Multilayer Mask Including Nonradiation Sensitive Layer Patents (Class 438/950)
-
Patent number: 9034762Abstract: A triple patterning method is provided. The method includes providing a substrate having a first region and a second region; and forming a first material layer. The method also includes forming a second material layer; and forming a plurality of core patterns on the second material layer in the first region. Further, the method includes forming sidewall spacers on side surfaces of the core patterns; and forming first patterns on the first material layer. Further, the method includes forming a third material layer on the first material layer and the first patterns; and forming second patterns on the third material layer in the first region and third patterns on the third material layer in the second region. Further, the method also includes forming fourth patterns; and forming triple patterns on the substrate in the first region and fifth patterns on the substrate in the second region.Type: GrantFiled: February 25, 2014Date of Patent: May 19, 2015Assignee: SEMICONDUCTOR MANUFACTURING INTERNATIONAL (SHANGHAI) CORPORATIONInventor: Zhongshan Hong
-
Patent number: 9034748Abstract: Embodiments include a method comprising depositing a hard mask layer over a first layer, the hard mask layer including; lower hard mask layer, hard mask stop layer, and upper hard mask. The hard mask layer and the first layer are patterned and a spacer deposited on the patterned sidewall. The upper hard mask layer and top portion of the spacer are removed by selective etching with respect to the hard mask stop layer, the remaining spacer material extending to a first predetermined position on the sidewall. The hard mask stop layer is removed by selective etching with respect to the lower hard mask layer and spacer. The first hard mask layer and top portion of the spacer are removed by selectively etching the lower hard mask layer and the spacer with respect to the first layer, the remaining spacer material extending to a second predetermined position on the sidewall.Type: GrantFiled: September 4, 2013Date of Patent: May 19, 2015Assignee: International Business Machines CorporationInventors: Christopher V. Baiocco, Kevin K. Chan, Young-Hee Kim, Masaharu Kobayashi, Effendi Leobandung, Fei Liu, Dae-Gyu Park, Helen Wang, Xinhui Wang, Min Yang
-
Patent number: 8993437Abstract: One or more embodiments relate to a method of making a semiconductor structure, comprising: forming a patterned metallic layer over a semiconductor substrate; forming a second layer over the patterned metallic layer; and etching the substrate.Type: GrantFiled: October 27, 2011Date of Patent: March 31, 2015Assignee: Infineon Technologies AGInventor: Manfred Engelhardt
-
Patent number: 8946718Abstract: A semiconductor having an active layer; a gate insulating film in contact with the semiconductor; a gate electrode opposite to the active layer through the gate insulating film; a first nitride insulating film formed over the active layer; a photosensitive organic resin film formed on the first nitride insulating film; a second nitride insulating film formed on the photosensitive organic resin film; and a wiring provided on the second, nitride insulating film. A first opening portion is provided in the photosensitive organic resin film, an inner wall surface of the first opening portion is covered with the second nitride insulating film, a second opening portion is provided in a laminate including the gate insulating film, the first nitride insulating film, and the second nitride insulating film inside the first opening portion, and the semiconductor is connected with the wiring through the first opening portion and the second opening portion.Type: GrantFiled: December 19, 2013Date of Patent: February 3, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Satoshi Murakami, Masahiko Hayakawa, Shunpei Yamazaki
-
Patent number: 8946717Abstract: A semiconductor having an active layer; a gate insulating film in contact with the semiconductor; a gate electrode opposite to the active layer through the gate insulating film; a first nitride insulating film formed over the active layer; a photosensitive organic resin film formed on the first nitride insulating film; a second nitride insulating film formed on the photosensitive organic resin film; and a wiring provided on the second, nitride insulating film. A first opening portion is provided in the photosensitive organic resin film, an inner wall surface of the first opening portion is covered with the second nitride insulating film, a second opening portion is provided in a laminate including the gate insulating film, the first nitride insulating film, and the second nitride insulating film inside the first opening portion, and the semiconductor is connected with the wiring through the first opening portion and the second opening portion.Type: GrantFiled: August 2, 2013Date of Patent: February 3, 2015Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Satoshi Murakami, Masahiko Hayakawa, Shunpei Yamazaki
-
Patent number: 8741776Abstract: A method for patterning a plurality of features in a non-rectangular pattern on an integrated circuit device includes providing a substrate including a surface with a first layer and a second layer. Forming a plurality of elongated protrusions in a third layer above the first and second layers. Forming a first patterned layer over the plurality of elongated protrusions. The plurality of elongated protrusions are etched to form a first pattern of the elongated protrusions, the first pattern including at least one inside corner. Forming a second patterned layer over the first pattern of elongated protrusions and forming a third patterned layer over the first pattern of elongated protrusions. The plurality of elongated protrusions are etched using the second and third patterned layers to form a second pattern of the elongated protrusions, the second pattern including at least one inside corner.Type: GrantFiled: February 7, 2012Date of Patent: June 3, 2014Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventors: Ho Wei De, Ming-Feng Shieh, Ching-Yu Chang
