Chemically Responsive Patents (Class 438/49)
  • Patent number: 10120409
    Abstract: Techniques for bonding structural features together in an enclosure of an electronic device are disclosed. A structural feature may be ultrasonically soldered to the enclosure to provide structural support and form a magnetic circuit within the device. Also, ultrasonic welding can bond various features to an interior region of the enclosure without leaving a mark or trace to an exterior region of the enclosure in a location corresponding to the various features. Further, one or more features can be actuated against the enclosure to bond the one or more features by friction welding. In addition, a rotational friction welding machine can rotate a feature having a relatively small diameter at relatively high speeds against the enclosure to drive the feature into the enclosure and frictionally weld the feature with the enclosure. Also, the friction welding does not leave any an appearance of cosmetic deformation on the exterior region.
    Type: Grant
    Filed: May 20, 2016
    Date of Patent: November 6, 2018
    Assignee: APPLE INC.
    Inventors: Steven J. Osborne, Joss N. Giddings, Adam T. Garelli, William F. Leggett, Sarah J. Montplaisir, Eric T. Corriveau, Tyler J. Ewing
  • Patent number: 10032788
    Abstract: A semiconductor memory device according to an embodiment includes a semiconductor layer, a control gate electrode, and an organic molecular layer provided between the semiconductor layer and the control gate electrode, and the organic molecular layer having an organic molecule that includes a molecular structure described by a molecular formula (1):
    Type: Grant
    Filed: March 9, 2016
    Date of Patent: July 24, 2018
    Assignee: TOSHIBA MEMORY CORPORATION
    Inventors: Shigeki Hattori, Masaya Terai, Hideyuki Nishizawa, Koji Asakawa
  • Patent number: 10032550
    Abstract: A haptic actuator features magnets coupled to an enclosure and a movable mass with a conduction loop coupled to the enclosure via one or more movement elastic members. One or more conduction elastic members may be used to transmit signals to the conduction loop to cause the movable mass to move bilinearly relative to the enclosure and the magnets. The magnets may consist of a Halbach array to direct magnetic flux toward the conduction loop and away from other device components. Ferrofluid may be included between one or more of the magnets and the conduction loop to act as a damper in the system to improve haptic feedback. Closed loop control, such as back EMF, capacitive sensing, and magnetic sensing, may be included to improve system response.
    Type: Grant
    Filed: March 30, 2017
    Date of Patent: July 24, 2018
    Assignee: APPLE INC.
    Inventors: Zhipeng Zhang, Richard H. Koch
  • Patent number: 9852919
    Abstract: A method of manufacturing a sensor, the method including forming an array of chemically-sensitive field effect transistors (chemFETs), depositing a dielectric layer over the chemFETs in the array, depositing a protective layer over the dielectric layer, etching the dielectric layer and the protective layer to form cavities corresponding to sensing surfaces of the chemFETs, and removing the protective layer. The method further includes, etching the dielectric layer and the protective layer together to form cavities corresponding to sensing surfaces of the chemFETs. The protective layer is at least one of a polymer, photoresist material, noble metal, copper oxide, and zinc oxide. The protective protective layer is removed using at least one of sodium hydroxide, organic solvent, aqua regia, ammonium carbonate, hydrochloric acid, acetic acid, and phosphoric acid.
    Type: Grant
    Filed: April 1, 2015
    Date of Patent: December 26, 2017
    Assignee: LIFE TECHNOLOGIES CORPORATION
    Inventors: Christina E. Inman, Alexander Mastroianni, Wolfgang Hinz, Shifeng Li, Scott C. Benson
  • Patent number: 9778808
    Abstract: A touch panel and a method for manufacturing the same, where the touch panel includes: a substrate; a first sensing electrode pattern disposed on the insulation substrate, including a plurality of first sensing electrodes, a first connection to connect the plurality of first sensing electrodes in a first direction, and a plurality of floating electrodes; and a second sensing electrode pattern including a plurality of second sensing electrodes insulated from the plurality of floating electrodes and overlapping the plurality of floating electrodes and a second connection to connect the plurality of second sensing electrodes in a second direction perpendicular to the first direction. The first sensing electrode pattern includes nanowire. The second sensing electrode pattern includes a transparent conductive material.
    Type: Grant
    Filed: October 15, 2014
    Date of Patent: October 3, 2017
    Assignee: Samsung Display Co., Ltd.
