Particulate Semiconductor Component Patents (Class 438/63)
  • Patent number: 9209019
    Abstract: Methods and systems to manufacture a semi-conducting backplane are described. According to one set of implementations, semi-conducting particles are positioned in a supporting material of the semi-conducting backplane utilizing perforations in the supporting material or perforations in a removable support member upon which the semi-conducting backplane is constructed. For example, semi-conducting particles are deposited in perforations on a supporting member such that a portion of the semi-conducting particles protrudes from the supporting member. Suction is applied to the semi-conducting particles to retain the semi-conducting particles in the perforations and a layer of encapsulant material is applied onto the supporting member to cover the protruding portion. The supporting member is then removed from the semi-conducting particles and the layer of encapsulant material, which together form an assembly of the semi-conducting particles and the layer of encapsulant material.
    Type: Grant
    Filed: September 5, 2013
    Date of Patent: December 8, 2015
    Assignee: DIFTEK LASERS, INC.
    Inventor: Douglas R. Dykaar
  • Patent number: 8999742
    Abstract: Small silicon spheres, less than 200 um in diameter, are desirable for use in forming solar panels. To make such small spheres, a large-area glass substrate has etched in its surface millions of identical indentations, such as having diameters less than 200 um. A silicon ink, formed of a fluid containing nanoparticles of milled silicon, is then deposited over the substrate to completely fill the indentations, and the excess ink is removed. The ink is heated to evaporate the fluid and melt the silicon nanoparticles. A photonic system is used to rapidly melt the silicon. The melted silicon forms a sphere in each indentation by surface tension. Since the density of the silicon in the ink and the volume of each indentation are well defined, the volume of each sphere is well defined. The substrates are reusable. Hundreds of millions of spheres may be produced per minute using the process.
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: April 7, 2015
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Mark D. Lowenthal, Tricia A. Youngbull, William J. Ray
  • Publication number: 20150079720
    Abstract: Compositions for solution-based deposition of CIGS films are described. The compositions include ternary, quaternary or quinary chalcogenide nanoparticles (i.e., CIGS nanoparticles) and one or more inorganic salts dissolved or dispersed in a solvent to form an ink. The ink can be deposited on a substrate by conventional coating techniques and then annealed to form a crystalline layer. Further processing can be employed to fabricate a PV device. The inorganic salts are included to (i) tune the stoichiometry of the CIGS precursor ink to a desirable ratio, thus tuning the semiconductor band gap, to (ii) dope the CIGS layer with additives, such as Sb and/or Na, to promote grain growth, and/or to (iii) modify and improve the coating properties of the CIGS precursor ink.
    Type: Application
    Filed: September 8, 2014
    Publication date: March 19, 2015
    Inventors: Zugang Liu, Cary Allen
  • Patent number: 8969107
    Abstract: A method of manufacturing a nano-rod and a method of manufacturing a display substrate in which a seed including a metal oxide is formed. A nano-rod is formed by reacting the seed with a metal precursor in an organic solvent. Therefore, the nano-rod may be easily formed, and a manufacturing reliability of the nano-rod and a display substrate using the nano-rod may be improved.
    Type: Grant
    Filed: March 19, 2012
    Date of Patent: March 3, 2015
    Assignee: Samsung Display Co., Ltd.
    Inventors: Tae-Young Choi, Bo-Sung Kim, Kwang-Yeol Lee, See-Won Kim
  • Publication number: 20150053263
    Abstract: The present invention provides a method for producing a semiconductor laminate including a substrate having formed thereon a silicon layer with small surface unevenness and high continuity. The method of the present invention for producing a semiconductor laminate having a substrate 10 and a sintered silicon particle layer 5 on the substrate includes (a) coating a silicon particle dispersion containing a dispersion medium and silicon particles dispersed in the dispersion medium, on a substrate 10 to form a silicon particle dispersion layer 1, (b) drying the silicon particle dispersion layer 1 to form a green silicon particle layer 2, (c) stacking a light-transmitting layer 3 on the green silicon particle layer, and (d) irradiating the green silicon particle layer 2 with light through the light-transmitting layer 3 to sinter the silicon particles constituting the green silicon particle layer 2, and thereby form a sintered silicon particle layer 5.
    Type: Application
    Filed: March 29, 2013
    Publication date: February 26, 2015
    Applicant: TEIJIN LIMITED
    Inventors: Tetsuya Imamura, Yuka Tomizawa, Yoshinori Ikeda
  • Publication number: 20150053860
    Abstract: An embodiment relates to a method of manufacturing a device comprising a substrate having a front side and a back-side, a nanowire disposed on the back-side and an image sensing circuit disposed on the front side, wherein the nanowire is configured to be both a channel to transmit wavelengths up to a selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the nanowire.
