Multiple Ion Implantation Steps Patents (Class 438/373)
-
Patent number: 11069825Abstract: An optoelectronic device includes an Sb-based metamorphic photodetector grown over a silicon substrate via a buffer layer. The device includes a layered structure. The layered structure can include a silicon substrate, a buffer layer formed over the Si substrate, and an infrared photodetector formed over the buffer layer. In some embodiments, the buffer layer includes a composite buffer layer having sublayers. For example, the composite buffer layer includes a Ge-based sublayer formed over the substrate, a III-As sublayer grown over the Ge-based sublayer, and a III-Sb sublayer formed over the III-As sublayer.Type: GrantFiled: May 28, 2019Date of Patent: July 20, 2021Assignee: IQE plcInventors: Amy Wing Kwan Liu, Dmitri Lubyshev, Joel Mark Fastenau, Scott Alan Nelson, Michael Vincent Kattner, Philip Lee Frey, Matthew Fetters, Hubert Krysiak, Zhaoquan Zeng, Aled Owen Morgan, Stuart Andrew Edwards
-
Patent number: 10283627Abstract: An object is to provide a highly reliable semiconductor device including a thin film transistor having stable electric characteristics. In addition, another object is to manufacture a highly reliable semiconductor device at low cost with high productivity. In a method for manufacturing a semiconductor device including a thin film transistor including an oxide semiconductor layer as a channel formation region, the oxide semiconductor layer is heated under a nitrogen atmosphere to lower its resistance, thereby forming a low-resistance oxide semiconductor layer. Further, resistance of a region of the low-resistance oxide semiconductor layer, which is overlapped with a gate electrode layer, is selectively increased, thereby forming a high-resistance oxide semiconductor layer. Resistance of the oxide semiconductor layer is increased by forming a silicon oxide film in contact with the oxide semiconductor layer by a sputtering method.Type: GrantFiled: July 10, 2014Date of Patent: May 7, 2019Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Toshinari Sasaki, Hiroki Ohara, Junichiro Sakata
-
Patent number: 10115720Abstract: A semiconductor device includes a substrate including a first region and a second region, a first transistor and a second transistor formed in the first region and second region, respectively, wherein the first transistor includes a thick gate insulating layer and a thin buffer insulating layer formed in the substrate, a first gate electrode formed on the thick gate insulating layer, a first spacer formed on the thin buffer insulating layer, and a source region and a drain region formed in the substrate.Type: GrantFiled: January 30, 2017Date of Patent: October 30, 2018Assignee: Magnachip Semiconductor, Ltd.Inventors: Young Bae Kim, Kwang Il Kim, Jun Hyun Kim, In Sik Jung, Jae Hyung Jang, Jin Yeong Son
-
Patent number: 9362278Abstract: A device comprises a first semiconductor fin over a substrate, a second semiconductor fin over the substrate, wherein the first semiconductor fin and the second semiconductor fin are separated by a first isolation region, a first drain/source region coupled to the first semiconductor fin and the second semiconductor fin and a first dislocation plane underlying the first isolation region, wherein the first dislocation plane extends in a first direction in parallel with a longitudinal axis of the first semiconductor fin.Type: GrantFiled: December 29, 2014Date of Patent: June 7, 2016Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chih-Hsiang Huang, Da-Wen Lin
-
Patent number: 9029250Abstract: A method for producing semiconductor regions including impurities includes forming a trench in a first surface of a semiconductor body. Impurity atoms are implanted into a bottom of the trench. The trench is extended deeper into the semiconductor body, thereby forming a deeper trench. Impurity atoms are implanted into a bottom of the deeper trench.Type: GrantFiled: September 24, 2013Date of Patent: May 12, 2015Assignee: Infineon Technologies Austria AGInventors: Jens Peter Konrath, Ronny Kern, Hans-Joachim Schulze
-
Patent number: 8921197Abstract: Integrated circuits that include SRAM cells having additional read stacks and methods for their fabrication are provided. In accordance with one embodiment a method for fabricating such an integrated circuit includes forming a plurality of SRAM cells in and on a semiconductor substrate, each of the plurality of SRAM cells including a read pull down transistor and a read pass gate transistor. First conductivity-determining impurity ions are implanted to establish a first threshold voltage in each of the read pull down transistors; and second conductivity-determining impurity ions are implanted to establish a second threshold voltage different than the first threshold voltage in each of the read pass gate transistors.Type: GrantFiled: September 14, 2012Date of Patent: December 30, 2014Assignee: GLOBALFOUNDRIES, Inc.Inventors: Ralf van Bentum, Torsten Klick
-