    Inventors: Joo-Han Bae, Jin Hwan Kim, Hee Woong Park, Byeong Kyu Jeon
  • Patent number: 9748506
    Abstract: One example includes a semiconductor device. The semiconductor device include a carbon nanotube substrate, a self-assembled monolayer, and a gate oxide. The self-assembled monolayer overlies the carbon nanotube substrate and is comprised of molecules each including a tail group, a carbon backbone, and a head group. The gate oxide overlies the self-assembled monolayer, wherein the self-assembled monolayer forms an interface between the carbon nanotube substrate and the gate oxide.
    Type: Grant
    Filed: November 1, 2016
    Date of Patent: August 29, 2017
    Assignee: Northrop Grumman Systems Corporation
    Inventors: James T. Kelliher, Monica P. Lilly, Robert S. Howell, Wayne Stephen Miller, Patrick B. Shea, Matthew J. Walker, William J. Sweet
  • Patent number: 9417209
    Abstract: The present disclosure provides a biological field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET includes a microwells having a sensing layer, a top metal stack under the sensing layer, and a multi-layer interconnect (MLI) under the top metal stack. The top metal stack includes a top metal and a protective layer over and peripherally surrounding the top metal.
    Type: Grant
    Filed: May 4, 2015
    Date of Patent: August 16, 2016
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Cheng Shen, Yi-Hsien Chang, Shih-Wei Lin, Chun-Ren Cheng
  • Patent number: 9341656
    Abstract: Nanosensors including graphene and methods of manufacturing the same. A nanosensor includes a first insulating layer in which a first nanopore is formed; a graphene layer that is disposed on the first insulating layer and having a second nanopore or a nanogap formed therein adjacent to the first nanopore; and a marker element that is disposed adjacent to the graphene layer and identifies a position of the graphene layer.
    Type: Grant
    Filed: March 18, 2013
    Date of Patent: May 17, 2016
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Tae-han Jeon, Joo-ho Lee, Jeo-young Shim, Dong-ho Lee, Kun-sun Eom, Hee-jeong Jeong
  • Patent number: 9166066
    Abstract: A micromechanical sensor apparatus having a movable gate includes a field effect transistor that has a movable gate, which is separated from a channel region by a cavity. The channel region is covered by a gate insulation layer.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: October 20, 2015
    Assignee: Robert Bosch GmbH
    Inventor: Ando Feyh
  • Patent number: 9142857
    Abstract: Disclosed are an apparatus for harvesting/storing piezoelectric energy, including: a substrate having a groove at a side thereon; a piezoelectric MEMS cantilever having an end fixed to the substrate and the other end floating above the groove, and configured to convert and store an external vibration into electric energy; and a mass formed at one end of the piezoelectric MEMS cantilever and configured to apply a vibration, and a manufacturing method thereof.
    Type: Grant
    Filed: August 27, 2012
    Date of Patent: September 22, 2015
    Assignee: ELECTRONICS AND TELECOMMUNICATIONS RESEARCH INSTITUTE
    Inventors: Sang Kyun Lee, Yil Suk Yang
  • Patent number: 9059135
    Abstract: Nanochannel sensors and methods for constructing nanochannel sensors. An example method includes forming a sacrificial line on an insulating layer, forming a dielectric layer, etching a pair of electrode trenches, forming a pair of electrodes, and removing the sacrificial line to form a nanochannel. The dielectric layer may be formed on insulating layer and around the sacrificial line. The pair of electrode trenches may be etched in the dielectric layer on opposite sides of the sacrificial line. The pair of electrodes may be formed by filling the electrode trenches with electrode material. The sacrificial line may be removed by forming a nanochannel between the at least one pair of electrodes.
    Type: Grant
    Filed: August 18, 2013
    Date of Patent: June 16, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jingwei Bai, Evan G. Colgan, Christopher V. Jahnes, Stanislav Polonsky
  • Publication number: 20150140716
    Abstract: A technique is provided for manufacturing a nanogap in a nanodevice. An oxide is disposed on a wafer. A nanowire is disposed on the oxide. A helium ion beam is applied to cut the nanowire into a first nanowire part and a second nanowire part which forms the nanogap in the nanodevice. Applying the helium ion beam to cut the nanogap forms a signature of nanowire material in proximity to at least one opening of the nano gap.