-
Patent number: 8697336Abstract: The present invention provides a composition for forming a bottom anti-reflective coating, and also provides a photoresist pattern formation method employing that composition. The composition gives a bottom anti-reflective coating used in a lithographic process for manufacturing semiconductor devices, and the coating can be developed with a developing solution for photoresist. The composition contains a solvent, a polymer having a condensed polycyclic aromatic group, and a compound having a maleimide derivative or a maleic anhydride derivative. The composition may further contain a photo acid generator or a crosslinking agent.Type: GrantFiled: December 15, 2011Date of Patent: April 15, 2014Assignee: AZ Electronic Materials USA Corp.Inventors: Shigemasa Nakasugi, Kazuma Yamamoto, Yasushi Akiyama, Shinji Miyazaki, Munirathna Padmanaban, Srinivasan Chakrapani
-
Patent number: 8658050Abstract: Techniques for minimizing or eliminating pattern deformation during lithographic pattern transfer to inorganic substrates are provided. In one aspect, a method for pattern transfer into an inorganic substrate is provided. The method includes the following steps. The inorganic substrate is provided. An organic planarizing layer is spin-coated on the inorganic substrate. The organic planarizing layer is baked. A hardmask is deposited onto the organic planarizing layer. A photoresist layer is spin-coated onto the hardmask. The photoresist layer is patterned. The hardmask is etched through the patterned photoresist layer using reactive ion etching (RIE). The organic planarizing layer is etched through the etched hardmask using RIE. A high-temperature anneal is performed in the absence of oxygen. The inorganic substrate is etched through the etched organic planarizing layer using reactive ion etching.Type: GrantFiled: July 27, 2011Date of Patent: February 25, 2014Assignee: International Business Machines CorporationInventors: Sebastian Ulrich Engelmann, Martin Glodde, Michael A. Guillorn
-
Patent number: 8652965Abstract: One object of the present invention is to provide a method for producing a thick film metal electrode that is able to form a positive-negative reverse type resist, which has a thickness of 7 ?m or more and excellent in-plane uniformity, on the circuit element formed on the silicon carbide substrate, and a method for producing a thick film resist, and the present invention provides a method for producing a thick film resist wherein a first positive-negative reverse type resist having a first viscosity is formed on an upper surface of a circuit element layer which is treated with HMDS, and a second positive-negative reverse type resist having a second viscosity, which is larger than the first viscosity, on the first positive-negative reverse type resist such that a total thickness of the first and second positive-negative reverse type resists constituting a thick film resist be 7 ?m or more.Type: GrantFiled: March 9, 2012Date of Patent: February 18, 2014Assignee: Showa Denko K.K.Inventor: Kenji Suzuki
-
Patent number: 8557682Abstract: Methods of dicing substrates having a plurality of ICs. A method includes forming a multi-layered mask comprising a first mask material layer soluble in a solvent over the semiconductor substrate and a second mask material layer, insoluble in the solvent, over the first mask material layer. The multi-layered mask is patterned with a laser scribing process to provide a patterned mask with gaps. The patterning exposes regions of the substrate between the ICs. The substrate is then plasma etched through the gaps in the patterned mask to singulate the IC with the second mask material layer protecting the first mask material layer for at least a portion of the plasma etch. The soluble material layer is dissolved subsequent to singulation to remove the multi-layered mask.Type: GrantFiled: June 15, 2011Date of Patent: October 15, 2013Assignee: Applied Materials, Inc.Inventors: James M. Holden, Wei-Sheng Lei, Brad Eaton, Todd Egan, Saravjeet Singh
-
Patent number: 8519403Abstract: A method for forming a submicron device includes depositing a hard mask over a first region that includes a polysilicon well of a first dopant type and a gate of a second dopant type and a second region that includes a polysilicon well of a second dopant type and a gate of a first dopant type. The hard mask over the first region is removed. Angled implantation of the first dopant type is performed to form pockets under the gate of the second dopant type.Type: GrantFiled: February 4, 2011Date of Patent: August 27, 2013Assignee: Altera CorporationInventors: Che Ta Hsu, Christopher J. Pass, Dale Ibbotson, Jeffrey T. Watt, Yanzhong Xu
-
Patent number: 8486741Abstract: The described process allows trenches to be etched in a structure comprising a support substrate and a multilayer, formed on the substrate, for the definition of wave guides of an integrated optical device and comprises a selective plasma attack in the multilayer through a masking structure that leaves uncovered areas of the multilayer corresponding to the trenches to be etched. Such a masking structure is obtained by forming a mask of metallic material on the multilayer that leaves uncovered the areas corresponding to the trenches to be etched and forming a mask of non-metallic material, for example photoresist, on it that leaves uncovered regions comprising at least part of the areas and an edge portion of the mask of metallic material.Type: GrantFiled: May 25, 2012Date of Patent: July 16, 2013Assignee: STMicroelectronics S.r.l.Inventors: Pietro Montanini, Giovanna Germani, Ilaria Gelmi, Marta Mottura