Patent number: 8900954Abstract: A method that forms a structure implants a well implant into a substrate, patterns a mask on the substrate (to have at least one opening that exposes a channel region of the substrate) and forms a conformal dielectric layer on the mask and to line the opening. The conformal dielectric layer covers the channel region of the substrate. The method also forms a conformal gate metal layer on the conformal dielectric layer, implants a compensating implant through the conformal gate metal layer and the conformal dielectric layer into the channel region of the substrate, and forms a gate conductor on the conformal gate metal layer. Additionally, the method removes the mask to leave a gate stack on the substrate, forms sidewall spacers on the gate stack, and then forms source/drain regions in the substrate partially below the sidewall spacers.Type: GrantFiled: November 4, 2011Date of Patent: December 2, 2014Assignee: International Business Machines CorporationInventors: James W. Adkisson, Brent A. Anderson, Andres Bryant, Edward J. Nowak
-
Patent number: 8900962Abstract: According to one embodiment, a method is disclosed for manufacturing a semiconductor device. The method can include forming a base region and an emitter region in a front surface of a semiconductor layer. The method can include forming a first impurity implantation region by implanting first impurity of a first conductivity type into a back surface of the semiconductor layer. The method can include selectively forming a second impurity implantation region by selectively implanting second impurity of a second conductivity type into the first impurity implantation region. In addition, the method can include irradiating the first impurity implantation region and the second impurity implantation region with laser light. A peak of impurity concentration profile in a depth direction of at least one of the first impurity implantation region and the second impurity implantation region before irradiation with the laser light is adjusted to a depth of 0.05 ?m or more and 0.Type: GrantFiled: March 21, 2011Date of Patent: December 2, 2014Assignee: Kabushiki Kaisha ToshibaInventors: Daisuke Yamashita, Etsuo Hamada, Hideki Nozaki, Hironobu Shibata
-
Patent number: 8853026Abstract: Semiconductor devices and methods of fabricating the same are provided. An insulating film can be disposed on a semiconductor substrate, and insulating film patterns can be formed opening a plurality of areas with predetermined widths by patterning the insulating film. A plurality of ion implantation areas having a first conductivity type can be formed by implanting impurities into the plurality of open areas, and an oxide film pattern can be formed on each of the ion implantation areas. The insulating film patterns can be removed, and ion implantation areas having a second conductivity type can be formed by implanting impurities using the oxide film pattern as a mask. The semiconductor substrate can be annealed at a high temperature to form deep wells.Type: GrantFiled: March 12, 2013Date of Patent: October 7, 2014Assignee: Dongbu Hitek Co., Ltd.Inventor: Kyung Wook Kwon
-
Patent number: 8796123Abstract: An impurity of a first conductivity type is implanted onto a silicon carbide substrate through an opening in a mask layer. First and second films made of first and second materials respectively are formed. It is sensed that etching of the first material is performed during anisotropic etching, and then anisotropic etching is stopped. An impurity of a second conductivity type is implanted onto the silicon carbide substrate through the opening narrowed by the first and second films. Thus, the impurity regions can be formed in an accurately self-aligned manner.Type: GrantFiled: June 5, 2012Date of Patent: August 5, 2014Assignee: Sumitomo Electric Industries, Ltd.Inventors: Shunsuke Yamada, Takeyoshi Masuda
-
Patent number: 8765583Abstract: An improved method of tilting a mask to perform a pattern implant of a substrate is disclosed. The mask has a plurality of apertures, and is placed between the ion source and the substrate. The mask and substrate are tilted at a first angle relative to the incoming ion beam. After the substrate is exposed to the ion beam, the mask and substrate are tilted at a second angle relative to the ion beam and a subsequent implant step is performed. Through the selection of the aperture size and shape, the cross-section of the mask, the distance between the mask and the substrate and the number of implant steps, a variety of implant patterns may be created. In some embodiments, the implant pattern includes heavily doped horizontal stripes with lighter doped regions between the stripes. In some embodiments, the implant pattern includes a grid of heavily doped regions.Type: GrantFiled: February 17, 2011Date of Patent: July 1, 2014Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Benjamin Riordon, Nicholas Bateman, Atul Gupta
-
Patent number: 8759188Abstract: A method for integrating a bipolar injunction transistor in a semiconductor chip includes the steps of forming an intrinsic base region of a second type of conductivity extending in the collector region from a main surface through an intrinsic base window of the sacrificial insulating layer, forming an emitter region of the first type of conductivity extending in the intrinsic base region from the main surface through an emitter window of the sacrificial insulating layer, removing the sacrificial insulating layer, forming an intermediate insulating layer on the main surface, and forming an extrinsic base region of the second type of conductivity extending in the intrinsic base region from the main surface through an extrinsic base window of the intermediate insulating layer.Type: GrantFiled: December 22, 2011Date of Patent: June 24, 2014Assignees: STMicroelectronics S.r.l., STMicroelectronics Asia Pacific Pte. Ltd.Inventors: Alfonso Patti, Antonino Schillaci, Bartolome Marrone, Gianleonardo Grasso, Rajesh Kumar
