Silicide Patents (Class 438/755)
-
Publication number: 20140363944Abstract: A method for cleaning residues from a semiconductor substrate during a nickel platinum silicidation process is disclosed, including a multi-step residue cleaning, including exposing the substrate to an aqua regia solution, followed by an exposure to a solution having hydrochloric acid and hydrogen peroxide. The SC2 solution can further react with remaining platinum residues, rendering it more soluble in an aqueous solution and thereby dissolving it from the surface of the substrate.Type: ApplicationFiled: July 17, 2014Publication date: December 11, 2014Inventors: Anh Duong, Clemens Fitz, Olov Karlsson
-
Patent number: 8895426Abstract: A gate-last method for forming a metal gate transistor is provided. The method includes forming an opening within a dielectric material over a substrate. A gate dielectric structure is formed within the opening and over the substrate. A work function metallic layer is formed within the opening and over the gate dielectric structure. A silicide structure is formed over the work function metallic layer.Type: GrantFiled: May 20, 2010Date of Patent: November 25, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Jeff J. Xu
-
Patent number: 8835316Abstract: The disclosure provides a transistor, a method for manufacturing the transistor, and a semiconductor chip comprising the transistor. The transistor comprises: an active area, a gate stack, a primary spacer, and source/drain regions, wherein the active area is on a semiconductor substrate; the gate stack, the primary spacer, and the source/drain regions are on the active area; the primary spacer surrounds the gate stack; the source/drain regions are embedded in the active area and self-aligned with opposite sides of the primary spacer. Wherein the transistor further comprises: a silicide spacer, wherein the silicide spacer is located at opposite sides of the primary spacer, and a dielectric material is filled between the two ends of the silicide spacer in the width direction of the gate stack, so as to isolate the source/drain regions from each other.Type: GrantFiled: August 9, 2011Date of Patent: September 16, 2014Assignee: Institute of Microelectronics, Chinese Academy of SciencesInventors: Haizhou Yin, Jun Luo, Huilong Zhu, Zhijiong Luo
-
Patent number: 8679973Abstract: The method of manufacturing the semiconductor device comprises forming a transistor including a gate electrode and a source/drain diffused layer over a semiconductor substrate, forming a nickel platinum film over the semiconductor substrate, covering the gate electrode and the source/drain diffused layer, making a first thermal processing to react the nickel platinum film with the source/drain diffused layer to form a nickel platinum silicide film, and removing an unreacted part of the nickel platinum film using a chemical liquid of 71° C. or more containing hydrogen peroxide.Type: GrantFiled: October 11, 2007Date of Patent: March 25, 2014Assignee: Fujitsu Semiconductor LimitedInventors: Shinichi Akiyama, Kazuo Kawamura, Masanori Uchida
-
Patent number: 8563429Abstract: Methods of forming a metal silicide layer are provided that include exposing polysilicon through just dry etching (JDE) and recessesing an oxide layer through chemical dry etching (CDE). In particular, dry etching is primarily performed to an extent to expose the polysilicon. Then, CDE is secondarily performed to expose the polysilicon. The CDE process includes selecting an etchant source among combinations of NF3 and NH3, HF and NH3, and N2, H2, and NF3, dissociating the etchant source, forming an etchant of NH4F and NH4F.HF through the dissociation, producing solid by-products of (NH4)2SiF6 through the reaction between the etchant and an oxide at a low temperature, and annealing the by-products at a high temperature such that the by-products are sublimated into gas-phase SiF4, NH3, and HF.Type: GrantFiled: February 12, 2010Date of Patent: October 22, 2013Assignee: Samsung Electronics Co., Ltd.Inventors: Won-Goo Hur, Kyu-Tae Na, Min Kim, Hyun-Young Kim, Je-Hyeon Park
-
Patent number: 8492286Abstract: Embodiment of the present invention provides a method of forming electronic fuse or commonly known as e-fuse. The method includes forming a polysilicon structure and a field-effect-transistor (FET) structure together on top of a common semiconductor substrate, the FET structure having a sacrificial gate electrode; implanting at least one dopant into the polysilicon structure to create a doped polysilicon layer in at least a top portion of the polysilicon structure; subjecting the polysilicon structure and the FET structure to a reactive-ion-etching (RIE) process, the RIE process selectively removing the sacrificial gate electrode of the FET structure while the doped polysilicon layer being substantially unaffected by the RIE process; and converting the polysilicon structure including the doped polysilicon layer into a silicide to form the electronic fuse.Type: GrantFiled: November 22, 2010Date of Patent: July 23, 2013Assignee: International Business Machines CorporationInventors: Henry K. Utomo, Ying Li, Gerald L. Leake
-