-
Patent number: 8420499Abstract: A method of forming a concave-convex pattern according to an embodiment includes: forming a guide pattern on a base material, the guide pattern having a convex portion; forming a formative layer on the guide pattern, the formative layer including a stacked structure formed by stacking a first layer and a second layer, the first layer including at least one element selected from a first metal element and a metalloid element, the second layer including a second metal element different from the first metal element; selectively leaving the formative layer only at side faces of the convex portions by performing etching on the formative layer; removing the guide pattern; and forming the concave-convex pattern in the base material by performing etching on the base material, with the remaining formative layer being used as a mask.Type: GrantFiled: November 18, 2011Date of Patent: April 16, 2013Assignee: Kabushiki Kaisha ToshibaInventors: Tomotaka Ariga, Yuichi Ohsawa, Junichi Ito, Yoshinari Kurosaki, Saori Kashiwada, Toshiro Hiraoka, Minoru Amano, Satoshi Yanagi
-
Patent number: 8420542Abstract: A method of forming a reverse image pattern on a semiconductor base layer is disclosed. The method comprises depositing a transfer layer of amorphous carbon on the semiconductor base layer, depositing a resist layer on the transfer layer, creating a first pattern in the resist layer, creating the first pattern in the transfer layer, removing the resist layer, depositing a reverse mask layer, planarizing the reverse mask layer, and removing the transfer layer, thus forming a second pattern that is a reverse image of the first pattern.Type: GrantFiled: May 27, 2011Date of Patent: April 16, 2013Assignee: International Business Machines CorporationInventors: Viraj Yashawant Sardesai, Michael P. Belyansky, Rajasekhar Venigalla
-
Patent number: 7964510Abstract: A method for forming a pattern of a semiconductor device includes: forming a first mask film and a second mask film over an underlying layer; partially etching the first and second mask films using a photoresist mask pattern as an etching mask to form a intermediate mask pattern having a protrusion shape and including first and second mask film layers, over a remaining portion of the first mask film; forming a first spacer at sidewalls of the intermediate mask pattern etching the remaining portion of the first mask film and the first mask film layer of the intermediate mask pattern using the first spacer and the second mask film layer of the intermediate mask pattern as an etching mask to expose the underlying layer and form a mask pattern having first and second mask film layers; forming a second spacer at sidewalls of the mask pattern; and removing the mask pattern to form a symmetrical spacer pattern.Type: GrantFiled: December 29, 2008Date of Patent: June 21, 2011Assignee: Hynix Semiconductor Inc.Inventor: Jung Gun Heo
-
Patent number: 7955975Abstract: Provided is a semiconductor element including: a semiconductor having an active layer; a gate insulating film which is in contact with the semiconductor, a gate electrode opposite to the active layer through the gate insulating film; a first nitride insulating film formed over the active layer; a photosensitive organic resin film formed on the first nitride insulating film; a second nitride insulating film formed on the photosensitive organic resin film; and a wiring provided on the second nitride insulating film, in which a first opening portion is provided in the photosensitive organic resin film, an inner wall surface of the first opening portion is covered with the second nitride insulating film, a second opening portion is provided in a laminate including the gate insulating film, the first nitride insulating film, and the second nitride insulating film inside the first opening portion, and the semiconductor is connected with the wiring through the first opening portion and the second opening portion.Type: GrantFiled: July 21, 2010Date of Patent: June 7, 2011Assignee: Semiconductor Energy Laboratory Co., Ltd.Inventors: Satoshi Murakami, Masahiko Hayakawa, Shunpei Yamazaki
-
Patent number: 7935636Abstract: An insulating film is formed on a main surface of a substrate. A conductive film is formed on the insulating film. A lower layer resist film, an intermediate layer, an anti-reflection film and an upper layer resist film are formed on the conductive film. A focal point at a time of exposure is detected by detecting a height of the upper layer resist film. In detecting the focal point at the time of exposure, a focal point detection light is radiated on the upper layer resist film. After detecting the focal point, the upper layer resist film is exposed and developed thereby to form a resist pattern. With the resist pattern as a mask, the intermediate layer and the anti-reflection film are patterned, and the lower layer resist film is developed. With these patterns as a mask, the conductive film is etched thereby to form a gate electrode.Type: GrantFiled: May 15, 2009Date of Patent: May 3, 2011Assignee: Renesas Electronics CorporationInventor: Takeo Ishibashi
-