-
Patent number: 8753948Abstract: A lateral diffused metal oxide semiconductor (LDMOS) transistor is provided. The LDMOS transistor includes a substrate having a source region, channel region, and a drain region. A first implant is formed to a first depth in the substrate. A gate electrode is formed over the channel region in the substrate between the source region and the drain region. A second implant is formed in the source region of the substrate; the second implant is laterally diffused under the gate electrode a predetermined distance. A third implant is formed to a second depth in the drain region of the substrate; the second depth is less than the first depth. A method for forming the LDMOS transistor is also provided.Type: GrantFiled: October 31, 2011Date of Patent: June 17, 2014Assignee: Freescale Semiconductor, Inc.Inventors: Xiaowei Ren, Robert P. Davidson, Mark A. Detar
-
Patent number: 8673753Abstract: In a multi-energy ion implantation process, an ion implanting system having an ion source, an extraction assembly, and an electrode assembly is used to implant ions into a target. An ion beam having a first energy may be generated using the ion source and the extraction assembly. A first voltage may be applied across the electrode assembly. The ion beam may enter the electrode assembly at the first energy, exit the electrode assembly at a second energy, and implant ions into the target at the second energy. A second voltage may be applied across the electrode assembly. The ion beam may enter the electrode assembly at the first energy, exit the electrode assembly at a third energy, and implants ions into the target at the third energy. The third energy may be different from the second energy.Type: GrantFiled: December 3, 2012Date of Patent: March 18, 2014Assignee: Advanced Ion Beam Technology, Inc.Inventor: Zhimin Wan
-
Patent number: 8598007Abstract: One illustrative method disclosed herein involves forming first and second gate structures that include a cap layer for a first transistor device and a second transistor device, respectively, wherein the first and second transistors are oriented transverse to one another, performing a first halo ion implant process to form first halo implant regions for the first transistor with the cap layer in position in the first gate structure of the first transistor, removing the cap layer from at least the second gate structure of the second transistor and, after removing the cap layer, performing a second halo ion implant process to form second halo implant regions for the second transistor, wherein the first and second halo implant processes are performed at transverse angles relative to the substrate.Type: GrantFiled: June 4, 2012Date of Patent: December 3, 2013Assignee: Globalfoundries Inc.Inventors: Stefan Flachowsky, Jan Hoentschel, Thilo Scheiper
-
Patent number: 8580646Abstract: Field effect transistors and method for forming filed effect transistors. The field effect transistors including: a gate dielectric on a channel region in a semiconductor substrate; a gate electrode on the gate dielectric; respective source/drains in the substrate on opposite sides of the channel region; sidewall spacers on opposite sides of the gate electrode proximate to the source/drains; and wherein the sidewall spacers comprise a material having a dielectric constant lower than that of silicon dioxide and capable of absorbing laser radiation.Type: GrantFiled: November 18, 2010Date of Patent: November 12, 2013Assignee: International Business Machines CorporationInventors: Kangguo Cheng, Louis Lu-Chen Hsu, Jack A. Mandelman, William R. Tonti
-
Patent number: 8513083Abstract: Disclosed herein are various methods of forming an anode and a cathode of a substrate diode by performing angled ion implantation processes. In one example, the method includes performing a first angled ion implantation process to form a first doped region in a bulk layer of an SOI substrate for one of the anode or the diode and, after performing the first angled ion implantation process, performing a second angled ion implantation process to form a second doped region in the bulk layer of the SOI substrate for the other of the anode and the diode, wherein said first and second angled ion implantation process are performed through the same masking layer.Type: GrantFiled: August 26, 2011Date of Patent: August 20, 2013Assignee: GLOBALFOUNDRIES Inc.Inventors: Peter Baars, Thilo Scheiper
-
Patent number: 8487280Abstract: A first species is implanted into an entire surface of a workpiece and helium is implanted into this entire surface with a non-uniform dose. The first species may be, for example, hydrogen, helium, or nitrogen. The helium has a higher dose at a portion of a periphery of the workpiece. When the workpiece is split, this split is initiated at the periphery with the higher dose. The non-uniform dose may be formed by altering a scan speed of the workpiece or an ion beam current of the helium. In one instance, the non-uniform dose of the helium is larger than a uniform dose of the hydrogen.Type: GrantFiled: October 21, 2010Date of Patent: July 16, 2013Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Gary E. Dickerson, Julian G. Blake