Patent number: 8470707Abstract: A process for forming an integrated circuit with reduced sidewall spacers to enable improved silicide formation between minimum spaced transistor gates. A process for forming an integrated circuit with reduced sidewall spacers by first forming sidewall spacer by etching a sidewall dielectric and stopping on an etch stop layer, implanting source and drain dopants self aligned to the sidewall spacers, followed by removing a portion of the sidewall dielectric and removing the etch stop layer self aligned to the reduced sidewall spacers prior to forming silicide.Type: GrantFiled: November 2, 2011Date of Patent: June 25, 2013Assignee: Texas Instruments IncorporatedInventors: Weize Xiong, Deborah J. Riley
-
Patent number: 8466064Abstract: A system, method, and layout for a semiconductor integrated circuit device allows for improved scaling down of various back-end structures, which can include contacts and other metal interconnection structures. The resulting structures can include a semiconductor substrate, a buried diffusion region formed on the semiconductor substrate, and at least one of a silicide film, for example tungsten silicide (WSix), and a self-aligned silicide (salicide) film, for example cobalt silicide (CoSi) and/or nickel silicide (NiSi), above the buried diffusion (BD) layer. The semiconductor integrated circuit can also include a memory gate structure formed over at least a portion of the contact layer.Type: GrantFiled: November 12, 2010Date of Patent: June 18, 2013Assignee: Macronix International Co., Ltd.Inventors: Yu-Fong Huang, Tzung-Ting Han, Wen-Pin Lu
-
Patent number: 8293597Abstract: A method of self-aligned silicidation on structures having high aspect ratios involves depositing a metal oxide film using atomic layer deposition (ALD) and converting the metal oxide film to metal film in order to obtain uniform step coverage. The substrate is then annealed such that the metal in regions directly overlying the patterned and exposed silicon reacts with the silicon to form uniform metal silicide at the desired locations.Type: GrantFiled: April 11, 2011Date of Patent: October 23, 2012Assignee: ASM International N.V.Inventor: Ivo Raaijmakers
-
Patent number: 8263965Abstract: A single-crystal layer of a first semiconductor material including single-crystal nanostructures of a second semiconductor material, the nanostructures being distributed in a regular crystallographic network with a centered tetragonal prism.Type: GrantFiled: January 11, 2011Date of Patent: September 11, 2012Assignees: STMicroelectronics (Crolles 2) SAS, STMicroelectronics S.A.Inventors: Yves Campidelli, Oliver Kermarrec, Daniel Bensahel
-
Patent number: 8257994Abstract: The present invention provides a method for manufacturing a solar cell, including: diffusing p type impurity into at least a portion of a first surface, which is one surface of a silicon substrate, to form a high concentration p type impurity diffusion layer; and etching one of the first surface of the silicon substrate and a second surface of the silicon substrate opposite to the first surface, using as a mask at least one of the high concentration p type impurity diffusion layer and a film formed on the high concentration p type impurity diffusion layer upon forming the high concentration p type impurity diffusion layer.Type: GrantFiled: December 8, 2008Date of Patent: September 4, 2012Assignee: Sharp Kabushiki KaishaInventor: Yasushi Funakoshi
-
Patent number: 8143152Abstract: A semiconductor device 100 includes: a silicon substrate 102; a first gate 114a including a gate electrode 108 formed on the silicon substrate 102 and sidewalls 112 formed on the sidewalls of the gate electrode 108; a silicide layer 132 formed lateral to the sidewalls 112 of the first gate 114a on a surface of the silicon substrate 102; and a contact 164 which overlaps at least partially in plan view with the first gate 114a and reaches to the silicide layer 132 of the surface of the silicon substrate 102; wherein an insulator film is located between the contact 164 and the gate electrode 108 of the first gate 114a.Type: GrantFiled: July 15, 2009Date of Patent: March 27, 2012Assignee: Renesas Electronics CorporationInventor: Masashige Moritoki
-
Patent number: 8030210Abstract: A semiconductor structure includes a semiconductor substrate; a gate dielectric over the semiconductor substrate; a gate electrode over the gate dielectric; a source/drain region adjacent the gate dielectric; a silicide region on the source/drain region; a metal layer on top of, and physical contacting, the silicide region; an inter-layer dielectric (ILD) over the metal layer; and a contact opening in the ILD. The metal layer is exposed through the contact opening. The metal layer further extends under the ILD. The semiconductor structure further includes a contact in the contact opening.Type: GrantFiled: March 11, 2010Date of Patent: October 4, 2011Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ching-Ya Wang, Chung-Hu Ke, Wen-Chin Lee
-