Patent number: 7902071Abstract: A method for forming a trench-gated field effect transistor (FET) includes the following steps. Using a first mask, defining and simultaneously forming a plurality of active gate trenches and at least one gate runner trench extending to a first depth within a silicon region such that (i) the at least one gate runner trench has a width greater than a width of each of the plurality of active gate trenches, and (ii) the plurality of active gate trenches are contiguous with the at least one gate runner trench; and using the first mask and a second mask for protecting the at least one gate runner trench, further extending only the plurality of active gate trenches to a second and final depth within the silicon region.Type: GrantFiled: July 6, 2010Date of Patent: March 8, 2011Assignee: Fairchild Semiconductor CorporationInventor: Bruce Douglas Marchant
-
Patent number: 7892977Abstract: In a method for forming hard mask patterns of a semiconductor device first hard mask patterns are formed on a semiconductor substrate. Second hard mask patterns are formed and include first patterns which are substantially perpendicular to the first hard mask patterns and second patterns which are positioned between the first hard mask patterns. Third hard mask patterns are formed between the first patterns.Type: GrantFiled: March 24, 2008Date of Patent: February 22, 2011Assignee: Hynix Semiconductor Inc.Inventor: Woo Yung Jung
-
Patent number: 7846825Abstract: In a method of forming a contact hole and a method of manufacturing a semiconductor device having the same, a first insulation interlayer is formed on a substrate. A dummy pattern is formed on the first insulation interlayer. A second insulation interlayer is formed to cover the dummy pattern. A photoresist pattern is formed on the second insulation interlayer. The photoresist pattern has an exposed portion. The dummy pattern under the photoresist pattern is arranged to cross over the exposed portion of the photoresist pattern. The first and second insulation interlayers are etched using the photoresist pattern and the dummy pattern as an etching mask, to form a plurality of contact holes on both sides of the dummy pattern. Accordingly, the contact holes may be formed to have a smaller width.Type: GrantFiled: January 7, 2009Date of Patent: December 7, 2010Assignee: Samsung Electronics Co., Ltd.Inventors: Nam-Jung Kang, Jae-Hoon Song, So-Hyun Ryu, Dong-Kwan Yang
-
Patent number: 7846849Abstract: A method for fabricating a semiconductor mask is described. A semiconductor stack having a sacrificial mask comprised of a series of lines is first provided. A spacer mask having spacer lines adjacent to the sidewalls of the series of lines of the sacrificial mask is then formed. The spacer mask also has interposed lines between the spacer lines. Finally, the sacrificial mask is removed to provide only the spacer mask. The spacer mask having interposed lines triples the frequency of the series of lines of the sacrificial mask.Type: GrantFiled: October 19, 2007Date of Patent: December 7, 2010Assignee: Applied Materials, Inc.Inventors: Christopher D. Bencher, Keiji Horioka
-
Patent number: 7842591Abstract: A method of fabricating short-gate-length electrodes for integrated III-V compound semiconductor devices, particularly for integrated HBT/HEMT devices on a common substrate is disclosed. The method is based on dual-resist processes, wherein a first thin photo-resist layer is utilized for defining the gate dimension, while a second thicker photo-resist layer is used to obtain a better coverage on the surface for facilitating gate metal lift-off. The dual-resist method not only reduces the final gate length, but also mitigates the gate recess undercuts, as compared with those fabricated by the conventional single-resist processes. Furthermore, the dual-resist method of the present invention is also beneficial for the fabrication of multi-gate device with good gate-length uniformity.Type: GrantFiled: May 15, 2008Date of Patent: November 30, 2010Assignee: WIN Semiconductors Corp.Inventors: Cheng-Kuo Lin, Chia-Liang Chao, Ming-Chang Tu, Tsung-Chi Tsai, Yu-Chi Wang
-
Patent number: 7767592Abstract: A method for forming a mask pattern for ion-implantation comprises: forming a gate line pattern over a semiconductor substrate; forming a coating layer on the surface of gate line pattern; performing a plasma treatment on the top portion of the gate line pattern; forming a photoresist layer over the resulting structure; and performing an exposure and a developing processes to form a photoresist pattern on the gate line pattern.Type: GrantFiled: May 10, 2006Date of Patent: August 3, 2010Assignee: Hynix Semiconductor Inc.Inventor: Kyu Sung Kim
-
Patent number: 7718530Abstract: A method for manufacturing a semiconductor device includes forming a gate conductive layer, a first mask layer, a second mask layer, and a third mask layer over a semiconductor substrate that includes a cell region and a peripheral region. The method also includes forming a second mask pattern and a third mask pattern using a gate mask. The method further includes trimming the second mask pattern in the peripheral region to form a fourth mask pattern having a size smaller than that of the second mask pattern. Still further, the method includes removing the third mask pattern, and patterning the first mask layer and the gate conductive layer using the fourth mask pattern as a mask.Type: GrantFiled: December 3, 2007Date of Patent: May 18, 2010Assignee: Hynix Semiconductor Inc.Inventors: Hyun Sook Jun, Ki Lyoung Lee
-