-
Patent number: 8409975Abstract: A method for decreasing polysilicon gate resistance in a carbon co-implantation process which includes: depositing a first salicide block layer on a formed gate of a MOS device and etching it to form a first spacer of a side surface of the gate of the MOS device; performing a P-type heavily doped boron implantation process and a thermal annealing treatment, so as to decrease the resistance of the polysilicon gate; removing said first spacer, performing a lightly doped drain process, and performing a carbon co-implantation process at the same time, so as to form ultra-shallow junctions at the interfaces between a substrate and source region and drain region below the gate; re-depositing a second salicide block layer on the gate and etching the mask to form a second spacer; forming a self-aligned silicide on the surface of the MOS device. The invention can decrease the resistance of the P-type polysilicon gate.Type: GrantFiled: December 29, 2011Date of Patent: April 2, 2013Assignee: Shanghai Huali Microelectronics CorporationInventor: Liujiang Yu
-
Patent number: 8298889Abstract: An electronic device can include a first layer having a primary surface, a well region lying adjacent to the primary surface, and a buried doped region spaced apart from the primary surface and the well region. The electronic device can also include a trench extending towards the buried doped region, wherein the trench has a sidewall, and a sidewall doped region along the sidewall of the trench, wherein the sidewall doped region extends to a depth deeper than the well region. The first layer and the buried region have a first conductivity type, and the well region has a second conductivity type opposite that of the first conductivity type. The electronic device can include a conductive structure within the trench, wherein the conductive structure is electrically connected to the buried doped region and is electrically insulated from the sidewall doped region. Processes for forming the electronic device are also described.Type: GrantFiled: December 10, 2008Date of Patent: October 30, 2012Assignee: Semiconductor Components Industries, LLCInventors: Jaume Roig-Guitart, Peter Moens, Marnix Tack
-
Patent number: 8198659Abstract: A semiconductor device and a method of manufacturing a semiconductor device. A method of manufacturing a semiconductor device may include forming a gate electrode over a semiconductor substrate, a second conductive type ion implantation region at opposite sides of a gate electrode, a second conductive type ion implantation region as a first conductive type second ion implantation region by implanting a first conductive type impurity over opposite sides of said gate electrode, and/or forming a first conductive type first ion implantation region that substantially surrounds a first conductive type second ion implantation region. A method of manufacturing a semiconductor device may form an N type MOSFET and/or a P type MOSFET using a single photolithography process for each N+ source/drain photolithography process and/or P+ source/drain photolithography process.Type: GrantFiled: November 18, 2009Date of Patent: June 12, 2012Assignee: Dongbu HiTek Co., Ltd.Inventor: Kyung-Wook Kwon
-
Patent number: 8174074Abstract: A semiconductor device, an integrated circuit, and method for fabricating the same are disclosed. The semiconductor device includes a gate stack formed on an active region of a silicon-on-insulator substrate. A gate spacer is formed over the gate stack. A source region that includes embedded silicon germanium is formed within the semiconductor layer. A drain region that includes embedded silicon germanium is formed within the semiconductor layer. The source region includes an angled implantation region that extends into the embedded silicon germanium of the source region, and is asymmetric relative to the drain region.Type: GrantFiled: September 1, 2009Date of Patent: May 8, 2012Assignee: International Business Machines CorporationInventors: Chung-Hsun Lin, Isaac Lauer, Jeffrey W. Sleight
-
Patent number: 8114751Abstract: A method of manufacturing a semiconductor device includes providing a semiconductor wafer and forming at least one first trench in the wafer having first and second sidewalls and a first orientation on the wafer. The first sidewall of the at least one first trench is implanted with a dopant of a first conductivity at a first implantation direction. The first sidewall of the at least one first trench is implanted with the dopant of the first conductivity at a second implantation direction. The second implantation direction is orthogonal to the first implantation direction. The first and second implantation directions are non-orthogonal to the first sidewall.Type: GrantFiled: October 28, 2010Date of Patent: February 14, 2012Assignee: Icemos Technology Ltd.Inventors: Takeshi Ishiguro, Hugh J. Griffin, Kenji Sugiura
-