Patent number: 7988876Abstract: To reduce and homogenize the thickness of a semiconductor layer which lies on the surface of an electrically insulating material, the surface of the semiconductor layer is exposed to the action of an etchant whose redox potential is adjusted as a function of the material and the desired final thickness of the semiconductor layer, so that the material erosion per unit time on the surface of the semiconductor layer due to the etchant becomes less as the thickness of the semiconductor layer decreases, and is only from 0 to 10% of the thickness per second when the desired thickness is reached. The method is carried out without the action of light or the application of an external electrical voltage.Type: GrantFiled: January 31, 2008Date of Patent: August 2, 2011Assignee: Siltronic AGInventors: Diego Feijoo, Oliver Riemenschneider, Reinhold Wahlich
-
Patent number: 7977772Abstract: A semiconductor device and system for a hybrid metal fully silicided (FUSI) gate structure is disclosed. The semiconductor system comprises a PMOS gate structure, the PMOS gate structure including a first high-? dielectric layer, a P-metal layer, a mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-? dielectric layer, the P-metal layer and a fully silicided layer formed on the P-metal layer. The semiconductor system further comprises an NMOS gate structure, the NMOS gate structure includes a second high-? dielectric layer, the fully silicided layer, and the mid-gap metal layer, wherein the mid-gap metal layer is formed between the high-? dielectric and the fully silicided layer.Type: GrantFiled: May 11, 2010Date of Patent: July 12, 2011Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Chen-Hua Yu, Cheng-Tung Lin, Cheng-Hung Chang, Hsiang-Yi Wang, Chen-Nan Yeh
-
Patent number: 7927942Abstract: A method of self-aligned silicidation on structures having high aspect ratios involves depositing a metal oxide film using atomic layer deposition (ALD) and converting the metal oxide film to metal film in order to obtain uniform step coverage. The substrate is then annealed such that the metal in regions directly overlying the patterned and exposed silicon reacts with the silicon to form uniform metal silicide at the desired locations.Type: GrantFiled: December 19, 2008Date of Patent: April 19, 2011Assignee: ASM International N.V.Inventor: Ivo Raaijmakers
-
Patent number: 7923375Abstract: A method for manufacturing a semiconductor device includes forming a photo-resist pattern above a first film, implanting a predetermined dopant that increases an etching rate of the first film into the first film using the photo-resist pattern as a mask, thereby forming an implantation layer in the first film, and etching a first portion of the first film, which is at least a part of the implantation layer, using the photo-resist pattern as a mask.Type: GrantFiled: August 20, 2007Date of Patent: April 12, 2011Assignee: Kabushiki Kaisha ToshibaInventor: Keisuke Kikutani
-
Patent number: 7867901Abstract: A method for forming silicide in a semiconductor device includes simultaneously performing a cleaning process and an etching process to remove a silicide metal layer if an excessive delay in time lapses after forming the silicide metal layer. This may prevent the occurrence of liquid marks due to an oxidation reaction at an interface of the semiconductor substrate in contact with the silicide metal layer, thereby preventing silicide defects due to the excessive delay.Type: GrantFiled: July 1, 2009Date of Patent: January 11, 2011Assignee: Dongbu HiTek Co., Ltd.Inventor: Kyoung-Hwa Jung
-
Patent number: 7718532Abstract: According to the present invention, high-k film can be etched to provide a desired geometry without damaging the silicon underlying material. A silicon oxide film 52 is formed on a silicon substrate 50 by thermal oxidation, and a high dielectric constant insulating film 54 comprising HfSiOx is formed thereon. Thereafter, polycrystalline silicon layer 56 and high dielectric constant insulating film 54 are selectively removed in stages by a dry etching through a mask of the resist layer 58, and subsequently, the residual portion of the high dielectric constant insulating film 54 and the silicon oxide film 52 are selectively removed by wet etching through a mask of polycrystalline silicon layer 56. A liquid mixture of phosphoric acid and sulfuric acid is employed for the etchant solution. The temperature of the etchant solution is preferably equal to or lower than 200 degree C., and more preferably equal to or less than 180 degree C.Type: GrantFiled: January 31, 2007Date of Patent: May 18, 2010Assignees: NEC Electronics Corporation, NEC CorporationInventors: Hiroaki Tomimori, Hidemitsu Aoki, Toshiyuki Iwamoto
-
Patent number: 7696586Abstract: A structure. The structure may include a layer of cobalt disilicide that is substantially free of cobalt monosilicide and there is substantially no stringer of an oxide of titanium on the layer of cobalt disilicide. The structure may include a substrate that includes: an insulated-gate field effect transistor (FET) that includes a source, a drain, and a gate; a first layer of cobalt disilicide on the source, said first layer having substantially no cobalt monosilicide, and said first layer having substantially no stringer of an oxide of titanium thereon; a second layer of cobalt disilicide on the drain, said second layer having substantially no cobalt monosilicide having substantially no stringer of an oxide of titanium thereon; and a third layer of cobalt disilicide on the gate, said third layer having substantially no cobalt monosilicide and having substantially no stringer of an oxide of titanium thereon.Type: GrantFiled: July 18, 2008Date of Patent: April 13, 2010Assignee: International Business Machines CorporationInventors: David Paul Agnello, Mary Conroy Bushey, Donna K. Johnson, Jerome Brett Lasky, Peter James Lindgren, Kirk David Peterson
