Having Specified Scribe Region Structure (e.g., Alignment Mark, Plural Grooves, Etc.) Patents (Class 438/462)
  • Publication number: 20130029476
    Abstract: A dicing process is provided for cutting a wafer along a plurality of predetermined scribe lines into a plurality of dies that are releasably adhered to a release film. The dicing process includes: (a) disposing a wafer-breaking carrier on a supporting device, the wafer-breaking carrier having a chipping unit; (b) disposing the wafer above the supporting device such that the chipping unit is at a position corresponding to the scribe lines; and (c) adhering a release surface of the release film to the wafer by applying a force to the release film to contact the chipping unit of the wafer-breaking carrier with the wafer, such that the wafer is split along the scribe lines into the dies.
    Type: Application
    Filed: July 3, 2012
    Publication date: January 31, 2013
    Applicant: LEXTAR ELECTRONICS CORP.
    Inventors: Chien-Sen WENG, Mong-Yeng Xing, Yu-Ching Chang, Wei-Chang Yu, Yao-Hui Lin
  • Patent number: 8361841
    Abstract: Disclosed is a mold array process (MAP) method to encapsulate cut edges of substrate units. A substrate strip includes a plurality of substrate units arranged in a matrix. Scribe lines are defined between adjacent substrate units and at the peripheries of the matrix where pre-cut grooves are formed along the scribe lines with a width greater than the width of the scribe lines. An encapsulant is formed on the matrix of the substrate strip to continuously encapsulate the substrate units and the scribe lines to enable the encapsulant to fill into the pre-cut grooves to further encapsulate the cut edges of the substrate units. The cut edges of the substrate units are still encapsulated by the encapsulant even after singulation processes where substrate units are singulated into individual semiconductor packages to prevent the exposure of the plated traces of the substrate units to enhance the moisture resistance capability of the semiconductor packages.
    Type: Grant
    Filed: April 25, 2011
    Date of Patent: January 29, 2013
    Assignee: Walton Advanced Engineering, Inc.
    Inventors: Kuo-Yuan Lee, Yung-Hsiang Chen, Wen-Chun Chiu
  • Patent number: 8361883
    Abstract: A laser processing method which can highly accurately cut objects to be processed having various laminate structures is provided. An object to be processed comprising a substrate and a laminate part disposed on the front face of the substrate is irradiated with laser light L while a light-converging point P is positioned at least within the substrate, so as to form a modified region due to multiphoton absorption at least within the substrate, and cause the modified region to form a starting point region for cutting. When the object is cut along the starting point region for cutting, the object 1 can be cut with a high accuracy.
    Type: Grant
    Filed: March 12, 2003
    Date of Patent: January 29, 2013
    Assignee: Hamamatsu Photonics K.K.
    Inventors: Fumitsugu Fukuyo, Kenshi Fukumitsu
  • Patent number: 8361885
    Abstract: A method of fabricating group-III nitride semiconductor laser device includes: preparing a substrate comprising a hexagonal group-III nitride semiconductor and having a semipolar principal surface; forming a substrate product having a laser structure, an anode electrode, and a cathode electrode, where the laser structure includes a semiconductor region and the substrate, where the semiconductor region is formed on the semipolar principal surface; scribing a first surface of the substrate product in a direction of an a-axis of the hexagonal group-III nitride semiconductor to form first and second scribed grooves; and carrying out breakup of the substrate product by press against a second surface of the substrate product, to form another substrate product and a laser bar.
    Type: Grant
    Filed: November 18, 2011
    Date of Patent: January 29, 2013
    Assignee: Sumitomo Electric Industries, Ltd.
    Inventors: Yusuke Yoshizumi, Shimpei Takagi, Takatoshi Ikegami, Masaki Ueno, Koji Katayama
  • Patent number: 8361884
    Abstract: In one embodiment, a method of forming a semiconductor device includes forming islands by forming deep trenches within scribe lines of a substrate. The islands have a first notch disposed on sidewalls of the islands. A first electrode stack is formed over a top surface of the islands. The back surface of the substrate is thinned to separate the islands. A second electrode stack is formed over a back surface of the islands.