Patent number: 8067301Abstract: A reliable image sensor and a method for forming the same are provided. The image sensor includes a photo-detective device. At least one transistor is electrically connected to the photo-detective device for outputting charges stored in the photo-detective device. A transistor directly connected to the photo-detective device includes a gate electrode pattern and an ion-implantation interrupting pattern arranged on the gate electrode pattern. Since the ion-implantation interrupting pattern is located on an upper portion of the gate electrode pattern of the transistor in the vicinity of the photo-detective device, a threshold voltage of the gate electrode pattern of the transistor in the vicinity of the photo-detective device is adjusted to a desired value.Type: GrantFiled: January 22, 2010Date of Patent: November 29, 2011Assignee: Samsung Electronics Co., Ltd.Inventors: Duk-Min Yi, Sung-Keun Won, Jun-Yeoul You
-
Patent number: 8035196Abstract: The present invention provides a method of forming a bipolar transistor. The method includes doping a silicon layer with a first type of dopant and performing a first implant process to implant dopant of a second type opposite the first type in the silicon layer. The implanted dopant has a first dopant profile in the silicon layer. The method also includes performing a second implant process to implant additional dopant of the second type in the silicon layer. The additional implanted dopant has a second dopant profile in the silicon layer different than the first dopant profile. The method further includes growing an insulating layer formed over the silicon layer by consuming a portion of the silicon layer and the first type of dopant.Type: GrantFiled: April 2, 2008Date of Patent: October 11, 2011Assignee: Zarlink Semiconductor (US) Inc.Inventors: Thomas J. Krutsick, Christopher J. Speyer
-
Patent number: 8012843Abstract: An improved method of performing pocket or halo implants is disclosed. The amount of damage and defects created by the halo implant degrades the performance of the semiconductor device, by increasing leakage current, decreasing the noise margin and increasing the minimum gate voltage. The halo or packet implant is performed at cold temperature, which decreases the damage caused to the crystalline structure and improves the amorphization of the crystal. The use of cold temperature also allows the use of lighter elements for the halo implant, such as boron or phosphorus.Type: GrantFiled: August 5, 2010Date of Patent: September 6, 2011Assignee: Varian Semiconductor Equipment Associates, Inc.Inventors: Christopher R. Hatem, Benjamin Colombeau, Thirumal Thanigaivelan, Kyu-Ha Shim, Dennis Rodier
-
Patent number: 7888226Abstract: A power semiconductor device has a first region in which a transistor is formed, a third region in which a control element is formed, and a second region for separating the first region and the third region.Type: GrantFiled: August 18, 2008Date of Patent: February 15, 2011Assignee: Fairchild Korea Semiconductor, Ltd.Inventors: Tae-hun Kwon, Cheol-joong Kim, Young-sub Jeong
-
Patent number: 7825457Abstract: There is provided a semiconductor device including a semiconductor substrate (10), a high concentration diffusion region (22) formed within the semiconductor substrate (10), a first low concentration diffusion region (24) that has a lower impurity concentration than the high concentration diffusion region (22) and is provided under the high concentration diffusion region (22), and a bit line (30) that includes the high concentration diffusion region (22) and the first low concentration diffusion region (24) and serves as a source region and a drain region, and a manufacturing method therefor. Reduction of source-drain breakdown voltage of the transistor is suppressed, and a low-resistance bit line can be formed. Thus, a semiconductor device that can miniaturize memory cells and a manufacturing method therefor can be provided.Type: GrantFiled: April 27, 2006Date of Patent: November 2, 2010Assignee: Spansion LLCInventor: Masatomi Okanishi
-
Patent number: 7732292Abstract: Disclosed is a method of forming a transistor in an integrated circuit structure that begins by forming a collector in a substrate and an intrinsic base above the collector. Then, the invention patterns an emitter pedestal for the lower portion of the emitter on the substrate above the intrinsic base. Before actually forming the emitter or associates spacer, the invention forms an extrinsic base in regions of the substrate not protected by the emitter pedestal. After this, the invention removes the emitter pedestal and eventually forms the emitter where the emitter pedestal was positioned.Type: GrantFiled: August 15, 2007Date of Patent: June 8, 2010Assignee: International Business Machines CorporationInventors: Marwan H. Khater, Francois Pagette
-
Patent number: 7674658Abstract: A semiconductor device and a manufacturing method thereof are provided. The manufacturing method can form a structure of a thin film transistor (TFT) having a symmetric lightly doped region, and thus provide superior operation reliability and electrical performance. In addition, the manufacturing method forms gate patterns of different TFTs by the same mask process and thereby avoids the misalignment of masks so as to improve the processing yield and reduce the manufacturing cost.Type: GrantFiled: February 4, 2008Date of Patent: March 9, 2010Assignee: Au Optronics CorporationInventors: Chen-Yueh Li, Yi-Wei Chen, Ming-Yan Chen
-
