Having Organic Semiconductive Component Patents (Class 438/99)
  • Patent number: 8907133
    Abstract: The invention generally encompasses phosphonium ionic liquids, salts, compositions and their use in many applications, including but not limited to: as electrolytes in electronic devices such as memory devices including static, permanent and dynamic random access memory, as electrolytes in energy storage devices such as batteries, electrochemical double layer capacitors (EDLCs) or supercapacitors or ultracapacitors, electrolytic capacitors, as electrolytes in dye-sensitized solar cells (DSSCs), as electrolytes in fuel cells, as a heat transfer medium, among other applications. In particular, the invention generally relates to phosphonium ionic liquids, salts, compositions, wherein the compositions exhibit superior combination of thermodynamic stability, low volatility, wide liquidus range, ionic conductivity, and electrochemical stability. The invention further encompasses methods of making such phosphonium ionic liquids, salts, compositions, operational devices and systems comprising the same.
    Type: Grant
    Filed: December 5, 2012
    Date of Patent: December 9, 2014
    Assignee: eSionic ES, Inc.
    Inventors: Wayne L. Gellett, Benjamin L. Rupert, Levi J. Irwin, Leanne Beer, Shilpa A. Worlikar, Steven Z. Shi
  • Patent number: 8907344
    Abstract: A thin film transistor element is formed in each of adjacent first and second apertures defined by partition walls. In plan view of a bottom portion of the first aperture, a center of area of a liquid-philic layer portion is offset from a center of area of the bottom portion in a direction opposite a direction of the second aperture, and in plan view of a bottom portion of the second aperture, a center of area of a liquid-philic layer portion is offset from a center of area of the bottom portion in a direction opposite a direction of the first aperture.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: December 9, 2014
    Assignee: Panasonic Corporation
    Inventors: Yuko Okumoto, Akihito Miyamoto, Takaaki Ukeda
  • Patent number: 8906739
    Abstract: A method includes: a step of forming a gate electrode (14) on a substrate (10a); a step of forming a gate insulating film (15) to cover the gate electrode (14), and then forming an In-Ga-Zn-O-based oxide semiconductor layer (16) in which a ratio of In:Ga:Zn in atomic % is 1:1:1 or 4:5:1 on the gate insulating film (15) to overlap the gate electrode (14); a step of forming a source electrode (19a) and a drain electrode (19b) on the oxide semiconductor layer (16) to overlap the gate electrode (14) and to face each other; and a step of performing an annealing process in an atmosphere containing steam (S) on the substrate (10a) provided with the source electrode (19a) and the drain electrode (19b).
    Type: Grant
    Filed: February 9, 2011
    Date of Patent: December 9, 2014
    Assignee: Sharp Kabushiki Kaisha
    Inventors: Yoshifumi Ohta, Yoshimasa Chikama, Masahiko Suzuki, Okifumi Nakagawa, Yoshiyuki Harumoto
  • Patent number: 8906707
    Abstract: The invention provides a multilayered device and the method for fabricating the same. The multilayered device comprises a substrate, a first layer deposited on the substrate, a second layer deposited on the first layer, and a third layer deposited on the second layer. The coverage of the second layer is determined by a rate of crystallization of the third layer. The rate of crystallization of the third layer is determined by measuring X-ray diffraction of the device.
    Type: Grant
    Filed: February 20, 2008
    Date of Patent: December 9, 2014
    Assignee: Industry-University Cooperation Foundation Sogang University
    Inventors: Young Joo Lee, Hyunjung Kim
  • Patent number: 8906752
    Abstract: Ink compositions comprising polythiophenes and methicone that are formulated for inkjet printing the hole injecting layer (HIL) of an organic light emitting diode (OLED) are provided. Also provided are methods of inkjet printing the HILs using the ink compositions.
    Type: Grant
    Filed: December 4, 2013
    Date of Patent: December 9, 2014
    Assignee: Kateeva, Inc.
    Inventors: Inna Tregub, Rajsapan Jain, Michelle Chan
  • Publication number: 20140353647
    Abstract: An organic thin film transistor comprises source and drain electrodes defining a channel between them; a surface-modification layer on at least part of the surface of each of the source and drain electrodes; an organic semiconductor layer extending across the channel and in contact with the surface-modification layers; a gate electrode; and a gate dielectric between the organic semiconductor layer and the gate dielectric. The surface-modification layers consist essentially of a partially fluorinated fullerene.