    Type: Application
    Filed: January 28, 2015
    Publication date: May 21, 2015
    Inventors: Yann Astier, Jingwei Bai, Michael A. Guillorn, Satyavolu S. Papa Rao, Joshua T. Smith
  • Publication number: 20150137836
    Abstract: Disclosed is a metal oxide semiconductor gas sensor having a nanostructure, the metal oxide semiconductor gas sensor including: a substrate; a first electrode formed on the substrate; a gas sensing layer provided on the first electrode, made of a metal oxide semiconductor which has a nanostructure and of which electrical conductivity changes when the metal oxide semiconductor reacts with gas to be sensed, and formed by oblique angle deposition; a second electrode formed on the metal oxide semiconductor; and a control unit for measuring the electrical conductivity of the gas sensing layer to sense the gas by applying a predetermined amount of current through the first and the second electrodes.
    Type: Application
    Filed: June 18, 2012
    Publication date: May 21, 2015
    Applicant: POSTECH ACADEMY-INDUSTRY FOUNDATION
    Inventors: Jong Kyu Kim, Hyun Ah Kwon, Sun Yong Hwang
  • Publication number: 20150137275
    Abstract: The present invention relates to a method for decreasing the impedance of a titanium nitride element for use in an electrode component. The method comprises obtaining a titanium nitride element and hydrothermally treating the titanium nitride element by immersing the titanium nitride element in a liquid comprising water while heating said liquid.
    Type: Application
    Filed: November 17, 2014
    Publication date: May 21, 2015
    Applicant: IMEC VZW
    Inventor: Silke Musa
  • Publication number: 20150137189
    Abstract: Disclosed herein are methods of preparing and using doped MWNT electrodes, sensors and field-effect transistors. Devices incorporating doped MWNT electrodes, sensors and field-effect transistors are also disclosed.
    Type: Application
    Filed: November 6, 2014
    Publication date: May 21, 2015
    Inventors: Salvatore J. PACE, Piu Francis MAN, Ajeeta Pradip PATIL, Kah Fatt TAN
  • Patent number: 9034678
    Abstract: A BioMEMS microelectromechanical apparatus and for fabricating the same is disclosed. A substrate is provided with at least one signal conduit formed on the substrate. A sacrificial layer of sacrificial material may be deposited on the signal conduit and optionally patterned to remove sacrificial material from outside the packaging covered area. A bonding layer may be deposited on at least a portion of the signal conduit and on the sacrificial layer when included. The bonding layer may be planarized and patterned to form one or more cap bonding pads and define a packaging covered area. A cap may be bonded on the cap bonding pad to define a capped area and so that the signal conduit extends from outside the capped area to inside the capped area. Additionally, a test material such as a fluid may be provided within the capped area.
    Type: Grant
    Filed: July 28, 2014
    Date of Patent: May 19, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Allen Timothy Chang, Yi-Shao Liu, Ching-Ray Chen, Chun-Ren Cheng
  • Patent number: 9035362
    Abstract: A Sensor for sensing the presence of at least one fluidum in a space adjoining the sensor is disclosed. In one aspect, the sensor has a two-dimensional electron gas (2DEG) layer stack, a gate electrode overlaying at least part of the 2DEG layer stack for electrostatically controlling electron density of a 2DEG in the 2DEG layer stack and a source and a drain electrode contacting the 2DEG layer stack for electrically contacting the 2DEG, wherein a detection opening is provided in between the gate electrode and the 2DEG layer stack and wherein the detection opening communicates with the space through a detection opening inlet such that molecules of the fluidum can move from the adjoining space through the detection opening inlet into the detection opening where they can measurably alter a electric characteristic of the 2DEG.
    Type: Grant
    Filed: June 4, 2013
    Date of Patent: May 19, 2015
    Assignee: Stichting IMEC Nederland
    Inventors: Peter Offermans, Roman Vitushinsky, Mercedes Crego Calama, Sywert Brongersma
  • Publication number: 20150129937
    Abstract: One or more semiconductor devices and array arrangements and methods of formation are provided. A semiconductor device includes an ion sensing device and a heating element proximate the ion sensing device. The ion sensing device has an active region, including a source, a drain, and a channel, the channel situated between the source and the drain. The ion sensing device also has an ion sensing film situated over the channel, and an ion sensing region over the ion sensing film. Responsive to a temperature sensed by a thermal sensor proximate the ion sensing device, the heating element is selectively activated to alter a temperature of the ion sensing region to promote desired operation of the semiconductor device, such as to function as a bio sensor. Multiple semiconductor devices can be formed into an array.