-
Patent number: 7648917Abstract: A manufacturing method of a solid-state imaging device includes: forming a first and second insulating films having different properties on a silicon substrate such that they cover sides of gate electrodes formed on the silicon substrate; subjecting the second insulating film to selective etching, and forming sidewalls on the sides of the gate electrode; subjecting the gate electrode having the sidewalls formed to ion implantation; covering the gate electrode having the sidewalls formed and forming a third insulating film on the silicon substrate; covering with a mask material part of the gate electrodes covered with the third insulating film, and subjecting the substrate to etching to remove exposed third insulating film; and, after removing the mask material, forming a metal film capable of forming a silicide on the silicon substrate such that the metal film covers the gate electrodes and the third insulating film to form a silicide layer.Type: GrantFiled: September 19, 2007Date of Patent: January 19, 2010Assignee: Sony CorporationInventors: Kai Yoshitsugu, Kenichi Chiba
-
Publication number: 20090309228Abstract: The present invention relates to a method for forming self-aligned metal silicide contacts over at least two silicon-containing semiconductor regions that are spaced apart from each other by an exposed dielectric region. Preferably, each of the self-aligned metal silicide contacts so formed comprises at least nickel silicide and platinum silicide with a substantially smooth surface, and the exposed dielectric region is essentially free of metal and metal silicide. More preferably, the method comprises the steps of nickel or nickel alloy deposition, low-temperature annealing, nickel etching, high-temperature annealing, and aqua regia etching.Type: ApplicationFiled: August 12, 2009Publication date: December 17, 2009Applicant: INTERNATIONAL BUSINESS MACHINES CORPORATIONInventors: Sunfei Fang, Randolph F. Knarr, Mahadevaiyer Krishnan, Christian Lavoie, Renee T. Mo, Balasubramanian Pranatharthiharan, Jay W. Strane
-
Patent number: 7632744Abstract: Formation of an WNx film 24 constituting a barrier layer of a gate electrode 7A having a polymetal structure is effected in an atmosphere containing a high concentration nitrogen gas, whereby release of N (nitrogen) from the WNx film 24 is suppressed in the heat treatment step after the formation of the gate electrode 7A.Type: GrantFiled: April 14, 2008Date of Patent: December 15, 2009Assignee: Renesas Technology Corp.Inventors: Naoki Yamamoto, Yoshikazu Tanabe, Hiroshige Kogayu, Takehiko Yoshida
-
Patent number: 7569482Abstract: An integrated circuit is silicided by depositing at least one metal on a silicon-containing region and forming a metal silicide. Residue metal that has not been silicided during the formation of the metal silicide is then removed. The removal of the residue metal involves the conversion of the residue metal to an alloy containing the germanide of said metal with minimal if any adverse affect on the silicide. Next, the alloy is removed, in a manner selective to the silicide, by dissolving the alloy in a chemical solution.Type: GrantFiled: January 15, 2007Date of Patent: August 4, 2009Assignee: STMicroelectronics (Crolles 2) SASInventor: Aomar Halimaoui
-
Patent number: 7550372Abstract: A method of fabricating conductive lines is described. A substrate having a polysilicon layer thereon is provided. A mask layer having an opening that exposes the polysilicon layer is formed on the polysilicon layer. Then, spacers are formed on the sidewalls of the mask layer. Using the mask layer and the spacers as a mask, a portion of the polysilicon layer is removed until the substrate is exposed. After that, an insulating layer that completely fills the opening is formed over the substrate. The insulating layer has an etching selectivity different from the mask layer. Thereafter, the mask layer is removed to expose the polysilicon layer and then a metal silicide layer is formed on the upper surface of the polysilicon layer.Type: GrantFiled: August 29, 2005Date of Patent: June 23, 2009Assignee: Powerchip Semiconductor Corp.Inventors: Su-Yuan Chang, Min-San Huang, Hann-Jye Hsu
-