    Type: Application
    Filed: October 29, 2012
    Publication date: December 4, 2014
    Applicant: CAMBRIDGE DISPLAY TECHNOLOGY LIMITED
    Inventors: Christopher Newsome, Julian Carter
  • Publication number: 20140353621
    Abstract: A method of manufacturing an organic light-emitting display apparatus, which can minimize damage to an emission layer, and an organic light-emitting display apparatus manufactured using the method are provided. The method includes: preparing a backplane including a pixel electrode and a pixel-defining layer protruding further than an upper surface of the pixel electrode and exposing at least a part of the pixel electrode; placing a donor film for laser-induced thermal imaging (LITI) on the backplane; irradiating a predetermined portion of the donor film with a first light from a laser beam to transfer a part of a transfer layer at the predetermined portion of the donor film to the backplane; irradiating at least one of the donor film and the backplane with a second light having a weaker output than that of the first light from the laser beam; and detaching the donor film from the backplane.
    Type: Application
    Filed: December 3, 2013
    Publication date: December 4, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventors: Jin-Woo Park, Myung-Jong Jung
  • Publication number: 20140357016
    Abstract: An organic molecular film forming apparatus 100 of forming an organic molecular film on a processing target object includes a processing chamber 11 that accommodates therein the processing target object; an organic material gas supplying unit 2 that supplies an organic material gas into the processing chamber 11; and an ultraviolet ray irradiating unit 13 that irradiates ultraviolet ray to at least one of the processing target object, the organic material gas supplied to the processing target object, and a film formed on a surface of the processing target object. At least one of the surface of the processing target object and the organic molecular film formed thereon is activated by irradiating the ultraviolet ray from the ultraviolet ray irradiating unit 13 to at least one of the processing target object, the organic material gas supplied to the processing target object, and the film formed on the processing target object.
    Type: Application
    Filed: May 30, 2014
    Publication date: December 4, 2014
    Applicant: Tokyo Electron Limited
    Inventors: Takashi Fuse, Setsuko Shibuya
  • Publication number: 20140356996
    Abstract: A donor substrate may include a base layer, a light-to-heat conversion layer disposed on the base layer, a buffer layer disposed on the light-to-heat conversion layer and including a composite layer of titanium dioxide and polytetrafluoroethylene, and a transfer layer disposed on the buffer layer. The buffer layer may be disposed between the transfer layer and the light-to-heat conversion layer. The buffer layer may be cleaned by incident light to preserve or improve its hydrophobicity. Accordingly, the buffer layer can be easily separated from the transfer layer. Advantageously, when (a portion of) the transfer layer is transferred onto a target substrate, unwanted material transfer may be prevented.
    Type: Application
    Filed: September 3, 2013
    Publication date: December 4, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventor: YoungGil KWON
  • Publication number: 20140356997
    Abstract: A donor substrate includes a base layer, a light-to-heat conversion layer disposed on the base layer, a metal particle layer disposed on the base layer and which discharges static electricity, and a transfer layer disposed on the light-to-heat conversion layer.
    Type: Application
    Filed: September 10, 2013
    Publication date: December 4, 2014
    Applicant: Samsung Display Co., Ltd.
    Inventor: YoungGil KWON
  • Patent number: 8900892
    Abstract: A method for depositing a layer of phosphor-containing material on a plurality of LED (light-emitting diode) dies on a wafer includes disposing a layer of dry photoresist film over a plurality of LED dies on a wafer, disposing a mask layer over the dry photoresist film, and patterning the dry photoresist film to form a plurality of openings in the dry photoresist film to expose a top surface of each of the LED dies. The method also includes depositing a phosphor-containing material on the exposed top surface of each the LED dies using a screen printing process, and removing the patterned dry photoresist film.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: December 2, 2014
    Assignee: LedEngin, Inc.
    Inventors: Zequn Mei, Xianto Yan
  • Patent number: 8900898
    Abstract: An organic light-emitting display includes a substrate including a pixel region and a transistor region; a first transparent electrode and a second transparent electrode formed over the pixel region and the transistor region of the substrate, respectively; a gate electrode formed over the second transparent electrode; a gate insulating film formed over the gate electrode; a semiconductor layer formed over the gate insulating film; a source and drain electrode having an end connected to the semiconductor layer and the other end connected to the first transparent electrode; a pixel defining layer disposed over the source and drain electrode to cover the source and drain electrode and having an opening disposed over the first transparent electrode; a light-blocking layer formed over the pixel defining layer; and an organic light-emitting layer formed over the first transparent electrode.