    Type: Grant
    Filed: June 22, 2010
    Date of Patent: January 29, 2013
    Assignee: Infineon Technologies AG
    Inventor: Manfred Engelhardt
  • Patent number: 8361828
    Abstract: A method and system for dicing semiconductor devices from semiconductor thin films. A semiconductor film, backed by a metal layer, is bonded by an adhesive layer to a flexible translucent substrate. Reference features define device boundaries. An ultraviolet laser beam is aligned to the reference features and cuts through the semiconductor film, the metal layer and partially into the adhesive layer, cutting a frontside street along a real or imaginary scribe line on the cutting path. An infrared laser beam is aligned to the trough of the frontside street from the back surface of the flexible substrate, or the scribe lines are mapped to the back surface of the flexible substrate. The infrared laser beam cuts through the flexible substrate and the majority of the thickness of the adhesive layer, cutting a backside street along the scribe line. The backside street overlaps or cuts through to the frontside street, thereby separating the semiconductor devices.
    Type: Grant
    Filed: August 31, 2011
    Date of Patent: January 29, 2013
    Assignee: Alta Devices, Inc.
    Inventors: Daniel G. Patterson, Laila Mattos, Gang He
  • Patent number: 8357591
    Abstract: A method of processing a wafer includes establishing a fine of symmetry defining left and right die areas on a front side of the wafer and left and right die areas on a back side. A first mask is used to form a first interconnection layer on the left and right die areas comprising a first portion on the left die area and second portion different than the first portion on the right die area. A second mask is used to form a second interconnection layer on the left and right die areas comprising a third portion on the left die area and fourth portion different than the third portion on the right die area. The first mask is reused to form a third interconnection layer on the left and right die areas on a back side, and the second mask to form a fourth interconnection layer on the left and right die areas on a back side.
    Type: Grant
    Filed: April 14, 2011
    Date of Patent: January 22, 2013
    Assignee: Harris Corporation
    Inventors: Thomas Reed, David Herndon
  • Patent number: 8357935
    Abstract: In order to solve the above problem, provided is an electronic component having an authentication pattern formed on an exposed surface, in which the authentication pattern includes a base section including a resin and colored particles having a hue that can be identified in the base section, and the colored particles are dispersed so as to form dotted pattern in the base section.
    Type: Grant
    Filed: August 1, 2011
    Date of Patent: January 22, 2013
    Assignee: Renesas Electronics Corporation
    Inventors: Yasuhiro Matsumaru, Kenta Ogawa
  • Patent number: 8357560
    Abstract: A package of a micro-electro-mechanical systems (MEMS) device includes a cap wafer, a plurality of bonding bumps formed over the cap wafer, a plurality of array bumps arrayed on an outer side of the bonding bumps, and an MEMS device wafer over which a plurality of first outer pads are formed corresponding to the array bumps, wherein the array bumps are bonded to the respective outer pads when the cap wafer and the MEMS device wafer are bonded together.
    Type: Grant
    Filed: May 18, 2009
    Date of Patent: January 22, 2013
    Assignee: Magnachip Semiconductor Ltd.
    Inventors: Sung-Gyu Pyo, Dong-Joon Kim
  • Publication number: 20130017668
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask is composed of a layer covering and protecting the integrated circuits. The mask is patterned with a split-beam laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Application
    Filed: July 11, 2011
    Publication date: January 17, 2013
    Inventors: Wei-Sheng Lei, Brad Eaton, Madhava Rao Yalamanchili, Saravjeet Singh, Ajay Kumar, Aparna Iyer
  • Publication number: 20130017669
    Abstract: A method to prevent contamination of the principal surface side in a process of grinding the back surface side of a semiconductor wafer. At an intersection of a scribe region of a semiconductor wafer whose back surface side is to be ground, a plurality of insulating layers is laminated over the principal surface in the same manner as an insulating layer constituting a wiring layer laminated over a device region. Moreover, in the same layer as an uppermost wiring disposed at the uppermost layer among a plurality of the wiring layers formed for a device region, a metal pattern is formed. Furthermore, a second insulating layer covering the uppermost wiring is also formed over the metal pattern so as to cover the same.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 17, 2013
    Inventors: Shoetsu Kogawa, Satoru Nakayama, Seigo Kamata, Shigemitsu Seito
  • Publication number: 20130011999
    Abstract: A method for preparing a semiconductor wafer into individual semiconductor dies uses both a dicing before grinding step and/or via hole micro-fabrication step, and an adhesive coating step.