Patent number: 7544621Abstract: A method of removing a metal silicide layer on a gate electrode in a semiconductor manufacturing process is disclosed, in which the gate electrode, a metal silicide layer, a spacer, a silicon nitride cap layer, and a dielectric layer have been formed. The method includes performing a chemical mechanical polishing process to polish the dielectric layer using the silicon nitride cap layer as a polishing stop layer to expose the silicon nitride cap layer over the gate electrode; removing the exposed silicon nitride cap layer to expose the metal silicide layer; and performing a first etching process to remove the metal silicide layer on the gate electrode.Type: GrantFiled: November 1, 2005Date of Patent: June 9, 2009Assignee: United Microelectronics Corp.Inventors: Cheng-Kuen Chen, Chih-Ning Wu, Wei-Tsun Shiau, Wen-Fu Yu
-
Patent number: 7544616Abstract: A method of forming word lines of a memory includes providing a substrate and forming a conductive layer on the substrate. A metal silicide layer is formed on the conductive layer, and a mask pattern is formed on the metal silicide layer. A mask liner covering the mask pattern and the surface of the metal silicide layer is formed on the substrate to shorten distances between the word line regions. An etching process is performed on the mask liner and the mask pattern until the partial surface of the metal silicide layer is exposed. The metal silicide layer and the conductive layer are etched to form word lines by utilizing the mask liner and the mask pattern as a mask. A silicon content of the metal silicide layer must be less than or equal to 2 for reducing a bridge failure rate between the word lines.Type: GrantFiled: October 17, 2007Date of Patent: June 9, 2009Assignee: MACRONIX International Co., Ltd.Inventors: Chi-Pin Lu, Ling-Wu Yang
-
Patent number: 7485558Abstract: In a method of manufacturing a semiconductor device, a preliminary metal silicide layer is selectively formed on a substrate having a transistor, the transistor having source/drain regions. A capping layer having a thermal expansion coefficient greater than that of the preliminary metal silicide layer is formed on the substrate having the preliminary metal silicide layer. The substrate is thermally treated to form a metal silicide layer, and to apply a tensile stress caused by a thermal expansion coefficient difference between the metal silicide layer and the capping layer to the source/drain regions of the transistor.Type: GrantFiled: January 24, 2005Date of Patent: February 3, 2009Assignee: Samsung Electronics Co., Ltd.Inventors: Sung-Gun Kang, Kong-Soo Cheong, Jeong-Ho Shin, Ki-Young Kim
-
Patent number: 7482282Abstract: A method for cleaning oxide from the interconnects of a semiconductor that are comprised of nickel (Ni) silicide or nickel-silicide alloys where nickel is the primary metallic component is disclosed. The cleaning comprises performing an SC1 cycle, exposing the wafer comprising a NiSi contact to an SC1 solution. This removes oxygen atoms from the silicon oxide of the nickel silicide. Next, a rinse cycle is performed on the wafer to remove the SC1 solution. Finally, an HCl cycle is performed. During this cycle, the wafer comprising an NiSi contact is introduced to an HCl solution, removing oxygen atoms from the nickel oxide of the NiSi. The method of the present invention provides for lower contact resistance of NiSi semiconductor devices, facilitating semiconductor devices that have the benefits of miniaturization allowed by the NiSi technology, and higher performance due to the reduced contact resistance.Type: GrantFiled: March 26, 2007Date of Patent: January 27, 2009Assignee: International Business Machines CorporationInventors: David F. Hilscher, Ying Li
-
Patent number: 7432181Abstract: A method of forming self-aligned silicides is described and applied to a substrate having an isolation area, which divides the substrate into a first area and a second area. A resist protective oxide layer is formed on the substrate, and subsequently a mask layer is formed on the resist protective oxide layer. Further, the mask layer includes an opening on the first area and another opening on a contact hole of the second area. When a resist protective oxide process is performed, the mask layer protects the resist protective oxide layer underlying the same from being removed, whereas the resist protective oxide layer under the openings are removed. Therefore, silicides are controlled to form on the first area and the contact hole of the second area in a subsequent self-aligned silicidation process.Type: GrantFiled: December 7, 2004Date of Patent: October 7, 2008Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Yei-Hsiung Lin, Steven Huang
-
Patent number: 7425482Abstract: A non-volatile memory device and a method for fabricating the same are provided. The method includes: forming a plurality of gate structures on a substrate, each gate structure including a first electrode layer for a floating gate; forming a first insulation layer covering the gate structures and active regions located at each side of the gate structures; forming a second electrode layer over the first insulation layer; and forming a plurality of control gates on the active regions located at each side of the gate structures by performing an etch-back process to the second electrode layer.Type: GrantFiled: October 12, 2005Date of Patent: September 16, 2008Assignee: Magna-Chip Semiconductor, Ltd.Inventor: Yong-Sik Jeong
-