    Type: Application
    Filed: September 30, 2014
    Publication date: February 26, 2015
    Inventors: Peter Duane, Young-June Yu, Munib Wober
  • Patent number: 8952432
    Abstract: Disclosed herein is a solid-state imaging device including a photoelectric conversion element operable to generate electric charge according to the amount of incident light and to accumulate the electric charge in the inside thereof, an electric-charge holding region in which the electric charge generated through photoelectric conversion by the photoelectric conversion element is held until read out, and a transfer gate having a complete transfer path through which the electric charge accumulated in the photoelectric conversion element is completely transferred into the electric-charge holding region, and an intermediate transfer path through which the electric charge generated by the photoelectric conversion element during an exposure period and being in excess of a predetermined charge amount is transferred into the electric-charge holding region. The complete transfer path and the intermediate transfer path are formed in different regions.
    Type: Grant
    Filed: March 17, 2011
    Date of Patent: February 10, 2015
    Assignee: Sony Corporation
    Inventors: Yusuke Oike, Takahiro Kawamura, Shinya Yamakawa, Ikuhiro Yamamura, Takashi Machida, Yasunori Sogoh, Naoki Saka
  • Publication number: 20150024539
    Abstract: The invention relates to a method for preparing a colloidal nanoparticle solution, including: (a) dissolving a titanium-oxide precursor, referred to as a precursor, in one or more solvents, referred to as precursor solvents; and (b) chemically converting, preferably by means of hydrolysis, said titanium-oxide precursor and said precursor solvent into a colloidal-solution solvent so as to form titanium-oxide nanoparticles that are dispersed in the colloidal-solution solvent, said colloidal solution having a dynamic viscosity of between 4 and 54 cP at 20° C. and 101,325 Pa. The invention also relates to a colloidal titanium-oxide nanoparticle solution containing a dispersion of titanium-oxide nanoparticles in a solvent or system of solvents, the viscosity of which is between 4 and 54 cP, said solution being particularly obtainable according to the method of the invention, as well as to the uses thereof, in particular for preparing photovoltaic cells.
    Type: Application
    Filed: September 12, 2012
    Publication date: January 22, 2015
    Applicants: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (C.N.R.S), UNIVERSITE DE NANTES, Commissariat à l'énergie atomique et aux énergies alternatives, ARDEJE
    Inventors: Luc René Roger Brohan, Arkadiusz Michal Karpinski, Mireille Richard-Plouet, Solenn Berson, Stéphane Guillerez, Mickaël Barret, Jérôme Mourao
  • Publication number: 20150017433
    Abstract: The present disclosure explores and fabricates coupled plasmonic nanoparticles of gold (Au), silver (Ag), or aluminum (Al) onto nanorods or nanowires of zinc telluride (ZnTe), silicon (Si), germanium (Ge), or other semiconductor materials. Full-wave simulation is performed to obtain an optimum design for maximum light absorption. The nanorods, after being coated with a shell to form a p-n junction, or being imparted with a radial junction, are of interest for enhanced light harvesting in solar cells, for example. The fabrication method of such arrays is described. Modeling of the spectral properties using equivalent circuit theory is implemented to predict fabrication results and provide an intuitive approach regarding the design of these optical metamaterials with predetermined properties.
    Type: Application
    Filed: July 2, 2014
    Publication date: January 15, 2015
    Applicant: The University Of North Carolina At Charlotte
    Inventors: Hossein ALISAFAEE, Michael Anthony Fiddy
  • Publication number: 20150004736
    Abstract: An exemplary method of manufacturing a light-absorbing layer and a method of manufacturing a semiconductor device including the same light-absorbing layer are provided. The exemplary method includes: forming a nanoparticles film by applying a semiconductor nanoparticles solution on a substrate; thermally treating the nanoparticles film at least one time to cause adhesion among the nanoparticles; and forming a light-absorbing layer by applying a light-absorbing solution on the nanoparticles film.