    Type: Application
    Filed: November 14, 2013
    Publication date: May 14, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: Tung-Tsun Chen, Jui-Cheng Huang, Chin-Hua Wen, Chun-wen Hung Cheng, Yi-Shao Jonathan Liu
  • Patent number: 9023674
    Abstract: The present disclosure provides a biological field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET includes a microwells having a sensing layer, a top metal stack under the sensing layer, and a multi-layer interconnect (MLI) under the top metal stack. The top metal stack includes a top metal and a protective layer over and peripherally surrounding the top metal.
    Type: Grant
    Filed: September 20, 2013
    Date of Patent: May 5, 2015
    Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.
    Inventors: Wei-Cheng Shen, Yi-Hsien Chang, Shih-Wei Lin, Chun-Ren Cheng
  • Publication number: 20150115227
    Abstract: An organic electrochemical transistor (OECT) that may be used as a biosensor is built up by layers applied to a monofilament. A first conducting layer applied to the monofilament includes generally cylindrical source and drain contacts with a gap therebetween. An electro-active layer of an organic material altering its electrical conductivity through a change in redox state is in electrical contact with the source and drain contacts, and has a transistor channel interface for contacting an electrolyte. A gate electrode is spaced apart from the first monofilament, and may comprise a cylindrical layer built up on another length of monofilament.
    Type: Application
    Filed: October 30, 2013
    Publication date: April 30, 2015
    Applicant: The Hong Kong Polytechnic University
    Inventors: Feng Yan, Caizhi Liao
  • Publication number: 20150118111
    Abstract: A semiconductor sensor device includes a substrate, a non-suitable seed layer located above the substrate, at least one electrode located above the non-suitable seed layer, and a porous sensing layer supported directly by the non-suitable seed layer and in electrical communication with the at least one electrode, the porous sensing layer defining a plurality of grain boundaries formed by spaced-apart nucleation on the non-suitable seed layer using atomic layer deposition.
    Type: Application
    Filed: October 30, 2014
    Publication date: April 30, 2015
    Inventors: Ashwin K. Samarao, Gary O'Brien, Ando Feyh, Fabian Purkl, Gary Yama
  • Patent number: 9018684
    Abstract: Methods for fabricating silicon nanowire chemical sensing devices, devices thus obtained, and methods for utilizing devices for sensing and measuring chemical concentration of selected species in a fluid are described. Devices may comprise a metal-oxide-semiconductor field-effect transistor (MOSFET) structure.
    Type: Grant
    Filed: November 22, 2010
    Date of Patent: April 28, 2015
    Assignee: California Institute of Technology
    Inventors: Andrew P. Homyk, Michael D. Henry, Axel Scherer, Sameer Walavalkar
  • Patent number: 9012962
    Abstract: A sensor element is described that includes at least one semiconductor component having a gas-sensitive layer which is attached to a substrate by the flip-chip method, the gas-sensitive layer facing the substrate and a supply arrangement being provided to supply a gas to be examined to the gas-sensitive layer. The semiconductor component is enclosed in a casing. Also described is a method for manufacturing the sensor element, in which a semiconductor component having a gas-sensitive layer is attached by the flip-chip method to a substrate in such a way that the gas-sensitive layer faces the substrate. After that, the casing is applied by a plasma sputtering method, in particular an atmospheric plasma sputtering method. Finally, a use of the sensor element in the exhaust system of an internal combustion engine is also described.
    Type: Grant
    Filed: May 4, 2009
    Date of Patent: April 21, 2015
    Assignee: Robert Bosch GmbH
    Inventors: Stefan Henneck, Ralf Schmidt
  • Patent number: 9011779
    Abstract: Described is a personal device and methods for measuring the concentration of an analyte in a sample of gas. The device and method may utilize a chemically selective sensor element with low power consumption integrated with circuitry that enables wireless communication between the sensor and any suitable electronic readout such as a smartphone, tablet, or computer. In preferred form, the sensor circuitry relies upon the quantum capacitance effect of graphene as a transduction mechanism. Also in preferred form, the device and method employ the functionalization of the graphene-based sensor to determine the concentration of ethanol in exhaled breath.
    Type: Grant
    Filed: July 18, 2014
    Date of Patent: April 21, 2015
    Assignee: Andas Inc.
    Inventors: Timothy Clay Anglin, Jr., Timothy D. Bemer, Joseph C. Jensen
  • Patent number: 9007206
    Abstract: A patch panel is provided including a patch panel frame, an indicator module connected to the patch panel frame, a microcontroller unit (MCU), a connector connected to the patch panel frame and a detection device for detecting a connection state at the connector. A circuit board interface is provided with a communication path between the indicator module and the MCU and between the detection device and the MCU. A communication unit is connected to the circuit board interface. The communication unit conveys signals between any one of patch panels of a group, between groups of patch panels, between the patch panel and a control unit and between the group of patch panels and the control unit.