Publication number: 20080182424Abstract: A method for selectively controlling lengths of nanowires in a substantially non-uniform array of nanowires includes establishing at least two different catalyzing nanoparticles on a substrate. A nanowire from each of the at least two different catalyzing nanoparticles is substantially simultaneously grown. At least one of the nanowires has a length different from that of at least another of the nanowires.Type: ApplicationFiled: December 9, 2005Publication date: July 31, 2008Inventors: Philip J. Kuekes, Theodore I. Kamins
-
Patent number: 7402531Abstract: A method for selectively controlling lengths of nanowires in a substantially non-uniform array of nanowires includes establishing at least two different catalyzing nanoparticles on a substrate. A nanowire from each of the at least two different catalyzing nanoparticles is substantially simultaneously grown. At least one of the nanowires has a length different from that of at least another of the nanowires.Type: GrantFiled: December 9, 2005Date of Patent: July 22, 2008Assignee: Hewlett-Packard Development Company, L.P.Inventors: Philip J. Kuekes, Theodore I. Kamins
-
Patent number: 7396764Abstract: The technology which can improve the performance of a MOS transistor in which all the regions of the gate electrode were silicided is offered. A gate insulating film and a gate electrode of an nMOS transistor are laminated and formed in this order on a semiconductor substrate. A source/drain region of the nMOS transistor is formed in the upper surface of the semiconductor substrate. The source/drain region is silicided after siliciding all the regions of the gate electrode. Thus, silicide does not cohere in the source/drain region by the heat treatment at the silicidation of the gate electrode by siliciding the source/drain region after the silicidation of the gate electrode. Therefore, the electric resistance of the source/drain region is reduced and junction leak can be reduced. As a result, the performance of the nMOS transistor improves.Type: GrantFiled: May 4, 2006Date of Patent: July 8, 2008Assignee: Renesas Technology Corp.Inventor: Shigeki Komori
-
Patent number: 7390754Abstract: A method of stripping a remnant metal is disclosed. The remnant metal is formed on a transitional silicide of a silicon substrate. Firstly, a surface oxidation process is performed on the transitional silicide, so as to form a protective layer on the transitional silicide. Then, a HPM stripping process is performed on the silicon substrate in order to strip the remnant metal.Type: GrantFiled: July 20, 2006Date of Patent: June 24, 2008Assignee: United Microelectronics Corp.Inventors: Chun-Chieh Chang, Tzung-Yu Hung, Chao-Ching Hsieh, Yi-Wei Chen, Yu-Lan Chang
-
Patent number: 7384877Abstract: By reducing the effect of particle bombardment during the sequence for forming a metal silicide in semiconductor devices, the defect rate and the metal silicide uniformity may be enhanced. For this purpose, the metal may be deposited without an immediately preceding sputter etch process, wherein, in a particular embodiment, an additional oxidation process is performed to efficiently remove any silicon contaminations and surface impurities by a subsequent wet chemical treatment on the basis of HF, which is followed by the metal deposition.Type: GrantFiled: May 22, 2006Date of Patent: June 10, 2008Assignee: Advanced Micro Devices, Inc.Inventors: Volker Kahlert, Christof Streck, Patrick Press
-
Patent number: 7375013Abstract: Formation of an WNX film 24 constituting a barrier layer of a gate electrode 7A having a polymetal structure is effected in an atmosphere containing a high concentration nitrogen gas, whereby release of N (nitrogen) from the WNX film 24 is suppressed in the heat treatment step after the formation of the gate electrode 7A.Type: GrantFiled: April 3, 2006Date of Patent: May 20, 2008Assignee: Renesas Technology Corp.Inventors: Naoki Yamamoto, Yoshikazu Tanabe, Hiroshige Kogayu, Takehiko Yoshida
-
Patent number: 7192835Abstract: According to the present invention, high-k film can be etched to provide a desired geometry without damaging the silicon underlying material. A silicon oxide film 52 is formed on a silicon substrate 50 by thermal oxidation, and a high dielectric constant insulating film 54 comprising HfSiOx is formed thereon. Thereafter, polycrystalline silicon layer 56 and high dielectric constant insulating film 54 are selectively removed in stages by a dry etching through a mask of the resist layer 58, and subsequently, the residual portion of the high dielectric constant insulating film 54 and the silicon oxide film 52 are selectively removed by wet etching through a mask of polycrystalline silicon layer 56. A liquid mixture of phosphoric acid and sulfuric acid is employed for the etchant solution. The temperature of the etchant solution is preferably equal to or lower than 200 degree C., and more preferably equal to or less than 180 degree C.Type: GrantFiled: May 27, 2004Date of Patent: March 20, 2007Assignees: NEC Electronics Corporation, NEC CorporationInventors: Hiroaki Tomimori, Hidemitsu Aoki, Toshiyuki Iwamoto
-