    Type: Application
    Filed: September 13, 2012
    Publication date: January 10, 2013
    Applicant: HENKEL CORPORATION
    Inventors: Hwang Kyu Yun, Jeffrey Leon, Raj Peddi, YounSang Kim
  • Publication number: 20130009316
    Abstract: Methods and apparatus for performing dicing of die on wafer interposers. Methods are disclosed that include receiving an interposer assembly including one or more integrated circuit dies mounted on a die side of an interposer substrate and having scribe areas defined in spaces between the integrated circuit dies, the interposer having an opposite side for receiving external connectors; mounting the die side of the interposer assembly to a tape assembly, the tape assembly comprising an adhesive tape and preformed spacers disposed between and filling gaps between the integrated circuit dies; and sawing the interposer assembly by cutting the opposite side of the interposer in the scribe areas to make cuts through the interposer, the cuts separating the interposer into one or more die on wafer assemblies. Apparatuses are disclosed for use with the methods.
    Type: Application
    Filed: July 5, 2011
    Publication date: January 10, 2013
    Applicant: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Chung Yu Wang, Kung-Chen Yeh, Chih-Wei Wu, Szu Wei Lu, Jing-Cheng Lin
  • Publication number: 20130012000
    Abstract: A substrate dividing method which can thin and divide a substrate while preventing chipping and cracking from occurring. This substrate dividing method comprises the steps of irradiating a semiconductor substrate 1 having a front face 3 formed with functional devices 19 with laser light while positioning a light-converging point within the substrate, so as to form a modified region including a molten processed region due to multiphoton absorption within the semiconductor substrate 1, and causing the modified region including the molten processed region to form a starting point region for cutting; and grinding a rear face 21 of the semiconductor substrate 1 after the step of forming the starting point region for cutting such that the semiconductor substrate 1 attains a predetermined thickness.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 10, 2013
    Applicant: HAMAMATSU PHOTONICS K.K.
    Inventors: Yoshimaro FUJII, Fumitsugu Fukuyo, Kenshi Fukumitsu, Naoki Uchiyama
  • Patent number: 8349657
    Abstract: A semiconductor wafer contains a plurality of semiconductor die each having a peripheral area around the die. A first insulating layer is formed over the die. A recessed region with angled sidewall is formed in the peripheral area. A first conductive layer is formed over the first insulating layer outside the recessed region and further into the recessed region. A conductive pillar is formed over the first conductive layer within the recessed region. A second insulating layer is formed over the first insulating layer, conductive pillar, and first conductive layer such that the conductive pillar is exposed from the second insulating layer. A dicing channel partially through the peripheral area. The semiconductor wafer undergoes backgrinding to the dicing channel to singulate the semiconductor wafer and separate the semiconductor die. The semiconductor die can be disposed in a semiconductor package with other components and electrically interconnected through the conductive pillar.
    Type: Grant
    Filed: March 18, 2012
    Date of Patent: January 8, 2013
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Byung Tai Do, Reza A. Pagaila, Linda Pei Ei Chua
  • Patent number: 8349710
    Abstract: Described herein are techniques for forming, during wafer processing, a conductive shielding layer for a chip formed from a wafer. The conductive shielding layer can be formed on multiple sides of a chip prior to dicing the wafer to separate the chip from the wafer. A wafer may be processed to form trenches that extend substantially through the wafer. The trenches may be formed opposite scribe lines that identify boundaries between chips of the wafer and may extend through the wafer toward the scribe lines. A shielding layer may be formed along the trenches.
    Type: Grant
    Filed: October 25, 2010
    Date of Patent: January 8, 2013
    Assignee: STMicroelectronics Asia Pacific Pte. Ltd.
    Inventor: Yonggang Jin
  • Patent number: 8349708
    Abstract: Integrated circuits (1) on a wafer comprise a wafer substrate (2), a plurality of integrated circuits (1) formed lattice-like in rows and columns on the wafer substrate (2), and first and second saw lines (4, 5) separating the integrated circuits (1). The first saw lines (4) run parallel and equidistant with respect to each other in a first direction (x) defined by the rows and the second saw lines (5) run parallel and equidistant with respect to each other in a second direction (y)defined by the columns. The integrated circuits (1) on the wafer further comprise a plurality of process control modules (3) formed on the wafer substrate (2) such that a given process control module (3) of the plurality of process modules (3) is bounded by two consecutive first saw lines (4) as well as by two consecutive second saw lines (5).