    Type: Grant
    Filed: December 23, 2010
    Date of Patent: April 14, 2015
    Assignee: Surtec Industries, Inc.
    Inventor: Chou-Hsin Chen
  • Patent number: 9006014
    Abstract: A method for fabricating three dimensional high surface electrodes is described. The methods including the steps: designing the pillars; selecting a material for the formation of the pillars; patterning the material; transferring the pattern to form the pillars; insulating the pillars and providing a metal layer for increased conductivity. Alternative methods for fabrication of the electrodes and fabrication of the electrodes using CMOS are also described.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: April 14, 2015
    Assignee: California Institute of Technology
    Inventors: Muhammad Mujeeb-U-Rahman, Axel Scherer
  • Publication number: 20150097214
    Abstract: Structures, apparatuses, and methods are provided for fabricating a semiconductor device structure. An example semiconductor device structure includes a first substrate, a first device layer, a second device layer and a third device layer. The first device layer may be on the first substrate and include a switch. The second device layer may be on the first device layer and include a sensing device. The third device layer may include one or more inter-level connection structures configured to electrically connect the switch to the sensing device. The switch may be configured to be electrically turned on in response to a selection signal. The sensing device may be configured to generate an output signal in response to the switch being turned on.
    Type: Application
    Filed: October 9, 2013
    Publication date: April 9, 2015
    Applicant: Taiwan Semiconductor Manufacturing Company Limited
    Inventors: TUNG-TSUN CHEN, JUI-CHENG HUANG
  • Patent number: 8999739
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Grant
    Filed: August 13, 2013
    Date of Patent: April 7, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Publication number: 20150093849
    Abstract: Integrated circuits for a single-molecule nucleic-acid assay platform, and methods for making such circuits are disclosed. In one example, a method includes transferring one or more carbon nanotubes to a complementary metal-oxide semiconductor (CMOS) substrate, and forming a pair of post-processed electrodes on the substrate proximate opposing ends of the one or more carbon nanotubes.
    Type: Application
    Filed: October 8, 2014
    Publication date: April 2, 2015
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: Kenneth L. Shepard, Steven Warren
  • Patent number: 8994077
    Abstract: An apparatus comprises: a sensing element formed on a buried oxide layer of a substrate and providing communication between a source region and a drain region; a gate dielectric layer on the sensing element, the gate dielectric layer defining a sensing surface on the sensing element; a passive surface surrounding the sensing surface; and a compound bound to the sensing surface and not bound to the passive surface, the compound having a ligand specifically configured to preferentially bind a target molecule to be sensed. An electrolyte solution in contact with the sensing surface and the passive surface forms a top gate of the apparatus.
    Type: Grant
    Filed: December 21, 2012
    Date of Patent: March 31, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Christopher P. D'Emic, Ashish Jagtiani, Sufi Zafar
  • Publication number: 20150084099
    Abstract: The present disclosure provides a biological field effect transistor (BioFET) and a method of fabricating a BioFET device. The method includes forming a BioFET using one or more process steps compatible with or typical to a complementary metal-oxide-semiconductor (CMOS) process. The BioFET includes a microwells having a sensing layer, a top metal stack under the sensing layer, and a multi-layer interconnect (MLI) under the top metal stack. The top metal stack includes a top metal and a protective layer over and peripherally surrounding the top metal.
    Type: Application
    Filed: September 20, 2013
    Publication date: March 26, 2015
    Applicant: TAIWAN SEMICONDUCTOR MANUFACTURING COMPANY, LTD.
    Inventors: Wei-Cheng Shen, Yi-Hsien Chang, Shih-Wei Lin, Chun-Ren Cheng
  • Publication number: 20150084100
    Abstract: Disclosed is an integrated circuit (100) comprising a semiconductor substrate (110) carrying a plurality of circuit elements (111); and a carbon dioxide sensor (120) over said semiconductor substrate, said sensor comprising a pair of electrodes (122, 124) laterally separated from each other; and a carbon dioxide (CO2) permeable polymer matrix (128) at least partially covering the pair of electrodes, said matrix encapsulating a liquid (126) comprising an organic alcohol and an organic amidine or guanidine base. A composition for forming such a CO2 sensor on the IC and a method of manufacturing such an IC are also disclosed.