Patent number: 7119028Abstract: A film surface imprinted with nanometer-sized particles to produce micro- and/or nano-structured electron and hole collecting interfaces, including: at least one substrate; at least one photoabsorbing conjugated polymer (including polybutylthiophene (pbT)) applied on a substrate, nanometer-sized particles including multiwalled carbon nanotubes (MWNT) to produce a charge separation interface; at least one transparent polymerizable layer, wherein the MWNT are embedded in the conjugated polymer to produce mixture and applied on a substrate to form a MWNT bearing surface film layer to form a stamp surface which is imprinted into the surface of the polymerizable film layer to produce micro- and/or nano-structured electron and hole collecting interfaces; polymerizing the polymerizable film layer to form a conformal gap between the MWNT stamp surface and the surface of the polymerizable film layer, and filling the gap with a photoabsorbing material to promote the generation of photoexcited electrons and transport toType: GrantFiled: October 29, 2003Date of Patent: October 10, 2006Assignee: The United States of America as represented by the Secretary of the NavyInventors: M. Joseph Roberts, Scott K. Johnson, Richard A. Hollins, Curtis E. Johnson, Thomas J. Groshens, David J. Irvin
-
Patent number: 7105458Abstract: The present invention is a method of producing semiconductor devices and an etching liquid with which the titanium nitride film can be removed without thinning of the CoSi layer. A hydrogen peroxide-water mixture is used for removal of the titanium nitride film in the method of producing semiconductor devices by cobalt salicide technology with titanium nitride as the cap film.Type: GrantFiled: August 16, 2000Date of Patent: September 12, 2006Assignee: Oki Electric Industry Co., Ltd.Inventor: Kaori Tai
-
Patent number: 7067391Abstract: A new method to form metal silicide gates in the fabrication of an integrated circuit device is achieved. The method comprises forming polysilicon lines overlying a substrate with a dielectric layer therebetween. A first isolation layer is formed overlying the substrate and the sidewalls of the polysilicon lines. The first isolation layer does not overlie the top surface of the polysilicon lines. The polysilicon lines are partially etched down such that the top surfaces of the polysilicon lines are below the top surface of the first isolation layer. A metal layer is deposited overlying the polysilicon lines. A thermal anneal is used to completely convert the polysilicon lines to metal silicide gates. The unreacted metal layer is removed to complete the device.Type: GrantFiled: February 17, 2004Date of Patent: June 27, 2006Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Bor-Wen Chan, Chih-Hao Wang, Lawrance Hsu, Hun-Jan Tao
-
Patent number: 7067417Abstract: A contact hole can be formed in an insulating layer to expose a surface of an underlying silicon layer at a bottom of the contact hole having a first size. A metal silicide layer can be formed beneath the bottom of the contact hole and removed to form a void beneath the contact hole having a second size that is greater than the first size.Type: GrantFiled: June 30, 2004Date of Patent: June 27, 2006Assignee: Samsung Electronics Co., Ltd.Inventors: Hee-sook Park, Gil-heyun Choi, Jong-myeong Lee
-
Patent number: 7049245Abstract: A method for manufacturing a semiconductor device that comprises defining a semiconductor substrate, forming a gate oxide on the semiconductor substrate, forming a polycrystalline silicon layer over the gate oxide, forming a tungsten silicide layer over the polycrystalline silicon layer; providing a mask over the tungsten silicide layer, defining the mask to expose at least one portion of the tungsten silicide layer, etching the exposed tungsten silicide layer with a first etchant, wherein some tungsten silicide layer remains, etching the remaining tungsten silicide layer with a second etchant to expose at least one portion of the polycrystalline silicon layer, annealing the tungsten silicide layer, etching the exposed polycrystalline silicon layer, and oxidizing sidewalls of the tungsten silicide layer and the polycrystalline silicon layer.Type: GrantFiled: September 12, 2003Date of Patent: May 23, 2006Assignee: ProMOS Technologies, Inc.Inventors: Fang-Yu Yeh, Chi Lin, Chia-Yao Chen
-
Patent number: 7018937Abstract: A composition and methods for using the composition in removing processing byproducts is provided. The composition can be non-aqueous or semi-aqueous. The non-aqueous composition includes a non-aqueous solvent and one or more components including a fluoride compound and a pyridine compound. The semi-aqueous composition includes glacial acetic acid and one or more components including a fluoride compound and a pyridine compound. The composition can be used in removing processing byproducts from substrate assembly, including MRAM devices, that include at least a metal containing region and processing byproducts, where removing the processing byproducts includes exposing the substrate assembly to the composition for a time effective to remove at least a portion of the processing byproducts.Type: GrantFiled: August 29, 2002Date of Patent: March 28, 2006Assignee: Micron Technology, Inc.Inventor: Donald L. Yates