Patent number: 7709310Abstract: A semiconductor device has: a semiconductor substrate having a pair of current input/output regions via which current flows; an insulating film formed on the semiconductor substrate and having a gate electrode opening; and a mushroom gate electrode structure formed on the semiconductor substrate via the gate electrode opening, the mushroom gate electrode structure having a stem and a head formed on the stem, the stem having a limited size on the semiconductor substrate along a current direction and having a forward taper shape upwardly and monotonically increasing the size along the current direction, the head having a size expanded stepwise along the current direction, and the stem contacting the semiconductor substrate in the gate electrode opening and riding the insulating film near at a position of at least one of opposite ends of the stem along the current direction.Type: GrantFiled: December 28, 2007Date of Patent: May 4, 2010Assignees: Fujitsu Limited, Fujitsu Quantum Devices LimitedInventors: Kozo Markiyama, Naoya Ikechi, Takahiro Tan
-
Patent number: 7709396Abstract: Embodiments of the present invention pertain to methods of forming patterned features on a substrate having an increased density (i.e. reduced pitch) as compared to what is possible using standard photolithography processing techniques using a single high-resolution photomask while also allowing both the width of the patterned features and spacing (trench width) between the patterned features to vary within an integrated circuit.Type: GrantFiled: September 19, 2008Date of Patent: May 4, 2010Assignee: Applied Materials, Inc.Inventors: Christopher Dennis Bencher, Jing Tang
-
Patent number: 7687408Abstract: Different sized features in the array and in the periphery of an integrated circuit are patterned on a substrate in a single step. In particular, a mixed pattern, combining two separately formed patterns, is formed on a single mask layer and then transferred to the underlying substrate. The first of the separately formed patterns is formed by pitch multiplication and the second of the separately formed patterns is formed by conventional photolithography. The first of the separately formed patterns includes lines that are below the resolution of the photolithographic process used to form the second of the separately formed patterns. These lines are made by forming a pattern on photoresist and then etching that pattern into an amorphous carbon layer. Sidewall pacers having widths less than the widths of the un-etched parts of the amorphous carbon are formed on the sidewalls of the amorphous carbon. The amorphous carbon is then removed, leaving behind the sidewall spacers as a mask pattern.Type: GrantFiled: March 8, 2007Date of Patent: March 30, 2010Assignee: Micron Technology, Inc.Inventors: Mirzafer K. Abatchev, Gurtej Sandhu, Luan Tran, William T. Rericha, D. Mark Durcan
-
Patent number: 7687225Abstract: Systems and techniques involving optical coatings for semiconductor devices. An implementation includes a substantially isotropic, heterogeneous anti-reflective coating having a substantially equal thickness normal to any portion of a substrate independent of the orientation of the portion.Type: GrantFiled: September 29, 2004Date of Patent: March 30, 2010Assignee: Intel CorporationInventors: Sergei V. Koveshnikov, Juan E. Dominguez, Kyle Y. Flanigan, Ernisse Putna
-
Patent number: 7592265Abstract: A method of trimming hard mask is provided. The method includes providing a substrate, a hard mask layer, and a tri-layer stack on the substrate. The tri-layer stack includes a top photo resist layer, a silicon photo resist layer, and a bottom photo resist layer. The top photo resist layer, the silicon photo resist layer, the bottom photo resist layer, and the hard mask layer are patterned sequentially. A trimming process is performed on the hard mask layer. The bottom photo resist layer of the present invention is thinner and loses some height in the etching process, so the bottom photo resist layer will not collapse.Type: GrantFiled: January 4, 2007Date of Patent: September 22, 2009Assignee: United Microelectronics Corp.Inventors: Meng-Jun Wang, Yi-Hsing Chen, Min-Chieh Yang, Jiunn-Hsiung Liao
-
Patent number: 7589030Abstract: A method of fabricating a liquid crystal display device includes performing a first mask process to form a gate line, a gate pad, and a gate electrode on a substrate. The method of fabricating a liquid crystal display device further includes performing a second mask process to form an active layer on the gate electrode, performing a third mask process to form a pixel electrode contacting the active layer, and performing a fourth mask process to form a source electrode and a drain electrode on the active layer.Type: GrantFiled: June 27, 2006Date of Patent: September 15, 2009Assignee: LG. Display Co., Ltd.Inventors: Ki Sul Cho, Young Seok Choi, Byung Yong Ahn, Tae Ung Hwang, Dong Jun Min, Bo Kyoung Jung
-
Patent number: 7550392Abstract: A semiconductor device manufacturing method, includes a step of forming a first alumina film (underlying insulating film) 37 on a semiconductor substrate 20, a step of forming a first conductive film 41, a ferroelectric film 42, and a second conductive film 43 in sequence on the first alumina film 37, a step of forming a mask material film 45 on the second conductive film 43, a step of shaping the mask material film 45 into an auxiliary mask 45a, a step of shaping the second conductive film 43 into an upper electrode 43a by an etching using the auxiliary mask 45a and a first resist pattern 46 as a mask, a step of shaping the ferroelectric film 42 into a capacitor dielectric film 42a by patterning, and a step of shaping the first conductive film 41 into a lower electrode 41a by patterning, whereby a capacitor Q is constructed by the lower electrode 41, the capacitor dielectric film 42a, and the upper electrode 43a.Type: GrantFiled: September 13, 2005Date of Patent: June 23, 2009Assignee: Fujitsu Microelectronics LimitedInventors: Genichi Komuro, Kenji Kiuchi