    Type: Application
    Filed: January 7, 2014
    Publication date: January 1, 2015
    Applicant: SNU R&DB FOUNDATION
    Inventors: Changhee LEE, Kookheon CHAR, Seonghoon LEE, Donggu LEE, Jaehoon LIM, Jiyun SONG
  • Patent number: 8889457
    Abstract: Compositions having a dispersion of nano-particles therein and methods of fabricating compositions having a dispersion of nano-particles therein are described. In an example, a method of forming a composition having a dispersion of nano-particles therein includes forming a mixture of semiconductor nano-particles and discrete prepolymer molecules. A polymer matrix is formed from the discrete prepolymer molecules. The polymer matrix includes a dispersion of the semiconductor nano-particles therein. In another example, a composition includes a medium including discrete prepolymer molecules. The medium is a liquid at 25 degrees Celsius. A plurality of semiconductor nano-particles is suspended in the medium.
    Type: Grant
    Filed: December 13, 2012
    Date of Patent: November 18, 2014
    Assignee: Pacific Light Technologies Corp.
    Inventors: Juanita N. Kurtin, Georgeta Masson
  • Publication number: 20140306182
    Abstract: A solid-state imaging device includes a first electrode, a second electrode disposed opposing to the first electrode, and a photoelectric conversion layer, which is disposed between the first electrode and the second electrode and in which narrow gap semiconductor quantum dots are dispersed in a conductive layer, wherein one electrode of the first electrode and the second electrode is formed from a transparent electrode and the other electrode is formed from a metal electrode or a transparent electrode.
    Type: Application
    Filed: June 26, 2014
    Publication date: October 16, 2014
    Inventor: Atsushi Toda
  • Publication number: 20140295609
    Abstract: Methods of fabricating solar cell emitter regions using silicon nano-particles and the resulting solar cells are described. In an example, a method of fabricating an emitter region of a solar cell includes forming a region of doped silicon nano-particles above a dielectric layer disposed above a surface of a substrate of the solar cell. A layer of silicon is formed on the region of doped silicon nano-particles. At least a portion of the layer of silicon is mixed with at least a portion of the region of doped silicon nano-particles to form a doped polycrystalline silicon layer disposed on the dielectric layer.
    Type: Application
    Filed: June 12, 2014
    Publication date: October 2, 2014
    Inventors: Paul Loscutoff, David D. Smith, Michael Morse, Ann Waldhauer, Taeseok Kim, Steven Edward Molesa
  • Publication number: 20140252305
    Abstract: Semiconducting quantum dots are applied to a fluid. The quantum dots are configured to absorb visible or near infrared light and re-radiate infrared energy that excites a fundamental vibration frequency of the fluid.
    Type: Application
    Filed: March 5, 2013
    Publication date: September 11, 2014
    Applicant: THE BOEING COMPANY
    Inventor: Minas H. Tanielian
  • Patent number: 8829337
    Abstract: Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications in space, commercial, residential, and industrial applications.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: September 9, 2014
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut Kumar Dutta
  • Patent number: 8791359
    Abstract: Novel structures of photovoltaic cells (also called as solar cells) are provided. The cells are based on nanoparticles or nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators, and may be metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications such as in space, commercial, residential and industrial applications.
    Type: Grant
    Filed: January 24, 2007
    Date of Patent: July 29, 2014
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut Kumar Dutta
  • Patent number: 8786060
    Abstract: A semiconductor package includes a substrate, a semiconductor die, a package body, an electromagnetic interference shield, a dielectric structure and an antenna element. The substrate comprises a grounding segment and a feeding point. The semiconductor die is disposed on the substrate. The package body encapsulates the semiconductor die. The electromagnetic interference shield is formed on the package body. The dielectric structure encapsulates the electromagnetic interference shield. The antenna element is formed on the dielectric structure and electrically connecting the grounding segment of the substrate and the feeding point.
    Type: Grant
    Filed: May 4, 2012
    Date of Patent: July 22, 2014
    Assignee: Advanced Semiconductor Engineering, Inc.
    Inventors: Han-Chee Yen, Chi-Sheng Chung, Kuo-Hsien Liao, Yung-I Yeh
  • Patent number: 8785233
    Abstract: Methods of fabricating solar cell emitter regions using silicon nano-particles and the resulting solar cells are described. In an example, a method of fabricating an emitter region of a solar cell includes forming a region of doped silicon nano-particles above a dielectric layer disposed above a surface of a substrate of the solar cell. A layer of silicon is formed on the region of doped silicon nano-particles. At least a portion of the layer of silicon is mixed with at least a portion of the region of doped silicon nano-particles to form a doped polycrystalline silicon layer disposed on the dielectric layer.