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: January 8, 2013
    Assignee: NXP B.V.
    Inventors: Heimo Scheucher, Guido Dormans, Tonny Kamphuis
  • Patent number: 8349654
    Abstract: A microelectronic assembly that includes a first microelectronic element having a first rear surface. The assembly further includes a second microelectronic element having a second rear surface. The second microelectronic element is attached to the first microelectronic element so as to form a stacked package. A bridging element electrically connects the first microelectronic element and the second microelectronic element. The first rear surface of the first microelectronic element faces toward the second rear surface of the second microelectronic element.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: January 8, 2013
    Assignee: Tessera, Inc.
    Inventor: Belgacem Haba
  • Publication number: 20130005116
    Abstract: A method to minimize edge-related substrate breakage during spalling using an edge-exclusion region where the stressor layer is either non-present (excluded either during deposition or removed afterwards) or present but significantly non-adhered to the substrate surface in the exclusion region is provided. In one embodiment, the method includes forming an edge exclusion material on an upper surface and near an edge of a base substrate. A stressor layer is then formed on exposed portions of the upper surface of the base substrate and atop the edge exclusion material, A portion of the base substrate that is located beneath the stressor layer and which is not covered by the edge exclusion material is then spalled.
    Type: Application
    Filed: June 29, 2011
    Publication date: January 3, 2013
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Stephen W. Bedell, Keith E. Fogel, Paul A. Lauro, Devendra K. Sadana, Davood Shahrjerdi, Norma E. Sosa Cortes
  • Patent number: 8344484
    Abstract: A semiconductor device may include, but is not limited to: a semiconductor substrate having an element formation region and a dicing region; an element layer over the element formation region and the dicing region; and a multi-layered wiring structure over the dicing region. The multi-layered wiring structure extends upwardly from the element layer. The multi-layered wiring structure has a groove penetrating the multi-layered wiring structure.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: January 1, 2013
    Assignee: Elpida Memory, Inc.
    Inventor: Toyonori Eto
  • Patent number: 8343805
    Abstract: A method and structure for uncovering captive devices in a bonded wafer assembly comprising a top wafer and a bottom wafer. One embodiment method includes forming a plurality of cuts in the top wafer and removing a segment of the top wafer defined by the plurality of cuts. The bottom wafer remains unsingulated after the removal of the segment.
    Type: Grant
    Filed: September 4, 2012
    Date of Patent: January 1, 2013
    Assignee: Texas Instruments Incorporated
    Inventors: Clayton Lee Stevenson, Jason C. Green, Daryl Ross Koehl, Buu Quoc Diep
  • Patent number: 8343852
    Abstract: A method for obtaining individual dies from a semiconductor structure is disclosed. The semiconductor structure includes a device layer, and the device layer in turn includes active regions separated by predefined spacings. Thick metal is selectively formed on backside of the device layer such that thick metal is formed on backside of active regions but not on backside of the predefined spacings. The semiconductor structure is then cut along the predefined spacings to separate the active regions with thick metal on their backside into individual dies.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: January 1, 2013
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Minhua Li, Qi Wang, Gordon Sim, Matthew Reynolds, Suku Kim, James J. Murphy, Hamza Yilmaz
  • Publication number: 20120329247
    Abstract: For modulating laser light for forming a modified region SD3 at an intermediate position between a position closer to a rear face 21 and a position closer to a front face 3 with respect to an object 1, a quality pattern J having a first brightness region extending in a direction substantially orthogonal to a line 5 and second brightness regions located on both sides of the first brightness region in the extending direction of the line 5 is used. After forming modified regions SD1, SD2 at positions closer to the rear face 21 but before forming modified regions SD4, SD5 at positions closer to the rear face 21 while using the front face 3 as a laser light entrance surface, the modified region SD3 is formed at the intermediate position by irradiation with laser light modulated according to a modulation pattern including the quality pattern J.
    Type: Application
    Filed: January 5, 2011
    Publication date: December 27, 2012
    Applicant: Hamamatsu Photonics K.K.
    Inventor: Takeshi Sakamoto
  • Publication number: 20120329246
    Abstract: Semiconductor die break strength and yield are improved with a combination of laser dicing and etching, which are followed by dicing an underlying layer of material, such as die attach film (DAF) or metal. A second laser process or a second etch process may be used for dicing of the underlying layer of material. Performing sidewall etching before cutting the underlying layer of material reduces or prevents debris on the kerf sidewalls during the sidewall etching process. A thin wafer dicing laser system may include either a single laser process head solution or a dual laser process head solution to meet throughput requirements.