-
Patent number: 7544619Abstract: An insulating film is formed on a main surface of a substrate. A conductive film is formed on the insulating film. A lower layer resist film, an intermediate layer, an anti-reflection film and an upper layer resist film are formed on the conductive film. A focal point at a time of exposure is detected by detecting a height of the upper layer resist film. In detecting the focal point at the time of exposure, a focal point detection light is radiated on the upper layer resist film. After detecting the focal point, the upper layer resist film is exposed and developed thereby to form a resist pattern. With the resist pattern as a mask, the intermediate layer and the anti-reflection film are patterned, and the lower layer resist film is developed. With these patterns as a mask, the conductive film is etched thereby to form a gate electrode.Type: GrantFiled: September 26, 2006Date of Patent: June 9, 2009Assignee: Renesas Technology Corp.Inventor: Takeo Ishibashi
-
Patent number: 7510973Abstract: A method for forming a fine pattern in a semiconductor device is provided. In one aspect, the method can construct a fine pattern in semiconductor devices. The fine pattern has a critical dimension that overcomes the resolution limit of an exposure equipment.Type: GrantFiled: June 29, 2007Date of Patent: March 31, 2009Assignee: Hynix Semiconductor Inc.Inventor: Keun Kyu Kong
-
Patent number: 7435536Abstract: Alignment tolerances between narrow mask lines, for forming interconnects in the array region of an integrated circuit, and wider mask lines, for forming interconnects in the periphery of the integrated circuit, are increased. The narrow mask lines are formed by pitch multiplication and the wider mask lines are formed by photolithography. The wider mask lines and are aligned so that one side of those lines is flush with or inset from a corresponding side of the narrow lines. Being wider, the opposite sides of the wider mask lines protrude beyond the corresponding opposite sides of the narrow mask lines. The wider mask lines are formed in negative photoresist having a height less than the height of the narrow mask lines. Advantageously, the narrow mask lines can prevent expansion of the mask lines in one direction, thus increasing alignment tolerances in that direction.Type: GrantFiled: June 20, 2006Date of Patent: October 14, 2008Assignee: Micron Technology, Inc.Inventors: Gurtej S. Sandhu, Randal W. Chance, William T. Rericha
-
Patent number: 7419894Abstract: The present invention provides a method of manufacturing a gate electrode in which a fine gate electrode can effectively be manufactured by thickening a resist opening for gate electrodes formed by ordinary electron beam lithography so as to reduce opening dimensions. The method of manufacturing a gate electrode of the present invention includes a step of forming a laminated resist including at least an electron beam resist layer as a lowermost layer on a surface where a gate electrode is to be formed; a step of forming an opening in layer(s) other than the lowermost layer; a step of forming a gate electrode opening on the lowermost layer exposed from the opening; a step of reducing the gate electrode opening selectively; and a step of forming a gate electrode in the gate electrode opening.Type: GrantFiled: February 23, 2005Date of Patent: September 2, 2008Assignee: Fujitsu LimitedInventors: Kozo Makiyama, Koji Nozaki
-
Patent number: 7407824Abstract: A semiconductor manufacturing method comprises forming a leveling guard ring defining an interior area into which are fabricated one or more devices. In certain embodiments two or more matched devices, such as in a common centroid layout, are fabricated in the interior area. The guard ring is formed on at least one particular layer for a particular processing step. By the guard ring overwhelming the effect of local features' elevation differences, photoresist thereafter applied consequently has a more uniform height across the interior area, resulting in more uniform devices. In some embodiments, a plurality of guard rings enclosing respective arrays of matched devices are arranged over the surface of a semiconductor wafer, spaced apart so as to be not local to one another. Based on the equalizing effect by each of the guard rings, the respective devices arranged in the interior areas are more evenly matched to equivalent devices in far-spaced guard rings. Thus, both local and global matching are achieved.Type: GrantFiled: May 15, 2007Date of Patent: August 5, 2008Assignee: Agere Systems, Inc.Inventors: Daniel Charles Kerr, Roscoe T. Luce, Michele Marie Jamison, Alan Sangone Chen, William A. Russell
-
Patent number: 7384874Abstract: A method of forming a hardmask pattern over a semiconductor device semiconductor device includes forming a first hardmask layer over a semiconductor substrate. First and second structures are formed over the first hardmask layer, the first and second structures formed of the same material, the first and second structures defining a first pitch. First and second overcoats are formed over the first and second structures, respectively, the first and second overcoats being conformal to the first and second structures, respectively. The first and second overcoats define a space therebetween and are configured to expose an underlying layer. A filling layer is formed to fill the space defined between the first and second overcoats. The first and second overcoats are removed to provide the first structure, the second structure, and a third structure provided between the first and second structures, the first and third structures defining a second pitch, the second and third structures defining a third pitch.Type: GrantFiled: December 30, 2006Date of Patent: June 10, 2008Assignee: Hynix SemiconductorInventor: Woo Yung Jung