Patent number: 7655526Abstract: Disclosed is a method for manufacturing a semiconductor device. The method for manufacturing a semiconductor device includes the steps of forming a gate electrode on a semiconductor substrate, forming a drift area in the semiconductor substrate by implanting a dopant using the gate electrode as a mask, forming a sidewall spacer at sides of the gate electrode, and forming a source/drain area in the semiconductor substrate by implanting a dopant using the gate electrode and the sidewall spacer as a mask.Type: GrantFiled: December 12, 2006Date of Patent: February 2, 2010Assignee: Dongbu Electronics Co., Ltd.Inventor: Choul Joo Ko
-
Patent number: 7645652Abstract: A CMOS image sensor and a method of fabricating the same are provided. The CMOS image sensor includes: a semiconductor substrate of a first conductivity type having a photodiode region and a transistor region defined therein; a gate electrode formed above the transistor region of the semiconductor substrate with a gate insulating layer interposed therebetween; a first impurity region formed of the first conductivity type in the semiconductor substrate below the gate electrode and having a higher concentration of first conductivity type ions than the semiconductor substrate; and a second impurity region formed of a second conductivity type in the photodiode region of the semiconductor substrate.Type: GrantFiled: August 21, 2006Date of Patent: January 12, 2010Assignee: Dongbu Electronics Co., Ltd.Inventor: Lim Keun Hyuk
-
Patent number: 7611975Abstract: An implanter provides two-dimensional scanning of a substrate relative to an implant beam so that the beam draws a raster of scan lines on the substrate. The beam current is measured at turnaround points off the substrate and the current value is used to control the subsequent fast scan speed so as to compensate for the effect of any variation in beam current on dose uniformity in the slow scan direction. The scanning may produce a raster of non-intersecting uniformly spaced parallel scan lines and the spacing between the lines is selected to ensure appropriate dose uniformity.Type: GrantFiled: September 27, 2006Date of Patent: November 3, 2009Assignee: Applied Materials, Inc.Inventors: Adrian Murrell, Peter Michael Banks, Matthew Peter Dobson, Peter Kindersley, Takao Sakase, Marvin Farley, Shu Satoh, Geoffrey Ryding
-
Patent number: 7582546Abstract: A device utilizing a breakdown layer in combination with a programmable resistance material, a phase-change material or a threshold switching material. The breakdown layer having damage.Type: GrantFiled: April 5, 2007Date of Patent: September 1, 2009Assignee: Infineon Technologies AGInventors: Ronald Kakoschke, Thomas Nirschl
-
Patent number: 7569457Abstract: An implantation step of a dopant ion for forming source and drain regions (S and D) is divided into one implantation of a dopant ion for forming a p/n junction with a well region (3), and one implantation of a dopant ion that does not influence a position of the p/n junction between the source and drain regions (S and D) and the well region with a shallow implantation depth and? a large implantation amount. After conducting an activation heat treatment of the dopant, a surface of the source/drain region is made into cobalt suicide 12, so that the source/drain region (S and D) can have a low resistance, and a p/n junction leakage can be reduced.Type: GrantFiled: November 9, 2007Date of Patent: August 4, 2009Assignee: Renesas Technology Corp.Inventors: Shinichi Fukada, Naotaka Hashimoto, Masanori Kojima, Hiroshi Momiji, Hiromi Abe, Masayuki Suzuki
-
Patent number: 7550355Abstract: A boron ion stream may be used to implant ions, such as boron ions, into the sidewalls of an active area, such as an NFET active area. The boron ion stream has both vertical tilt and horizontal rotation components relative to the sidewalls and/or the silicon device, to provide a better line of sight onto the sidewalls. This may allow components of the silicon device to be moved closer together without unduly reducing the effectiveness of boron doping of NFET active area sidewalls, and provides an improved line of sight of a boron ion stream onto the sidewalls of an NFET active area prior to filling the surrounding trench with STI material.Type: GrantFiled: August 29, 2005Date of Patent: June 23, 2009Assignee: Toshiba America Electronic Components, Inc.Inventor: Yusuke Kohyama
-
Patent number: 7541250Abstract: A method for forming a self-aligned twin well region is provided. The method includes implanting a first well type doping species into the DHL such that its distribution remains stopped in the DHL above the silicon substrate, etching away a portion of the DHL using a photoresist mask, implanting a second well type doping species into the portions of the silicon substrate exposed by the etching, and moving a portion of the first well type doping species into the silicon substrate.Type: GrantFiled: March 7, 2006Date of Patent: June 2, 2009Assignee: Atmel CorporationInventors: Gayle W. Miller, Jr., Bryan D. Sendelweck
-
Patent number: 7476914Abstract: Methods of boosting the performance of bipolar transistor, especially SiGe heterojunction bipolar transistors, is provided together with the structure that is formed by the inventive methods. The methods include providing a species-rich dopant region comprising C, a noble gas, or mixtures thereof into at least a collector. The species-rich dopant region forms a perimeter or donut-shaped dopant region around a center portion of the collector. A first conductivity type dopant is then implanted into the center portion of the collector to form a first conductivity type dopant region that is laterally constrained, i.e., confined, by the outer species-rich dopant region.Type: GrantFiled: November 2, 2006Date of Patent: January 13, 2009Assignee: International Business Machines CorporationInventors: Omer H. Dokumaci, Gregory G. Freeman, Marwan H. Khater, Rajendran Krishnasamy, Kathryn T. Schonenberg