    Type: Application
    Filed: June 24, 2011
    Publication date: December 27, 2012
    Applicant: ELECTRO SCIENTIFIC INDUSTRIES, INC.
    Inventor: Daragh S. Finn
  • Patent number: 8338917
    Abstract: The present disclosure provides a method of fabricating a semiconductor device, the method including providing a substrate having a seal ring region and a circuit region, forming a first seal ring structure over the seal ring region, forming a second seal ring structure over the seal ring region and adjacent to the first seal ring structure, and forming a first passivation layer disposed over the first and second seal ring structures. A semiconductor device fabricated by such a method is also provided.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: December 25, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Dun-Nian Yaung, Jen-Cheng Liu, Jeng-Shyan Lin, Wen-De Wang, Shu-Ting Tsai
  • Publication number: 20120322238
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The semiconductor wafer is disposed on a water-soluble die attach film. The mask covers and protects the integrated circuits. The mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to form singulated integrated circuits. The water-soluble die attach film is then patterned with an aqueous solution.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Wei-Sheng Lei, Madhava Rao Yalamanchili, Brad Eaton, Saravjeet Singh, Ajay Kumar
  • Publication number: 20120322241
    Abstract: Methods of dicing substrates having a plurality of ICs. A method includes forming a multi-layered mask comprising a first mask material layer soluble in a solvent over the semiconductor substrate and a second mask material layer, insoluble in the solvent, over the first mask material layer. The multi-layered mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the substrate between the ICs. The substrate is then plasma etched through the gaps in the patterned mask to singulate the IC with the second mask material layer protecting the first mask material layer for at least a portion of the plasma etch. The soluble material layer is dissolved subsequent to singulation to remove the multi-layered mask.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: James M. HOLDEN, Wei-Sheng LEI, Brad EATON, Todd EGAN, Saravjeet SINGH
  • Publication number: 20120322239
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer, the mask composed of a layer covering and protecting the integrated circuits. The semiconductor wafer is supported by a substrate carrier. The mask is then patterned with a laser scribing process to provide a patterned mask with gaps, exposing regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits while supported by the substrate carrier.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Saravjeet Singh, Brad Eaton, Ajay Kumar, Wei-Sheng Lei, James M. Holden, Madhava Rao Yalamanchili, Todd J. Egan
  • Publication number: 20120322240
    Abstract: Methods and apparatuses for dicing substrates by both laser scribing and plasma etching. A method includes laser ablating material layers, the ablating by a laser beam with a centrally peaked spatial power profile to form an ablated trench in the substrate below thin film device layers which is positively sloped. In an embodiment, a femtosecond laser forms a positively sloped ablation profile which facilitates vertically-oriented propagation of microcracks in the substrate at the ablated trench bottom. With minimal lateral runout of microcracks, a subsequent anisotropic plasma etch removes the microcracks for a cleanly singulated chip with good reliability.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: James M. HOLDEN, Nir Merry, Todd Egan
  • Publication number: 20120322232
    Abstract: Methods of dicing substrates by both laser scribing and plasma etching. A method includes laser ablating material layers, the ablating leading with a first irradiance and following with a second irradiance, different than the first. An asymmetrically shaped beam having an asymmetrical spatial profile along the direction of travel, multiple passes of a beam adjusted to have different irradiance levels, and multiple laser beams having various irradiance levels may be utilized to ablate at least a mask with the first irradiance and expose the substrate with the second irradiance.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventor: James M. HOLDEN
  • Publication number: 20120322234
    Abstract: Methods of dicing substrates by both laser scribing and plasma etching. A method includes forming an in-situ mask with a plasma etch chamber by accumulating a thickness of plasma deposited polymer to protect IC bump surfaces from a subsequent plasma etch. Second mask materials, such as a water soluble mask material may be utilized along with the plasma deposited polymer. At least some portion of the mask is patterned with a femtosecond laser scribing process to provide a patterned mask with trenches. The patterning exposing regions of the substrate between the ICs in which the substrate is plasma etched to singulate the IC and the water soluble material layer washed off.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Madhava Rao YALAMANCHILI, Wei-Sheng LEI, Brad EATON, Saravjeet SINGH, Ajay KUMAR, Banqiu WU
  • Publication number: 20120322235
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask is composed of a layer covering and protecting the integrated circuits. The mask is patterned with a galvanic laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Wei-Sheng Lei, Saravjeet Singh, Madhava Rao Yalamanchili, Brad Eaton, Ajay Kumar
  • Publication number: 20120322242
    Abstract: Methods of dicing substrates by both laser scribing and plasma etching. A method includes laser ablating material layers, the ablating leading with a first irradiance and following with a second irradiance, lower than the first. Multiple passes of a beam adjusted to have different fluence level or multiple laser beams having various fluence levels may be utilized to ablate mask and IC layers to expose a substrate with the first fluence level and then clean off redeposited materials from the trench bottom with the second fluence level. A laser scribe apparatus employing a beam splitter may provide first and second beams of different fluence from a single laser.