-
Patent number: 6964929Abstract: A method of making a semiconductor structure includes trimming a patterned hard mask with a wet etch, wherein the hard mask is on a gate layer; and etching the gate layer. In making multiple structures on a semiconductor wafer, an average width of lines in the patterned hard mask is trimmed by at least 100 ?.Type: GrantFiled: May 2, 2002Date of Patent: November 15, 2005Assignee: Cypress Semiconductor CorporationInventors: Sundar Narayanan, Chidambaram Kallingal
-
Patent number: 6946402Abstract: A fabricating method of a polycrystalline silicon thin film transistor includes forming a polycrystalline silicon layer on a substrate having first and second regions through a crystallization process using nickel silicide (NiSix) as a catalyst, patterning the polycrystalline silicon layer to form an active layer at the first region, leaving a nickel silicide residue at the second region, etching the nickel silicide residue with a solution including hydrofluoric acid (HF) and hydrogen peroxide (H2O2), forming a gate electrode over the active layer and forming a source and drain in the active layer.Type: GrantFiled: December 16, 2002Date of Patent: September 20, 2005Assignee: LG. Philips LCD Co., Ltd.Inventors: Hyun-Sik Seo, Binn Kim
-
Patent number: 6908569Abstract: A method of removing ruthenium silicide from a substrate surface which comprises exposing the ruthenium silicide surface to a solution containing chlorine and fluorine containing chemicals. In particular, said solution is designed to react with said ruthenium silicide film such that water-soluble reaction products are formed.Type: GrantFiled: April 23, 2003Date of Patent: June 21, 2005Assignee: Micron Technology, Inc.Inventors: Brenda D. Kraus, Michael T. Andreas
-
Patent number: 6905943Abstract: In one embodiment, a method for forming a semiconductor structure in manufacturing a semiconductor device includes providing a pad layer on a surface of a substrate, providing a nitride layer on the pad layer, and providing a sacrificial oxide layer on the nitride layer. In a first etching step, at least the sacrificial oxide and nitride layers are etched to define opposing substantially vertical surfaces of at least the sacrificial oxide and nitride layers. In a second etching step, the nitride layer is etched such that the opposing substantially vertical surfaces of the nitride layer are recessed from the opposing substantially vertical surfaces of the sacrificial oxide layer, the sacrificial oxide layer substantially preventing the nitride layer from decreasing in thickness as a result of the etching of the nitride layer. In a third etching step, the substrate is etched to form a trench extending into the substrate for purposes of defining one or more isolation regions adjacent the trench.Type: GrantFiled: November 6, 2003Date of Patent: June 14, 2005Assignee: Texas Instruments IncorporatedInventors: Juanita DeLoach, Freidoon Mehrad, Brian M. Trentman, Troy A. Yocum
-
Patent number: 6881670Abstract: A process for fabricating interconnects is provided. First, a substrate having a dielectric layer and silicon-containing mask layer on the dielectric layer is provided. The dielectric layer is patterned to form an opening. Thereafter, a metallic glue layer is formed over the silicon-containing mask layer and the interior surfaces of the opening. A metallic layer is formed over the substrate to fill the opening and cover the metallic glue layer. A thermal treatment process is next carried out so that the metallic glue layer reacts with the silicon-containing mask layer to form a metal silicide layer. A portion of the metallic layer is removed to expose the metal silicide layer. A solution mixture containing hydrogen peroxide, sulfuric acid, water and hydrofluoric acid is used to remove the metal silicide layer. The silicon-containing mask layer is also removed to expose the dielectric layer.Type: GrantFiled: April 26, 2004Date of Patent: April 19, 2005Assignee: Nanya Technology CorporationInventors: Tien-Sung Chen, Yi-Nan Chen, Jin-Tau Huang
-
Patent number: 6867118Abstract: A semiconductor substrate has a memory region and a logic region isolated by an isolation insulating film. Plural memory transistors are provided in the form of a matrix in the memory region, and a logic transistor is provided in the logic region. Gate electrodes of memory transistors arranged along the word line direction out of the plural memory transistors are formed as a common gate electrode extending along the word line direction, and impurity diffusion layers working as source/drain regions of memory transistors arranged along the bit line direction are formed as a common impurity diffusion layer extending along the bit line direction. An inter-gate insulating film having its top face at a lower level than the gate electrodes is formed on the semiconductor substrate between the gate electrodes of the plural memory transistors. A sidewall insulating film is formed on the side face of a gate electrode of the logic transistor.Type: GrantFiled: May 29, 2003Date of Patent: March 15, 2005Assignee: Matsushita Electric Industrial Co., Ltd.Inventor: Fumihiko Noro