-
Patent number: 7468305Abstract: A method of decoupling the formation of LDD and pocket regions is provided. The method includes providing a semiconductor chip including active regions, forming gate structures in the active regions, forming N-LDD regions on the semiconductor chip using an N-LDD mask, forming N-Pocket regions on the semiconductor chip using an N-Pocket mask, forming P-LDD regions on the semiconductor chip using a P-LDD mask, and forming P-Pocket regions on the semiconductor chip using a P-Pocket mask.Type: GrantFiled: May 1, 2006Date of Patent: December 23, 2008Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Michael Yu, Chih-Ping Chao, Chih-Sheng Chang, Chun-Hong Chen
-
Patent number: 7439092Abstract: A method of fabricating thin films of semiconductor materials by implanting ions in a substrate composed of at least two different elements at least one of which can form a gaseous phase on bonding with itself and/or with impurities includes the following steps: (1) bombarding one face of the substrate with ions of a non-gaseous heavy species in order to implant those ions in a concentration sufficient to create in the substrate a layer of microcavities containing a gaseous phase formed by the element of the substrate; (2) bringing this face of the substrate into intimate contact with a stiffener; and (3) obtaining cleavage at the level of the microcavity layer by the application of heat treatment and/or a splitting stress.Type: GrantFiled: May 19, 2006Date of Patent: October 21, 2008Assignee: Commissariat A l'Energie AtomiqueInventor: Aurélie Tauzin
-
Patent number: 7314805Abstract: An implantation step of a dopant ion for forming source and drain regions (S and D) is divided into one implantation of a dopant ion for forming a p/n junction with a well region (3), and one implantation of a dopant ion that does not influence a position of the p/n junction between the source and drain regions (S and D) and the well region with a shallow implantation depth and a large implantation amount. After conducting an activation heat treatment of the dopant, a surface of the source/drain region is made into cobalt silicide 12, so that the source/drain region (S and D) can have a low resistance, and a p/n junction leakage can be reduced.Type: GrantFiled: September 13, 2006Date of Patent: January 1, 2008Assignee: Renesas Technology Corp.Inventors: Shinichi Fukada, Naotaka Hashimoto, Masanori Kojima, Hiroshi Momiji, Hiromi Abe, Masayuki Suzuki
-
Patent number: 7300851Abstract: A fabrication process for a silicon-on-insulator (SOI) device includes defining an active region in an 501 substrate, doping the entire active region with an impurity of a given conductive type, masking a main part of the active region, and doping the peripheral parts of the active region at least two additional times with an impurity of the same conductive type, preferably using different doping parameters each time. The additional, doping creates a channel stop in the peripheral parts of the active region, counteracting the tendency of the transistor threshold voltage to be lowered in the peripheral parts of the active region, thereby mitigating or eliminating the unwanted subthreshold hump often found in the transistor operating characteristics of, for example, fully depleted SOI devices.Type: GrantFiled: January 13, 2006Date of Patent: November 27, 2007Assignee: Oki Electric Industry Co., Ltd.Inventor: Masao Okihara
-
Patent number: 7276421Abstract: Methods of forming a single crystal semiconductor thin film on an insulator and semiconductor devices fabricated thereby are provided. The methods include forming an interlayer insulating layer on a single crystal semiconductor layer. A single crystal semiconductor plug is formed to penetrate the interlayer insulating layer. A semiconductor oxide layer is formed within the single crystal semiconductor plug using an ion implantation technique and an annealing technique. As a result, the single crystal semiconductor plug is divided into a lower plug and an upper single crystal semiconductor plug with the semiconductor oxide layer being interposed therebetween. That is, the upper single crystal semiconductor plug is electrically insulated from the lower plug by the semiconductor oxide layer. A single crystal semiconductor pattern is formed to be in contact with the upper single crystal semiconductor plug and cover the interlayer insulating layer.Type: GrantFiled: August 5, 2005Date of Patent: October 2, 2007Assignee: Samsung Electronics Co., Ltd.Inventors: Jong-Hyuk Kim, Soon-Moon Jung, Won-Seok Cho, Jae-Hoon Jang, Kun-Ho Kwak, Sung-Jin Kim, Jae-Joo Shim
-
Patent number: 7271443Abstract: A semiconductor device includes a first diffusion region including germanium atoms and first impurity atoms, provided on a surface layer of a semiconductor substrate, the first impurity atoms contributing to electric conductivity, and a second diffusion region including second impurity atoms, provided shallower than the first diffusion region from a surface of the first diffusion region, the second impurity atoms not contributing to the electric conductivity.Type: GrantFiled: March 15, 2005Date of Patent: September 18, 2007Assignee: Kabushiki Kaisha ToshibaInventor: Masafumi Hamaguchi