    Type: Grant
    Filed: December 19, 2012
    Date of Patent: July 22, 2014
    Assignee: SunPower Corporation
    Inventors: Paul Loscutoff, David D. Smith, Michael Morse, Ann Waldhauer, Taeseok Kim, Steven Edward Molesa
  • Patent number: 8772098
    Abstract: An apparatus comprises at least one transistor. The at least one transistor comprises a substrate, a graphene layer formed on the substrate, and first and second source/drain regions spaced apart relative to one another on the substrate. The graphene layer comprises at least a first portion and a second portion, the first portion being in contact with the first source/drain region and the second portion being in contact with the second source/drain region. One or more cuts are formed in at least one of the first and second portions of the graphene layer. The apparatus allows for lowered contact resistance in graphene/metal contacts.
    Type: Grant
    Filed: June 15, 2012
    Date of Patent: July 8, 2014
    Assignee: International Business Machines Corporation
    Inventors: Christos D. Dimitrakopoulos, Aaron D. Franklin, Joshua T. Smith
  • Publication number: 20140182666
    Abstract: Quantum dot-sensitized solar cell and manufacturing method thereof are provided. The proposed quantum dot-sensitized solar cell has a counter electrode with a PbS thin-film layer and a polysulfide electrolyte contacting the PbS thin-film layer.
    Type: Application
    Filed: July 12, 2013
    Publication date: July 3, 2014
    Inventors: Hsisheng Teng, Cheng-Yu Lin, Tzung-Luen Li, Chiao-Yi Teng
  • Patent number: 8759137
    Abstract: An image sensor device includes a substrate including a light sensing region therein and a reflective structure on a first surface of the substrate over the light sensing region. An interconnection structure having a lower reflectivity than the reflective structure is provided on the first surface of the substrate adjacent to the reflective structure. A microlens is provided on a second surface of the substrate opposite the first surface. The microlens is configured to direct incident light to the light sensing region, and the reflective structure is configured to reflect portions of the incident light that pass through the light sensing region back toward the light sensing region. Related devices and fabrication methods are also discussed.
    Type: Grant
    Filed: June 14, 2013
    Date of Patent: June 24, 2014
    Assignee: Samsung Electronics Co., Ltd.
    Inventor: Byung-Jun Park
  • Patent number: 8753916
    Abstract: The invention described herein provides for thin films and methods of making comprising inorganic semiconductor-nanocrystals dispersed in semiconducting-polymers in high loading amounts. The invention also describes photovoltaic devices incorporating the thin films.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: June 17, 2014
    Assignee: The Regents of The University of California
    Inventors: A. Paul Alivisatos, Janke J. Dittmer, Wendy U. Huynh, Delia Milliron
  • Publication number: 20140138689
    Abstract: A photoelectric conversion material is disclosed in the present invention and comprises at least a cone material. The cone material is composed of an isomer and comprises a plurality of grains. The sizes of the grains are arranged from smaller ones to larger ones along a direction. In the meantime, a method for fabricating the above photoelectric conversion material is also disclosed here. The method comprises the following steps. First, a precursor is provided. The precursor comprises at least a cone material and the cone material is a multilayer structured material, such as sodium titanate and potassium titanate, formed by stacking first materials and second materials. And then, the precursor is annealed to let the second materials leave from the cone material, and the cone material becomes the above photoelectric conversion material with a plurality of grains.
    Type: Application
    Filed: March 7, 2013
    Publication date: May 22, 2014
    Applicant: NATIONAL TSING HUA UNIVERSITY
    Inventor: National Tsing Hua University
  • Patent number: 8728848
    Abstract: A method for forming, on an organic semiconductor layer, an electrical contact layer comprising a metal, is disclosed. In one aspect, the method includes providing a charge collecting barrier layer on the organic semiconductor layer, providing a liquid composition comprising a precursor for the metal on the charge collecting barrier layer, and performing a sintering process. The charge collecting barrier layer is substantially impermeable to the components of the liquid composition.
    Type: Grant
    Filed: May 12, 2011
    Date of Patent: May 20, 2014
    Assignees: IMEC, Katholieke Universiteit Leuven R&D
    Inventor: Claudio Girotto
  • Patent number: 8686408
    Abstract: A photoelectric conversion device is provided and includes: a first electrode, a second electrode, and a photoelectric conversion layer between the first and second electrodes, the photoelectric conversion layer containing a mixture of an organic photoelectric conversion dye, a fullerene or a fullerene derivative, and a fullerene polymer; various embodiments of the device, a photosensor, an imaging device, and production methods for these devices.