    Type: Application
    Filed: July 11, 2011
    Publication date: December 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Wei-Sheng LEI, Brad EATON, Madhava Rao YALAMANCHILI, Saravjeet SINGH, Ajay KUMAR, James M. HOLDEN
  • Publication number: 20120322233
    Abstract: Methods of dicing substrates having a plurality of ICs. A method includes forming a mask comprising a water soluble material layer over the semiconductor substrate. The mask is patterned with a femtosecond laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the substrate between the ICs. The substrate is then etched through the gaps in the patterned mask to singulate the IC and the water soluble material layer washed off.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Wei-Sheng LEI, Saravjeet SINGH, Madhava Rao Yalamanchili, Brad EATON, Ajay KUMAR
  • Publication number: 20120322236
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask is composed of a layer covering and protecting the integrated circuits. The mask is patterned with a pulse train laser scribing process using multiple-pulse bursts to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to singulate the integrated circuits.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Wei-Sheng Lei, Saravjeet Singh, Madhava Rao Yalamanchili, Brad Eaton, Ajay Kumar
  • Publication number: 20120322237
    Abstract: Methods of dicing semiconductor wafers, each wafer having a plurality of integrated circuits, are described. A method includes forming a mask above the semiconductor wafer. The mask covers and protects the integrated circuits. The mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the semiconductor wafer between the integrated circuits. The semiconductor wafer is then etched through the gaps in the patterned mask to form singulated integrated circuits. The patterned mask is then separated from the singulated integrated circuits.
    Type: Application
    Filed: June 15, 2011
    Publication date: December 20, 2012
    Inventors: Wei-Sheng Lei, Saravjeet Singh, Madhava Rao Yalamanchili, Brad Eaton, Ajay Kumar
  • Patent number: 8333005
    Abstract: A method is disclosed for the fabrication of a tunable radio frequency (RF) power output filter that includes fabricating a core body and then forming a plastically deformable metallic shell over the exterior surface of the core body.
    Type: Grant
    Filed: July 29, 2010
    Date of Patent: December 18, 2012
    Inventors: James Thomas LaGrotta, Richard T. LaGrotta
  • Publication number: 20120314994
    Abstract: An enhanced 3D integration structure comprises a logic microprocessor chip bonded to a collection of vertically stacked memory slices and an optional set of outer vertical slices comprising optoelectronic devices. Such a device enables both high memory content in close proximity to the logic circuits and a high bandwidth for logic to memory communication. Additionally, the provision of optoelectronic devices in the outer slices of the vertical slice stack enables high bandwidth direct communication between logic processor chips on adjacent enhanced 3D modules mounted next to each other or on adjacent packaging substrates. A method to fabricate such structures comprises using a template assembly which enables wafer format processing of vertical slice stacks.
    Type: Application
    Filed: August 14, 2012
    Publication date: December 13, 2012
    Applicant: International Business Machines Corporation
    Inventors: Evan G. Colgan, Sampath Purushothaman
  • Patent number: 8329496
    Abstract: Provided herein are methods of scribing a solar cell structure to create isolated solar cells. The methods involve scanning and high frequency dithering of a laser beam across a solar cell structure such that the beam creates a stepped scribed line profile. In certain embodiments, a structure including an absorber layer sandwich between two contact layers is provided. The scanned dithered laser beam ablates all of these layers on one part of the scribe line while the back contact layer on another part of the scribe line, leaving an exposed back contact layer. The scribe electrically isolates solar cell structures on either side of the scribe line from each other, while providing a contact point to the back contact layer of one of solar cell structure for subsequent cell-cell interconnection.