    Type: Application
    Filed: September 4, 2014
    Publication date: March 26, 2015
    Inventors: Rafael Sablong, Aurelie Humbert, Bjorn Tuerlings, Cornelis Bastiaansen, Dirk Gravesteijn, Dimitri Soccol, Jan Kolijn
  • Patent number: 8986525
    Abstract: A device for sensing a property of a fluid comprising a first substrate having formed thereon a sensor configured in use to come into contact with a fluid in order to sense a property of the fluid, and a wireless transmitter for transmitting data over a wireless data link and a second substrate having formed thereon a wireless receiver for receiving data transmitted over said wireless link by said wireless transmitter. The first substrate is fixed to or within said second substrate. Additionally or alternatively, the device comprises a first substrate defining one or more microfluidic structures for receiving a fluid to be sensed and a second substrate comprising or having attached thereto a multiplicity of fluid sensors, the number of sensors being greater than the number of microfluidic structures.
    Type: Grant
    Filed: August 6, 2010
    Date of Patent: March 24, 2015
    Assignee: DNA Electronics Limited
    Inventors: Sam Reed, Pantelakis Georgiou, Timothy G. Constandinou
  • Publication number: 20150076567
    Abstract: Embodiments include a method for securing a membrane material to a gate of a molecular receptor-based chemical field-effect transistor (CHEMFET). The method can include casting a membrane material onto an exposed region of the gate, curing the membrane material, placing the CHEMFET into a mold, inserting a single application of impervious electrically insulative resin into the mold, and securing edges of the membrane material by the single application of the impervious electrically insulative resin, thereby physically preventing lifting off of the membrane material from the gate. Embodiments include a sensor module. The sensor module can include a CHEMFET, an amplifier circuit, one or more sensor pins for contacting field ground soil, a data logger, and a wireless transceiver, among other components.
    Type: Application
    Filed: September 17, 2014
    Publication date: March 19, 2015
    Inventors: Calden Carroll Stimpson, Jordan Richard Kusiek
  • Publication number: 20150079704
    Abstract: The present disclosure relates to a micro-fluidic probe card that deposits a fluidic chemical onto a substrate with a minimal amount of fluidic chemical waste, and an associated method of operation. In some embodiments, the micro-fluidic probe card has a probe card body with a first side and a second side. A sealant element, which contacts a substrate, is connected to the second side of the probe card body in a manner that forms a cavity within an interior of the sealant element. A fluid inlet, which provides a fluid from a processing tool to the cavity, is a first conduit extending between the first side and the second side of the probe card body. A fluid outlet, which removes the fluid from the cavity, is a second conduit extending between the first side and the second side of the probe card body.
    Type: Application
    Filed: September 16, 2013
    Publication date: March 19, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Chun-Wen Cheng, Jung-Huei Peng, Yi-Shao Liu, Fei-Lung Lai, Shang-Ying Tsai
  • Patent number: 8980666
    Abstract: Some embodiments relate to method of fabricating a sensor. The method includes providing a substrate wafer that includes a suspended beam; adding an adhesive layer to the substrate wafer such that the adhesive layer covers portions of the substrate without covering the suspended beam; positioning a cover wafer onto the adhesive layer such that the suspend beam is exposed to ambient air through openings in the cover wafer; and functionalizing the suspended beam by contacting the suspended beam with materials through the opening in the cover wafer.
    Type: Grant
    Filed: December 1, 2011
    Date of Patent: March 17, 2015
    Assignee: Honeywell Romania s.r.l.
    Inventor: Cornel P. Cobianu
  • Patent number: 8980667
    Abstract: A method for forming a sensor includes forming a base-region barrier in contact with a base substrate. The base-region barrier includes a monocrystalline semiconductor having a same dopant conductivity as the base substrate. An emitter and a collector are formed in contact with and on opposite sides of the base-region barrier to form a bipolar junction transistor. The collector, the emitter and the base-region barrier are planarized to form a level surface opposite the base substrate such that when the level surface is exposed to charge, the charge is measured during operation of the bipolar junction transistor.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: March 17, 2015
    Assignee: International Business Machines Corporation
    Inventors: Jin Cai, Tak H. Ning, Jeng-Bang Yau, Sufi Zafar
  • Publication number: 20150069329
    Abstract: Provided are a nanopore device with resolution improved by graphene nanopores, and a method of manufacturing the same. The nanopore device includes: a first insulating layer; a graphene layer disposed on the first insulating layer and having a nanopore formed at a center portion of the graphene layer; and first and second electrode layers disposed respectively at both sides of the nanopore on a top surface of the graphene layer, wherein a center region of the first insulating layer is removed such that the center portion of the graphene layer is exposed to the outside.