    Type: Grant
    Filed: February 24, 2011
    Date of Patent: April 1, 2014
    Assignee: FUJIFILM Corporation
    Inventors: Katsuyuki Yofu, Daigo Sawaki
  • Publication number: 20140051201
    Abstract: A method of texturing a surface of a crystalline silicon substrate is provided. The method includes immersing a crystalline silicon substrate into an aqueous alkaline etchant solution to form a pyramid shaped textured surface, with (111) faces exposed, on the crystalline silicon substrate. The aqueous alkaline etchant solution employed in the method of the present disclosure includes an alkaline component and a nanoparticle slurry component. Specifically, the aqueous alkaline etchant solution of the present disclosure includes 0.5 weight percent to 5 weight percent of an alkaline component and from 0.1 weight percent to 5 weight percent of a nanoparticle slurry on a dry basis.
    Type: Application
    Filed: October 22, 2013
    Publication date: February 20, 2014
    Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Mahadevaiyer Krishnan, Jun Liu, Satyavolu S. Papa Rao, George G. Totir
  • Patent number: 8649483
    Abstract: A method is described for producing a grating, in particular an absorption grating, having a grating constant of less than 100 ?m, by using a solution of superparamagnetic colloidal nanocrystal clusters (CNCs), a solvent liquid and a photocurable resin, with the following steps: —alignment of the CNCs in the solution by an external magnetic field, —exposure of the solution, so that the resin is cured and grating structures of an intended grating constant are formed, and —removal of the magnetic field.
    Type: Grant
    Filed: July 18, 2011
    Date of Patent: February 11, 2014
    Assignee: Siemens Aktiengesellschaft
    Inventor: Martin Hoheisel
  • Patent number: 8642455
    Abstract: Methods and devices are provided for transforming non-planar or planar precursor materials in an appropriate vehicle under the appropriate conditions to create dispersions of planar particles with stoichiometric ratios of elements equal to that of the feedstock or precursor materials, even after selective forces settling. In particular, planar particles disperse more easily, form much denser coatings (or form coatings with more interparticle contact area), and anneal into fused, dense films at a lower temperature and/or time than their counterparts made from spherical nanoparticles. These planar particles may be nanoflakes that have a high aspect ratio. The resulting dense films formed from nanoflakes are particularly useful in forming photovoltaic devices.
    Type: Grant
    Filed: April 19, 2010
    Date of Patent: February 4, 2014
    Inventors: Matthew R. Robinson, Jeroen K. J. Van Duren, Craig Leidholm, Brian M. Sager
  • Patent number: 8643027
    Abstract: Small particle compositions including nanoparticle compositions are provided. The particle compositions, in some cases, are characterized by having an extremely small average particle size (e.g., 150 nanometers or less). The small particles may comprise a semiconductor material and/or a light-emitting material. In some embodiments, the particles may be in the form a preferred shape including platelets, amongst others. The small particle compositions may be produced in a milling process. In some embodiments, the milling process uses preferred types of grinding media to form milled particles having desired characteristics (e.g., particle size, shape). The small (or nano) particle compositions may be used in a variety of different applications including light-emitting applications. In certain applications, it may be desirable to form thin films from the small particle compositions.
    Type: Grant
    Filed: December 6, 2006
    Date of Patent: February 4, 2014
    Assignee: Primet Precision Materials, Inc.
    Inventors: Archit Lal, Robert J. Dobbs
  • Patent number: 8629347
    Abstract: Novel structures of photovoltaic cells (also known as solar cells) are provided. The Cells are based on the nanometer-scaled wire, tubes, and/or rods, which are made of the electronics materials covering semiconductors, insulator or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells can have also high radiation tolerant capability. These cells will have enormous applications such as in space, in commercial, residential and industrial applications.
    Type: Grant
    Filed: September 30, 2012
    Date of Patent: January 14, 2014
    Assignee: Banpil Photonics, Inc.
    Inventors: Nobuhiko P. Kobayashi, Achyut K. Dutta
  • Patent number: 8624107
    Abstract: Novel structures of photovoltaic cells (also known as solar cells) are provided. The Cells are based on the nanometer-scaled wire, tubes, and/or rods, which are made of the electronics materials covering semiconductors, insulator or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells can have also high radiation tolerant capability. These cells will have enormous applications such as in space, in commercial, residential and industrial applications.
    Type: Grant
    Filed: September 30, 2012
    Date of Patent: January 7, 2014
    Assignee: Banpil Photonics, Inc.