-
Patent number: 7358140Abstract: A structure fabrication method. The method comprises providing a design structure that includes (i) a design substrate and (ii) M design normal regions on the design substrate, wherein M is a positive integer greater than 1. Next, N design sacrificial regions are added between two adjacent design normal regions of the M design normal regions, wherein N is a positive integer. Next, an actual structure is provided that includes (i) an actual substrate corresponding to the design substrate, (ii) a to-be-etched layer on the actual substrate, and (iii) a memory layer on the to-be-etched layer. Next, an edge printing process is performed on the memory layer so as to form (a) M normal memory portions aligned with the M design normal regions and (b) N sacrificial memory portions aligned with the N design sacrificial regions.Type: GrantFiled: November 4, 2005Date of Patent: April 15, 2008Assignee: International Business Machines CorporationInventors: Toshiharu Furukawa, Mark C. Hakey, Steven J. Holmes, David V. Horak, Charles W. Koburger, III
-
Patent number: 7335542Abstract: A semiconductor device has: a semiconductor substrate having a pair of current input/output regions via which current flows; an insulating film formed on the semiconductor substrate and having a gate electrode opening; and a mushroom gate electrode structure formed on the semiconductor substrate via the gate electrode opening, the mushroom gate electrode structure having a stem and a head formed on the stem, the stem having a limited size on the semiconductor substrate along a current direction and having a forward taper shape upwardly and monotonically increasing the size along the current direction, the head having a size expanded stepwise along the current direction, and the stem contacting the semiconductor substrate in the gate electrode opening and riding the insulating film near at a position of at least one of opposite ends of the stem along the current direction.Type: GrantFiled: March 5, 2007Date of Patent: February 26, 2008Assignees: Fujitsu Limited, Fujitsu Quantum Devices LimitedInventors: Kozo Makiyama, Naoya Ikechi, Takahiro Tan
-
Patent number: 7288476Abstract: The controlled etch into a substrate or thick homogeneous film is accomplished by introducing a sacrificial film to gauge the depth to which the substrate/thick film has been etched. Optical endpointing the etch of the sacrificial film on the etch stop layer allows another element of process control over the depth of the primary trench or via.Type: GrantFiled: January 26, 2005Date of Patent: October 30, 2007Assignee: Avago Technologies General IP Pte. Ltd.Inventor: Ronnie P. Varghese
-
Patent number: 7282440Abstract: A process is provided for forming vertical contacts in the manufacture of integrated circuits and devices so manufactured. The process eliminates the need for precise mask alignment and allows the etch of the contact hole to be controlled independent of the etch of the interconnect trough. The process includes forming an insulating layer on the surface of a substrate; forming an etch stop layer on the surface of the insulating layer; forming an opening in the etch stop layer; etching to a first depth through the opening in the etch stop layer and into the insulating layer to form an interconnect trough; forming a photoresist mask on the surface of the etch stop layer and in the trough; and continuing to etch through the insulating layer until reaching the surface of the substrate to form a contact hole. The above process may be repeated during the formation of multilevel metal integrated circuits.Type: GrantFiled: May 1, 2002Date of Patent: October 16, 2007Assignee: Micron Technology, Inc.Inventors: Charles H. Dennison, Trung T. Doan
-
Patent number: 7253012Abstract: A semiconductor manufacturing method comprises forming a leveling guard ring defining an interior area into which are fabricated one or more devices. In certain aspects, two or more matched devices, such as in a common centroid layout, are fabricated in the interior area. The guard ring is formed on at least one particular layer for a particular processing step. By the guard ring overwhelming the effect of local features' elevation differences, photoresist thereafter applied consequently has a more uniform height across the interior area, resulting in more uniform devices. A plurality of guard rings may be used that enclose respective arrays of matched devices arranged over the surface of a semiconductor wafer. Based on the equalizing effect by each of the guard rings, the respective devices arranged in the interior areas are more evenly matched to equivalent devices in far-spaced guard rings. Thus, local and global matching are achieved.Type: GrantFiled: September 14, 2004Date of Patent: August 7, 2007Assignee: Agere Systems, Inc.Inventors: Daniel Charles Kerr, Roscoe T. Luce, Michele Marie Jamison, Alan Sangone Chen, William A. Russell
-
Patent number: 7238624Abstract: The present disclosure relates generally to the manufacturing of semiconductor devices, and more particularly to semiconductor manufacturing using a vacuum chamber. In one example, a method for semiconductor manufacturing includes: providing a photoresist layer for a wafer; removing solvent residues from the photoresist layer by using a vacuum chamber; and exposing the wafer.Type: GrantFiled: March 1, 2005Date of Patent: July 3, 2007Assignee: Taiwan Semiconductor Manufacturing Company, Ltd.Inventor: Jen-Chieh Shih
-