    Type: Grant
    Filed: October 14, 2010
    Date of Patent: December 11, 2012
    Assignee: MIASOLE
    Inventor: Osman Ghandour
  • Patent number: 8329360
    Abstract: Provided is an apparatus that includes an overlay mark. The overlay mark includes a first portion that includes a plurality of first features. Each of the first features have a first dimension measured in a first direction and a second dimension measured in a second direction that is approximately perpendicular to the first direction. The second dimension is greater than the first dimension. The overlay mark also includes a second portion that includes a plurality of second features. Each of the second features have a third dimension measured in the first direction and a fourth dimension measured in the second direction. The fourth dimension is less than the third dimension. At least one of the second features is partially surrounded by the plurality of first features in both the first and second directions.
    Type: Grant
    Filed: December 4, 2009
    Date of Patent: December 11, 2012
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Guo-Tsai Huang, Fu-Jye Liang, Li-Jui Chen, Chih-Ming Ke
  • Patent number: 8329560
    Abstract: Disclosed are a laser processing apparatus and method that can effectively remove a low-k material formed on a wafer. A laser processing apparatus of the invention is a laser processing apparatus that processes a subject on which a low-k material is formed. The laser processing apparatus includes a laser generating unit that emits a laser beam; and an optical system that splits the laser beam emitted from the laser generating unit into two and irradiates the split laser beams onto the subject In this case, the optical system includes a pair of condensing lenses in which cut surfaces that are cut at a predetermined distance from central axes to be parallel to the central axes contact with each other, and the interval between the two split laser beams is the same as the interval between two edges of the low-k material in a removal subject region.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: December 11, 2012
    Assignee: EO Technics Co., Ltd.
    Inventors: Dong Jun Lee, Jung Rae Park, Hak Yong Lee, Young Hoon Kwon
  • Patent number: 8329561
    Abstract: A method of producing a semiconductor device includes: a dicing step of dicing a wafer member using a dicing blade to form a cut portion in the wafer member, in which the wafer member is formed of a wafer portion, a glass substrate, and an adhesive layer for bonding the wafer portion and the glass substrate in a thickness direction of the wafer member so that the cut portion penetrates the wafer portion and the adhesive layer and reaches a part of the glass substrate; and an individual piece dividing step of dividing the wafer member into a plurality of semiconductor devices with the cut portion as a fracture initiation portion.
    Type: Grant
    Filed: March 17, 2010
    Date of Patent: December 11, 2012
    Assignee: Oki Semiconductor Co., Ltd.
    Inventor: Yoshihiro Saeki
  • Patent number: 8329562
    Abstract: Various embodiments of the present invention include a semiconductor device and a fabrication method therefor, the semiconductor device including a first semiconductor chip disposed on a substrate, a first sealing resin sealing the first semiconductor chip, a built-in semiconductor device disposed on the first sealing resin, and a second sealing resin sealing the first sealing resin and the built-in semiconductor device and covering a side surface of the substrate. According to an aspect of the present invention, it is possible to provide a high-quality semiconductor device and a fabrication method therefor, in which downsizing and cost reduction can be realized.
    Type: Grant
    Filed: December 10, 2010
    Date of Patent: December 11, 2012
    Assignee: Spansion LLC
    Inventors: Masanori Onodera, Kouichi Meguro, Junji Tanaka
  • Publication number: 20120309169
    Abstract: A processing method for a wafer on which a plurality of devices are formed and partitioned by scheduled division lines includes a dividing groove by irradiating a laser beam of a wavelength to which the wafer has absorbency along the scheduled division lines to form dividing grooves which are to be used as start points of division. An external force divides the wafer into individual devices. The dividing grooves are formed by irradiating a laser beam of a first energy which is comparatively low upon a selected scheduled division line to form a first dividing groove which is to be used as a start point of division, and irradiating another laser beam of a second energy which is higher than the first energy upon scheduled division lines other than the selected scheduled division line to form second dividing grooves which are to be used as start points of division.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 6, 2012
    Applicant: DISCO CORPORATION
    Inventor: Tomohiro Endo
  • Publication number: 20120309168
    Abstract: A processing method for a wafer which has, on a surface thereof, a device region in which a plurality of devices are formed and partitioned by division lines and an outer periphery excess region surrounding the device region, includes a dividing groove formation step of irradiating a laser beam of a wavelength having absorbability by a wafer along the division lines to form dividing grooves serving as start points of cutting, and a dividing step of applying external force to the wafer on which the dividing grooves are formed to cut the wafer into the individual devices. At the dividing groove formation step, the dividing grooves are formed along the division lines in the device region while a non-processed region is left in the outer periphery excess region on extension lines of the division lines.