    Inventors: Nobuhiko P. Kobayashi, Achyut K. Dutta
  • Patent number: 8624108
    Abstract: Novel structures of photovoltaic cells (also treated as solar cells) are provided. The cells are based on nanometer-scaled wires, tubes, and/or rods, which are made of electronic materials covering semiconductors, insulators or metallic in structure. These photovoltaic cells have large power generation capability per unit physical area over the conventional cells. These cells will have enormous applications in space, commercial, residential, and industrial applications.
    Type: Grant
    Filed: October 8, 2012
    Date of Patent: January 7, 2014
    Assignee: Banpil Photonics, Inc.
    Inventor: Achyut K. Dutta
  • Patent number: 8614393
    Abstract: A new photovoltaic (PV) cell structure, prepared on transparent substrate with transparent conductive oxide (TCO) layer and having nanorod zinc oxide layer. The cell has a thin conductive layer of doped zinc oxide deposited on the nanorod zinc oxide layer, an extremely thin blocking layer of titanium oxide or indium sulfide on the thin conductive layer, a buffer layer of indium sulfide on the extremely thin blocking layer, an absorber layer, comprising copper indium disulfide on said buffer layer and one electrode attached to the transparent conductive oxide layer and a second electrode attached to the absorber layer. Also, a method of preparing a zinc oxide nanorod PV cell entirely by chemical spray pyrolysis is disclosed. Efficiency up to 3.9% is achieved by simple continuous non-vacuum process.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: December 24, 2013
    Assignee: Tallinn University of Technology
    Inventors: Malle Krunks, Atanas Katerski, Tatjana Dedova, Arvo Mere, Ilona Oja Acik
  • Patent number: 8610232
    Abstract: An hyperspectral imaging device comprising semiconductor nanocrystals is provided.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: December 17, 2013
    Assignee: QD Vision, Inc.
    Inventors: Seth Coe-Sullivan, Gregory V. Moeller
  • Patent number: 8592676
    Abstract: A solar cell in which an n-type fine silicon particle film is formed in a lamination layer on the surface of a transparent substrate via a transparent electrode, and the n-type fine silicon particle film is covalently bound to the transparent electrode via the first organic coating formed on the surface of the transparent electrode and the second organic coating formed on the surface of the n-type fine silicon particle film and the n-type fine silicon particle film is covalently bound to the p-type fine silicon particle film via the second organic coating formed on the surface of the n-type fine silicon particle film and the third organic coating formed on the surface of the p-type fine silicon particle film.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: November 26, 2013
    Assignee: Empire Technology Development LLC
    Inventor: Kazufumi Ogawa
  • Patent number: 8569615
    Abstract: Provided are solar cells and methods of forming the same. The solar cell includes an anti-reflection layer on a substrate, a first electrode on the anti-reflection layer, a photo-electro conversion layer on the first electrode, and a second electrode on the photo-electro conversion layer.
    Type: Grant
    Filed: January 27, 2011
    Date of Patent: October 29, 2013
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Mi Hee Jung, Mangu Kang
  • Patent number: 8563346
    Abstract: The present invention provides a method for manufacturing an electrode of a dye-sensitized solar cell using an inkjet printing process, an electrode formed thereby, and a dye-sensitized solar cell having the electrode. According to the method, a metal electrode is formed by jetting an ink solution containing nano metal powder on a transparent substrate or a transparent substrate in which a barrier layer is deposited to improve coating performance of a transparent conductive layer. A transparent conductive layer is formed on the transparent substrate on which the metal electrode is formed. The transparent conductive layer protects the metal electrode from liquid electrolyte.
    Type: Grant
    Filed: May 3, 2011
    Date of Patent: October 22, 2013
    Assignees: Hyundai Motor Company, SolarCeramic Co., Ltd.
    Inventors: Mi Yeon Song, Sang Hak Kim, Yong Jun Jang, Won Jung Kim, Yong Gu Kim, In Woo Song, Chul Kyu Song
  • Patent number: 8563348
    Abstract: A continuous film of desired electrical characteristics is obtained by successively printing and annealing two or more dispersions of prefabricated nanoparticles.
    Type: Grant
    Filed: April 17, 2008
    Date of Patent: October 22, 2013
    Assignee: Nanoco Technologies Ltd.
    Inventors: James Harris, Nigel Pickett
  • Patent number: 8552415
    Abstract: A solid-state imaging device includes a first electrode, a second electrode disposed opposing to the first electrode, and a photoelectric conversion layer, which is disposed between the first electrode and the second electrode and in which narrow gap semiconductor quantum dots are dispersed in a conductive layer, wherein one electrode of the first electrode and the second electrode is formed from a transparent electrode and the other electrode is formed from a metal electrode or a transparent electrode.