-
Patent number: 7253067Abstract: A method of manufacturing a semiconductor device having a semiconductor substrate that includes an active region for forming transistor elements, which includes a gate, and an element isolation region for isolating the transistor elements separately each other, which has a STI structure, the method comprises; first—ion implanting fist ions onto the surface of the semiconductor substrate in a region other than a stress region in the active region, which is located at the interface with the element isolation region, in the stress region, a potential stress is generated by forming the element isolation region and/or the difference between a material of the element isolation region and a material of the semiconductor substrate, so that a first impurity region for a source and/or a drain is formed in the active region in which the gate is not formed; and second ion implanting second ions each of which mass is smaller than that of each of the first ions so that a second ion impurity region is formed in the stress rType: GrantFiled: July 26, 2005Date of Patent: August 7, 2007Assignee: Seiko Epson CorporationInventor: Kanshi Abe
-
Patent number: 7253072Abstract: The present invention provides a method for implanting ions in a substrate and a method for manufacturing an integrated circuit. The method for implanting ions in a substrate, among other steps, including placing a substrate (410) on an implant platen (405) such that a predominant axes (430) of the substrate (410) is rotated about 30 degrees to about 60 degrees or about 120 degrees to about 150 degrees offset from a radial with respect to the implant platen (405), and further wherein the substrate (410) is not tilted. The method further includes implanting ions into the substrate (410), the rotated position of the predominant axes (430) reducing shadowing.Type: GrantFiled: December 7, 2004Date of Patent: August 7, 2007Assignee: Texas Instruments IncorporatedInventors: James D. Bernstein, Lance S. Robertson, Said Ghneim, Nandu Mahalingam, Benjamin Moser
-
Method of manufacturing semiconductor device and the semiconductor device manufactured by the method
Patent number: 7220649Abstract: The method of manufacturing the semiconductor device that includes a high voltage MOS transistor with high operating voltage under both high and low gate voltages with low-cost is disclosed. When manufacturing the high voltage MOS transistor, a portion of a gate insulation film is removed to form an opening that exposes an outside area of the active area, which is outside of the central area where a gate electrode will be formed. A shallow grade layer is formed by implanting impurities into an opening with an energy that does not permit penetration of impurity ions through the gate insulation film.Type: GrantFiled: November 4, 2005Date of Patent: May 22, 2007Assignee: Kawasaki Microelectronics, Inc.Inventor: Ryo Nakamura -
Patent number: 7195986Abstract: A method to achieve controlled conductivity in microfluidic devices, and a device formed thereby. The method comprises forming a microchannel or a well in an insulating material, and ion implanting at least one region of the insulating material at or adjacent the microchannel or well to increase conductivity of the region.Type: GrantFiled: March 7, 2003Date of Patent: March 27, 2007Assignee: Caliper Life Sciences, Inc.Inventors: Luc J. Bousse, Seth R. Stern, Richard J. McReynolds
-
Patent number: 7169674Abstract: A diffusion barrier (and method for forming the diffusion barrier) for a field-effect transistor having a channel region and a gate electrode, includes an insulating material being disposed over the channel region. The insulating material includes nitrogen (N), and is disposed under the gate electrode. The insulating material can be provided either as a layer or distributed within a gate dielectric material disposed under the gate electrode.Type: GrantFiled: February 28, 2005Date of Patent: January 30, 2007Assignee: International Business Machines CorporationInventors: Nestor Alexander Bojarczuk, Jr., Kevin Kok Chan, Christopher Peter D'Emic, Evgeni Gousev, Supratik Guha, Paul C. Jamison, Lars-Ake Ragnarsson
-
Patent number: 7157346Abstract: An integrated circuit die includes thereon a first device region, a second device region and a non-active region. A first implant mask, which covers the second device region and the non-active region, while exposing the first device region, is formed over the semiconductor substrate. Dopant species are implanted into the exposed semiconductor substrate within the first device region to form first doping regions therein. A second implant mask is formed over the semiconductor substrate. The second implant mask covers the first device region, while exposing the second device region and a portion of the non-active region. Dopant species are implanted into the exposed semiconductor substrate within the second device region to form second doping regions therein.Type: GrantFiled: July 1, 2005Date of Patent: January 2, 2007Assignee: United Microelectronics Corp.Inventors: Ko-Ting Chen, Wen-Bin Lu, Chao-Hu Liang