
  • Patent number: 5879765
    Abstract: This invention provides a thin metallic sheet structure having excellent sound damping characteristics which can lower the sound pressure level of a sound inherent to a thin metallic sheet structure when this structure is patted, and can quickly damp the sound by a simple structure. In a flat sheet-like or box-like structure comprising a thin metallic external sheet and beams for reinforcing the external sheet, a thin metallic sheet structure having excellent sound damping characteristics according to the present invention employs the construction wherein the reinforcing beams 2 are brought into contact with one of the surfaces of the thin metallic external sheet 1 through a sound damping sheet 3, and the coupling state between the sound damping sheet 3 and the thin metallic external plate 1 or the reinforcing beams 2 is a non-coupling state or a discrete coupling state on at least one of the surfaces of the sound damping sheet 3.
    Type: Grant
    Filed: April 21, 1997
    Date of Patent: March 9, 1999
    Assignee: Nippon Steel Corporation
    Inventors: Seiichi Marumoto, Tatsuya Sakiyama, Yukihisa Kuriyama
  • Patent number: 5880002
    Abstract: A vertical PNP transistor (11) and method for making it includes forming an N- region (19) in a P substrate (12), and forming an N+ region (26) in the substrate (12) laterally surrounding and partially extending into the N- region (19). A P region (30) is formed above the N- region (19), bounded laterally by the N+ region (26) to be horizontally and vertically isolated from the substrate (12) by the N- and N+ regions (19 and 26). A layer of semiconductor material (32) is formed overall, and an N well (35) and a surrounding P well (36) are formed, each extending to the P region (30). An isolating N+ well (38) is formed surrounding the P well (36), extending to the buried N+ region (26). A P emitter region (40) and an N base contact region (41) are formed at a surface of the N well (35), and a P collector contact region (44) is formed at a surface of the P well (36).
    Type: Grant
    Filed: December 6, 1996
    Date of Patent: March 9, 1999
    Assignee: Texas Instruments Incorporated
    Inventors: Louis N. Hutter, Jeffrey P. Smith
  • Patent number: 5759902
    Abstract: Process for making an integrated-circuit (IC) chip with junction-isolated complementary bipolar transistors, and novel chip made by such process. P-type dopant is implanted and diffused in an N-type substrate to form a sub-collector for a pnp transistor and also is implanted and diffused in the substrate to form a P-well for the sub-collector of an npn transistor. N-type material is then implanted and diffused into the P-well to form the npn sub-collector, and also is implanted in the substrate to form part of an isolation wall for the pnp transistor. A P-type epitaxial (epi) layer is grown over the N-type substrate. N-type material is implanted and diffused in the epi layer to complete the isolation wall for the pnp transistor, and to form the collector for the npn transistor. P-type and N-type material is implanted and diffused in the P-type epi layer to form the bases and emitters for the npn and pnp transistors.
    Type: Grant
    Filed: March 18, 1996
    Date of Patent: June 2, 1998
    Assignee: Analog Devices, Incorporated
    Inventors: Jerome F. Lapham, Brad W. Scharf
  • Patent number: 5756387
    Abstract: Zener diode with high stability in time and low noise for integrated circuits and provided in an epitaxial pocket insulated from the rest of a type N epitaxial layer grown on a substrate of type P semiconductor material.In said pocket are included a type N+ cathode region and a type P anode region enclosing it.The cathode region has a peripheral part surrounding a central part extending in the anode region less deeply than the peripheral part.
    Type: Grant
    Filed: December 29, 1995
    Date of Patent: May 26, 1998
    Assignee: SGS-Thomson Microelectronics S.r.l.
    Inventors: Flavio Villa, Paolo Ferrari
  • Patent number: 5716887
    Abstract: A semiconductor device and a method for manufacturing such a device are presented. The type of semiconductor device is one which merges one type of transistor (e.g., bipolar junction transistors) with another type (e.g., CMOS transistors). Specifically, the semiconductor device may comprise a semiconductor substrate and first buried layers of a first conductive and second type buried layers of a second conductive type both formed within the semiconductor substrate. The first buried layers are preferably at a different level within the semiconductor substrate then the level of the second buried layers. First epitaxial layer portions are formed over the first buried layers and second epitaxial layer portions are formed over the second type buried layers. Isolation regions are formed on the first epitaxial layer portions. In forming the semiconductor substrate, photoresists are formed at regular spatial intervals on a substrate.
    Type: Grant
    Filed: September 13, 1996
    Date of Patent: February 10, 1998
    Assignee: Samsung Elecronics Co., Ltd.
    Inventor: Cheol-Joong Kim
  • Patent number: 5633180
    Abstract: A method of fabricating a vertical conductive region in a semiconductor device in which plural epitaxial layers are successively grown on a substrate and a dopant is implanted into each epitaxial layer before growing the next layer. A fast vertical transistor operable in the GHz range and at high voltage (e.g., more than about 10 volts) is fabricated by growing plural epitaxial layers, each with a thickness less than about 2.5 microns until the desired height of the vertical conductive region is reached. Sections of the transistor's collector and an adjacent sinker are implanted through each epitaxial layer before the next layer is grown. Annealing after ion implant joins the sinker and collector sections in each layer with the corresponding sinker and collector sections in adjacent layers to form unitary structures in the transistor. Each layer is thin enough for the dopant to penetrate to the bottom of the layer using conventional implant energy.
    Type: Grant
    Filed: June 1, 1995
    Date of Patent: May 27, 1997
    Assignee: Harris Corporation
    Inventor: George Bajor