    Type: Grant
    Filed: January 25, 2010
    Date of Patent: October 8, 2013
    Assignee: Sony Corporation
    Inventor: Atsushi Toda
  • Patent number: 8551802
    Abstract: A method for forming copper indium gallium (sulfide) selenide (CIGS) solar cells, cadmium telluride (CdTe) solar cells, and copper zinc tin (sulfide) selenide (CZTS) solar cells using laser annealing techniques to anneal the absorber and/or the buffer layers. Laser annealing may result in better crystallinity, lower surface roughness, larger grain size, better compositional homogeneity, a decrease in recombination centers, and increased densification. Additionally, laser annealing may result in the formation of non-equilibrium phases with beneficial results.
    Type: Grant
    Filed: September 12, 2011
    Date of Patent: October 8, 2013
    Assignee: Intermolecular, Inc.
    Inventors: Haifan Liang, Jeroen Van Duren, Zhi-Wen Sun
  • Publication number: 20130255754
    Abstract: An organic/inorganic hybrid photovoltaic device architecture. In some variations, power conversion efficiencies approach 1%. Some variations include an unexpected order of magnitude improvement of power conversion efficiency approaching 5%. Methods of fabricating a photovoltaic device, including depositing over a first electrode an organic semiconductor layer; depositing over the organic semiconductor layer a cross-linking ligand layer; depositing over the cross-linking ligand layer an inorganic nanocrystal layer; and depositing a second electrode over the inorganic nanocrystal layer.
    Type: Application
    Filed: March 29, 2012
    Publication date: October 3, 2013
    Applicant: CAMBRIDGE ENTERPRISE LIMITED
    Inventors: Richard Henry Friend, Neil Clement Greenham, Bruno Ehrler, Brian Walker
  • Patent number: 8546171
    Abstract: Disclosed is a method of fabricating a thin film solar cell. A separation process (‘P4’ process) of insulating a thin film solar cell from the outside is integrally performed with a transparent electrode patterning process (‘P1’ process) and a metallic electrode patterning process (‘P3’ process). This may reduce the fabrication costs and enhance spatial efficiency as the ‘P4’ process and equipment for the ‘P4’ process are not required.
    Type: Grant
    Filed: June 14, 2011
    Date of Patent: October 1, 2013
    Assignee: LG Display Co., Ltd.
    Inventors: Hui-Jae Lee, Jong-Il Kim, Tae-Kung Yu
  • Publication number: 20130240907
    Abstract: An electron multiplier for a system for detecting electromagnetic radiation or an ion flow is disclosed. The multiplier includes at least one active structure intended to receive a flow of incident electrons, and to emit in response a flow of electrons called secondary electrons. The active structure includes a substrate on which is positioned a thin nanodiamond layer formed from diamond particles the average size of which is less than or equal to about 100 nm.
    Type: Application
    Filed: September 9, 2011
    Publication date: September 19, 2013
    Applicant: PHOTONIS FRANCE
    Inventors: Gert Nutzel, Pascal Lavoute, Richard B. Jackman
  • Publication number: 20130244366
    Abstract: The present invention provides of a three-dimensional bicontinuous heterostructure, a method of producing same, and the application of this structure towards the realization of photodetecting and photovoltaic devices working in the visible and the near-infrared. The three-dimensional bicontinuous heterostructure includes two interpenetrating layers which are spatially continuous, they are include only protrusions or peninsulas, and no islands. The method of producing the three-dimensional biocontinuous heterostructure relies on forming an essentially planar continuous bottom layer of a first material; forming a layer of this first material on top of the bottom layer which is textured to produce protrusions for subsequent interpenetration with a second material, coating this second material onto this structure; and forming a final coating with the second material that ensures that only the second material is contacted by subsequent layer.
    Type: Application
    Filed: May 6, 2013
    Publication date: September 19, 2013
    Applicant: InVisage Technologies, Inc.
    Inventors: Edward Sargent, Steven Ashworth McDonald, Shiguo Zhang, Larissa Levina, Gerasimos Konstantatos, Paul Cyr
  • Patent number: 8530995
    Abstract: A high operating temperature split-off band infrared (SPIP) detector having a double and/or graded barrier on either side of the emitter is provided. The photodetector may include a first and second barrier and an emitter disposed between the first and second barriers so as to form a heterojunction at each interface between the emitter and the first and second barriers, respectively. The emitter may be of a first semiconductor material having a split-off response to optical signals, while one of the first or the second barriers may include a double barrier having a light-hole energy band level that is aligned with the split-off band energy level of the emitter. In addition, the remaining barrier may be graded.