Patent number: 7223703Abstract: In forming a mask pattern on a circuit board, a mask pattern of N-layer structure is formed in a region where the mechanical strength of the circuit board needs to be increased. N photosensitive layers are first stacked on a substrate so that they becomes lower in sensitivity from the first photosensitive layer toward the Nth photosensitive layer. In the first photosensitive layer (bottom layer), a first pattern is formed and has the same shape as a predetermined pattern to be formed on the circuit board. In the Kth photosensitive layer (N?K?2), a Kth pattern is formed so that the Kth pattern is smaller than a (K?1)st pattern formed in the (K?1)st photosensitive layer and arranged inside the (K?1)st pattern.Type: GrantFiled: January 13, 2005Date of Patent: May 29, 2007Assignee: Fujifilm CorporationInventor: Yoshiharu Sasaki
-
Patent number: 7223645Abstract: A semiconductor device has: a semiconductor substrate having a pair of current input/output regions via which current flows; an insulating film formed on the semiconductor substrate and having a gate electrode opening; and a mushroom gate electrode structure formed on the semiconductor substrate via the gate electrode opening, the mushroom gate electrode structure having a stem and a head formed on the stem, the stem having a limited size on the semiconductor substrate along a current direction and having a forward taper shape upwardly and monotonically increasing the size along the current direction, the head having a size expanded stepwise along the current direction, and the stem contacting the semiconductor substrate in the gate electrode opening and riding the insulating film near at a position of at least one of opposite ends of the stem along the current direction.Type: GrantFiled: February 2, 2004Date of Patent: May 29, 2007Assignees: Fujitsu Limited, Fujitsu Quantum Devices LimitedInventors: Kozo Makiyama, Naoya Ikechi, Takahiro Tan
-
Patent number: 7183150Abstract: In accordance with the objectives of the invention a new method is provided for the creation of a layer of a Resistance Protective Oxide (RPO) layer. A layer of ONO is deposited that is to function as the layer of RPO. The deposited layer of ONO is patterned and wet etched, removing the upper or first layer of silicon dioxide. The patterned and etch upper of first layer of silicon dioxide is used as a hardmask to remove the central layer of silicon nitride applying a wet etch. A wet etch is then applied to remove the remaining lower of second layer of silicon dioxide, completing the patterning of the layer of RPO.Type: GrantFiled: September 21, 2004Date of Patent: February 27, 2007Assignee: Taiwan Semiconductor Manufacturing Co., Ltd.Inventors: Ming-Chang Hsieh, Hsun-Chih Tsao, Hung-Chih Tsai, Pin-Shyne Chin
-
Patent number: 7176074Abstract: A manufacturing method of thin film transistor array substrate is provided. A substrate, whereon first, second, and third poly-silicon islands, a gate insulating layer, a plurality of first, second, and third gates, and a first passivation layer have been formed, is provided. A third patterned photoresist layer is formed on the first passivation layer by using a third half-tone mask. A first ion implantation process is performed with the third patterned photoresist layer as mask to form first sources/drains. A portion of the thickness of the third patterned photoresist layer is removed, and then portions of the first passivation layer and the gate insulating layer are removed with the third patterned photoresist layer as mask to form the first patterned passivation layer. The third patterned photoresist layer is removed. First, second and third source/drain conductive layers, a second patterned passivation layer, and pixel electrodes are formed in sequence.Type: GrantFiled: August 10, 2006Date of Patent: February 13, 2007Assignee: Chunghwa Picture Tubes, Ltd.Inventors: Fu-Yuan Shiau, Yu-Liang Wen
-
Patent number: 7172960Abstract: A method including introducing a dielectric layer over a substrate between an interconnection line and the substrate, the dielectric layer comprising a plurality of alternating material layers; and patterning an interconnection to the substrate. An apparatus comprising a substrate comprising a plurality of devices formed thereon; and an interlayer dielectric layer comprising a base layer and a cap layer, the cap layer comprising a plurality of alternating material layers overlying the substrate.Type: GrantFiled: December 27, 2000Date of Patent: February 6, 2007Assignee: Intel CorporationInventors: Sanjay S. Natarajan, Sean W. King, Khaled A. Elamrawi
-
Patent number: 7074631Abstract: A method includes disposing a planarization layer on a surface of a layer of semiconductor material and disposing a lithography layer on a surface of the planarization layer. The method also includes performing nanolithography to remove at least a portion of the planarization layer, at least a portion of the lithography layer and at least a portion of the layer of semiconductor material, thereby forming a dielectric function in the surface of the layer of semiconductor material that varies spatially according to a pattern.Type: GrantFiled: March 5, 2004Date of Patent: July 11, 2006Assignee: Luminus Devices, Inc.Inventors: Alexei A. Erchak, John W. Graff, Michael Gregory Brown, Scott W. Duncan, Milan S. Minsky
-
Patent number: 7071121Abstract: A ceramic film is useful as ion-conducting ceramics, electrodes, hard ceramic coatings, transparent conducting oxides, transparent semiconducting oxides, ferroelectric oxides, and dielectric oxides. The ceramic film may be produced from a liquid precursor solution.Type: GrantFiled: October 28, 2003Date of Patent: July 4, 2006Assignee: Hewlett-Packard Development Company, L.P.Inventors: David Punsalan, Dennis M. Lazaroff, Christopher C. Beatty