    Type: Application
    Filed: April 21, 2014
    Publication date: March 12, 2015
    Applicant: Samsung Electronics Co., Ltd.
    Inventors: Tae-han JEON, Jeo-young SHIM, Kun-sun EOM, Dong-ho LEE, Joo-ho LEE
  • Publication number: 20150072868
    Abstract: A device includes at least one nanoscale capillary and means for applying an electric voltage, said means being adapted to create an electric field at least in said capillary when said electric voltage is applied, so that, when said electric voltage is applied, a charged molecule or particle placed within the created electric field can be electrically controlled. A fluidic network structure includes the at least one nanoscale capillary. A method of using and manufacturing the fluidic network structure is also described.
    Type: Application
    Filed: April 16, 2013
    Publication date: March 12, 2015
    Applicant: QUNANO AB
    Inventors: Jonas Ohlsson, Mikael Bjork
  • Publication number: 20150060952
    Abstract: The present disclosure provides an improved field effect transistor and device that can be used to sense and characterize a variety of materials. The field effect transistor and/or device including the transistor may be used for a variety of applications, including genome sequencing, protein sequencing, biomolecular sequencing, and detection of ions, molecules, chemicals, biomolecules, metal atoms, polymers, nanoparticles and the like.
    Type: Application
    Filed: April 9, 2013
    Publication date: March 5, 2015
    Inventors: Bharath Takulapalli, Abhinav Jain
  • Publication number: 20150064829
    Abstract: In one implementation, a chemical sensor is described. The chemical sensor includes chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A dielectric material defines an opening extending to the upper surface of the floating gate conductor. A conductive sidewall spacer is on a sidewall of the opening and contacts the upper surface of the floating gate conductor.
    Type: Application
    Filed: November 17, 2014
    Publication date: March 5, 2015
    Inventors: Keith G. FIFE, James BUSTILLO, Jordan OWENS
  • Publication number: 20150060953
    Abstract: In a method for manufacturing an ion-sensitive structure for an ion-sensitive sensor, first a semiconductor substrate bearing an oxide layer is provided, whereupon a metal oxide layer and a metal layer are deposited and tempered, in order to obtain a layer sequence having a crystallized metal oxide layer and an oxidized and crystallized metal layer on the semiconductor substrate bearing the oxide layer. In such case, the metal oxide layer and the metal layer have a compatible metal element, and the coating thickness dMOX of the metal oxide layer is greater than the coating thickness dMET of the metal layer.
    Type: Application
    Filed: August 20, 2014
    Publication date: March 5, 2015
    Inventors: Christian Kunath, Eberhard Kurth, Torsten Pechstein
  • Patent number: 8969118
    Abstract: A mechanism is provided for base recognition of an integrated transistor and nanochannel. A target molecule is forced down to a carbon nanotube a single base at a time in the nanochannel by applying a gate voltage to a top electrode, and/or a narrow thickness of the nanochannel. The nanochannel exposes an exposed portion of the carbon nanotube at a bottom wall, and the top electrode is positioned over the exposed portion. The exposed portion of the carbon nanotube is smaller than the distance between bases to only accommodate the single base at a time. The target molecule is stretched by the narrow thickness and by applying a traverse voltage across a length direction of the nanochannel. The target molecule is frictionally restricted by the narrow thickness of the nanochannel to stretch is restrictedly translocates in the length direction. Current is measured to determine an identity of the single base.
    Type: Grant
    Filed: August 20, 2013
    Date of Patent: March 3, 2015
    Assignee: International Business Machines Corporation
    Inventors: Ali Afzali-Ardakani, Gustavo A. Stolovitzky, Deqiang Wang
  • Publication number: 20150056732
    Abstract: Solid state nanopore devices for nanopore applications and methods of manufacture are disclosed herein. The method includes forming a membrane layer on an underlying substrate. The method further includes forming a hole in the membrane layer. The method further comprises plugging the hole with a sacrificial material. The method further includes forming a membrane over the sacrificial material. The method further includes removing the sacrificial material within the hole and portions of the underlying substrate. The method further includes drilling an opening in the membrane, aligned with the hole.