    Type: Application
    Filed: May 30, 2012
    Publication date: December 6, 2012
    Applicant: DISCO CORPORATION
    Inventor: Tomohiro Endo
  • Publication number: 20120306056
    Abstract: A semiconductor wafer (100) having a regular pattern of predetermined separation lanes (102) is provided, wherein the predetermined separation lanes (102) are configured in such a way that the semiconductor wafer is singularizable along the regular pattern.
    Type: Application
    Filed: May 17, 2012
    Publication date: December 6, 2012
    Applicant: NXP B.V.
    Inventors: Florian Schmitt, Heimo Scheucher, Michael Ziesmann
  • Patent number: 8324636
    Abstract: A method of manufacturing a light-emitting device using laser scribing to improve overall light output is disclosed. Upon placing a semiconductor wafer having light emitting diode (“LED”) devices separated by streets on a wafer chuck, the process arranges a first surface of semiconductor wafer containing front sides of the LED devices facing up and a second surface of semiconductor wafer containing back sides of the LED devices facing toward the wafer chuck. After aligning a laser device over the first surface of the semiconductor wafer above a street, the process is configured to focus a high intensity portion of a laser beam generated by the laser device at a location in a substrate closer to the back sides of the LED devices.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: December 4, 2012
    Assignee: Bridgelux, Inc.
    Inventors: Norihito Hamaguchi, Ghulam Hasnain
  • Patent number: 8324082
    Abstract: A method for fabricating a conductive substrate for an electronic device includes the steps of providing a semiconductor substrate; forming a plurality of grooves part way through the semiconductor substrate; filling the grooves with a polymer insulating material to form a plurality of polymer filled grooves; thinning the substrate from the back side to expose the polymer filled grooves; and singulating the semiconductor substrate into a plurality of conductive substrates. An optoelectronic device includes a conductive substrate; a polymer filled groove configured to separate the conductive substrate into a first semiconductor substrate and a second semiconductor substrate; a first front side electrode on the first semiconductor substrate and a second front side electrode on the second semiconductor substrate; and a light emitting diode (LED) chip on the first semiconductor substrate in electrical communication with the first front side electrode and with the second front side electrode.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: December 4, 2012
    Assignee: SemiLEDS OPTOELECTRONICS Co., Ltd.
    Inventors: Wen-Huang Liu, Yung-Wei Chen
  • Patent number: RE43877
    Abstract: A preprocessed semiconductor substrate such as a wafer is provided with a metal etch mask which defines singulation channels on the substrate surface. An isotropic etch process is used to define a singulation channel with a first depth extending into the semiconductor substrate material. A second anisotropic etch process is used to increase the depth of the singulation channel while providing substantially vertical singulation channel sidewalls. The singulation channel can be extended through the depth of the substrate or, in an alternative embodiment, a predetermined portion of the inactive surface of the substrate removed to expose the singulation channels. In this manner, semiconductor die can be precisely singulated from a wafer while maintaining vertical die sidewalls.
    Type: Grant
    Filed: February 25, 2010
    Date of Patent: December 25, 2012
    Assignee: Aprolase Development Co., LLC
    Inventors: David Ludwig, James Yamaguchi, Stewart Clark, W. Eric Boyd
  • Patent number: RE43909
    Abstract: A semiconductor device includes an alignment mark which is arranged adjacent to each corner of a semiconductor chip, and a plug which contacts the alignment mark. The alignment mark is formed by part of the uppermost interconnection layer in a multilevel interconnection which is formed on the semiconductor chip and obtained by stacking low-permittivity insulating layers and interconnection layers. The plug is buried in a contact hole formed in the low-permittivity insulating layer below the alignment mark, and contacts the alignment mark.
    Type: Grant
    Filed: April 17, 2009
    Date of Patent: January 8, 2013
    Assignee: Kabushiki Kaisha Toshiba
    Inventor: Hidetoshi Koike