    Type: Grant
    Filed: February 3, 2010
    Date of Patent: September 10, 2013
    Assignee: Georgia State University Research Foundation, Inc.
    Inventors: A.G. Unil Perera, Steven G. Matsik
  • Patent number: 8513046
    Abstract: A photoelectric conversion device including a single crystal silicon substrate; a first amorphous silicon layer in contact with a surface (a light-receiving surface) of the single crystal silicon substrate; a first polarity (p-type) impurity diffusion layer in contact with the first amorphous silicon layer; a second amorphous silicon layer in contact with a back surface of the single crystal silicon substrate; and a second polarity (n-type) impurity diffusion layer in contact with the second amorphous silicon layer, in which the first and second polarity impurity diffusion layers are microcrystalline silicon layers formed under a deposition condition where a pressure in a reaction chamber is adjusted to be greater than or equal to 450 Pa and less than or equal to 10000 Pa is provided.
    Type: Grant
    Filed: October 4, 2011
    Date of Patent: August 20, 2013
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Yoshikazu Hiura, Fumito Isaka
  • Patent number: 8507307
    Abstract: The present invention relates to devices, particularly photovoltaic devices, incorporating Group IIB/VA semiconductors such phosphides, arsenides, and/or antimonides of one or more of Zn and/or Cd. In particular, the present invention relates to methodologies, resultant products, and precursors thereof in which electronic performance of the semiconductor material is improved by causing the Group IIB/VA semiconductor material to react with at least one metal-containing species (hereinafter co-reactive species) that is sufficiently co-reactive with at least one Group VA species incorporated into the Group IIB/VA semiconductor as a lattice substituent (recognizing that the same and/or another Group VA species also optionally may be incorporated into the Group IIB/VA semiconductor in other ways, e.g., as a dopant or the like).
    Type: Grant
    Filed: June 15, 2011
    Date of Patent: August 13, 2013
    Assignees: Dow Global Technologies LLC, California Institute of Technology
    Inventors: Gregory M. Kimball, Marty W. DeGroot, Nathan S. Lewis, Harry A. Atwater
  • Patent number: 8486747
    Abstract: Proposed is the backside silicon photovoltaic cell and method for forming backside selective emitters, backside doped base contact regions, backside field-induced emitters, FSF-regions, and contacts to the functional regions of a backside solar cell by essentially electrical means and without conventional thermal diffusion and masking processes. The process includes forming conductive layers on both sides of an intermediate device structure, performing Joule heating by passing electrical current through the backside conductive layers thus forming the selective emitters, the base contact regions, and contacts to the functional regions. The obtained structure is then subjected to pulse electrical treatment by applying a voltage pulse or pulses between the front and back conductive layers to form the field-induced emitter and the field-induced FSF. After the conductive layers are removed, a final solar cell is obtained.
    Type: Grant
    Filed: April 17, 2012
    Date of Patent: July 16, 2013
    Inventor: Boris Gilman
  • Patent number: 8476616
    Abstract: A composite material is described. The composite material comprises semiconductor nanocrystals, and organic molecules that passivate the surfaces of the semiconductor nanocrystals. One or more properties of the organic molecules facilitate the transfer of charge between the semiconductor nanocrystals. A semiconductor material is described that comprises p-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of electrons in the semiconductor material being greater than or equal to a mobility of holes. A semiconductor material is described that comprises n-type semiconductor material including semiconductor nanocrystals. At least one property of the semiconductor material results in a mobility of holes in the semiconductor material being greater than or equal to a mobility of electrons.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: July 2, 2013
    Assignee: InVisage Technologies, Inc.
    Inventors: Edward Hartley Sargent, Ghada Koleilat, Larissa Levina
  • Patent number: RE44629
    Abstract: The present invention involves a method of providing an integrated circuit package having a substrate with a vent opening. The integrated circuit package includes a substrate having an opening and an integrated circuit mounted to the substrate. An underfill material is dispensed between the substrate and the integrated circuit.
    Type: Grant
    Filed: November 30, 2004
    Date of Patent: December 10, 2013
    Assignee: Intel Corporation
    Inventors: Suresh Ramalingam, Nagesh Vodrahalli, Michael J. Costello, Mun Leong Loke, Ravi V. Mahajan