    Type: Application
    Filed: August 26, 2013
    Publication date: February 26, 2015
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Yann ASTIER, Jingwei BAI, Satyavolu PAPA RAO, Kathleen REUTER, Joshua T. SMITH
  • Publication number: 20150053925
    Abstract: The present disclosure relates to a top-down method of forming a nanowire structure extending between source and drain regions of a nanowire transistor device, and an associated apparatus. In some embodiments, the method provides a substrate having a device layer disposed over a first dielectric layer. The device layer has a source region and a drain region separated by a device material. The first dielectric layer has an embedded gate structure abutting the device layer. One or more masking layers are selectively formed over the device layer to define a nanowire structure. The device layer is then selectively etched according to the one or more masking layers to form a nanowire structure at a position between the source region and the drain region. By forming the nanowire structure through a masking and etch process, the nanowire structure is automatically connected to the source and drain regions.
    Type: Application
    Filed: August 23, 2013
    Publication date: February 26, 2015
    Applicant: Taiwan Semiconductor Manufacturing Co., Ltd.
    Inventors: Yi-Shao Liu, Fei-Lung Lai, Chun-Wen Cheng
  • Patent number: 8962366
    Abstract: In one implementation, a chemical detection device is described. The device includes a chemically-sensitive field effect transistor including a floating gate conductor coupled to a gate dielectric and having an upper surface, and a sensing material on the upper surface. The device also includes a fill material defining a reaction region extending above the sensing material, the reaction region overlying and substantially aligned with the floating gate conductor.
    Type: Grant
    Filed: January 28, 2013
    Date of Patent: February 24, 2015
    Assignee: Life Technologies Corporation
    Inventors: Jonathan Putnam, Shifeng Li
  • Patent number: 8963216
    Abstract: In one implementation, a chemical sensor is described. The chemical sensor includes chemically-sensitive field effect transistor including a floating gate conductor having an upper surface. A dielectric material defines an opening extending to the upper surface of the floating gate conductor. A conductive sidewall spacer is on a sidewall of the opening and contacts the upper surface of the floating gate conductor.
    Type: Grant
    Filed: March 13, 2013
    Date of Patent: February 24, 2015
    Assignee: Life Technologies Corporation
    Inventors: Keith Fife, James Bustillo, Jordan Owens
  • Publication number: 20150047430
    Abstract: An integrated humidity sensor includes at least one measuring capacitor and one humidity-sensitive polymer as a dielectric that is also suited for use in a dirty, i.e., particle-laden measurement environment. The measuring capacitor of the humidity sensor is in the form of a plate capacitor in the layered structure of the sensor element, the outer of two electrodes being located at the surface of the layered structure. Disposed between the two electrodes of the measuring capacitor is a humidity-sensitive polymer layer that is in direct contact with the measurement environment via humidity-permeable paths in the outer electrode of the measuring capacitor. These humidity-permeable paths extend from the surface of sensor element to the polymer layer, and are so small in lateral extent that they do not significantly affect the electrical conductivity within the outer electrode.
    Type: Application
    Filed: October 4, 2012
    Publication date: February 19, 2015
    Inventor: Tim Benzel
  • Patent number: 8957460
    Abstract: The invention provides a semiconductor device for the detection of an active site-containing protein or a ligand thereof in a solution, said device comprising at least one insulating or semi-insulating layer; at least one conducting semiconductor layer, two conducting pads on top of the upper layer making electrical contact with said at least one conducting semiconductor layer, such that electrical current can flow between them at a finite distance from the surface of the device; a protective molecular layer fabricated on top of said upper layer and protecting said layer from corrosion; and said ligand or active site-containing protein linked to said protective molecular layer. Exposure of said ligand or active site-containing protein to a solution containing said active site-containing protein or ligand, respectively, causes a current change through the device when a constant electric potential is applied between the two conducting pads.
    Type: Grant
    Filed: May 31, 2012
    Date of Patent: February 17, 2015
    Assignee: Yeda Research and Development Co. Ltd.
    Inventors: Ron Naaman, Eyal Capua, Danny Bavli, Maria Tkachev
  • Publication number: 20150041315
    Abstract: Disclosed herein are processes and devices for use in the electrochemical detection of a target in a sample. For example, silicon or glass surfaces are treated with silanes functionalized with various side chains to tune the surface wetting characteristics.
    Type: Application
    Filed: August 7, 2014
    Publication date: February 12, 2015
    Inventors: Graham D. Jack, Ryan B. Hayman