    Type: Grant
    Filed: July 22, 2013
    Date of Patent: December 2, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventor: Yong-Woo Park
  • Patent number: 8900654
    Abstract: Compositions and methods for controlled polymerization and/or oligomerization of silane (and optionally cyclosilane) compounds, including those of the general formulae SinH2n and SinH2n+2, as well as halosilanes and arylsilanes, to produce soluble polysilanes, polygermanes and/or polysilagermanes having low levels of carbon and metal contaminants, high molecular weights, low volatility, high purity, high solubility and/or high viscosity. The polysilanes, polygermanes and/or polysilagermanes are useful as a precursor to silicon- and/or germanium-containing conductor, semiconductor and dielectric films.
    Type: Grant
    Filed: July 29, 2011
    Date of Patent: December 2, 2014
    Assignee: Thin Film Electronics, Inc.
    Inventors: Klaus Kunze, Gregory Nyce, Wenzhuo Guo
  • Patent number: 8901555
    Abstract: A light sensing device is disclosed. The light sensing device includes a first light sensor and a second light sensor. The first light sensor formed on a substrate includes a first metal oxide semiconductor layer for absorbing a first light having a first waveband. The second light sensor formed on the substrate includes a second metal oxide semiconductor layer and an organic light-sensitive layer on the second metal oxide semiconductor layer for absorbing a second light having a second waveband.
    Type: Grant
    Filed: July 17, 2012
    Date of Patent: December 2, 2014
    Assignee: E Ink Holdings Inc.
    Inventors: Chia-Chun Yeh, Henry Wang, Wei-Chou Lan, Ted-Hong Shinn
  • Patent number: 8900916
    Abstract: A highly reliable semiconductor device which includes a thin film transistor having stable electric characteristics, and a manufacturing method thereof. In the manufacturing method of the semiconductor device which includes a thin film transistor where a semiconductor layer including a channel formation region is an oxide semiconductor layer, heat treatment which reduces impurities such as moisture to improve the purity of the oxide semiconductor layer and oxidize the oxide semiconductor layer (heat treatment for dehydration or dehydrogenation) is performed. Not only impurities such as moisture in the oxide semiconductor layer but also those existing in a gate insulating layer are reduced, and impurities such as moisture existing in interfaces between the oxide semiconductor layer and films provided over and under and in contact with the oxide semiconductor layer are reduced.
    Type: Grant
    Filed: July 8, 2010
    Date of Patent: December 2, 2014
    Assignee: Semiconductor Energy Laboratory Co., Ltd.
    Inventors: Shunpei Yamazaki, Miyuki Hosoba, Kosei Noda, Hiroki Ohara, Toshinari Sasaki, Junichiro Sakata
  • Patent number: 8901539
    Abstract: The invention provides an organic EL device including a pair of electrodes and at least one luminescent layer located between the pair of electrodes, the luminescent layer including a blue phosphorescent material having a luminescence peak in a range of from 420 nm to less than 500 nm, a green phosphorescent material having a luminescence peak in a range of from 500 nm to less than 570 nm, a red phosphorescent material having a luminescence peak in a range of from 570 nm to 650 nm, and a charge-transporting material, the charge-transporting material having a lowest excited triplet energy level (T1) of 2.7 eV or more, and the T1 of the charge-transporting material being higher than the T1 of the blue phosphorescent material by 0.08 eV or more.
    Type: Grant
    Filed: December 9, 2009
    Date of Patent: December 2, 2014
    Assignee: UDC Ireland Limited
    Inventors: Kazuyuki Shibata, Masaru Kinoshita
  • Patent number: 8895975
    Abstract: Provided is a photoelectric element that includes an electron transport layer having excellent electron transport properties and a sufficiently large reaction interface and has low resistance loss and excellent conversion efficiency between light and electricity. The photoelectric element includes a first electrode 3, a second electrode 4, an electron transport layer 1 and a hole transport layer 5 interposed between the first electrode 3 and the second electrode 4, an electrolyte solution, and a sensitizing dye. The electron transport layer 1 includes an organic compound having an oxidation-reduction site capable of repeated oxidation-reduction. The electrolyte solution serves to stabilize a reduction state of the oxidation-reduction site. The organic compound and the electrolyte solution form a gel layer 2. The sensitizing dye is provided in contact with the electron transport layer 1.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: November 25, 2014
    Assignees: Panasonic Corporation, Waseda University
    Inventors: Naoki Hayashi, Michio Suzuka, Takashi Sekiguchi, Takeyuki Yamaki, Hiroyuki Nishide, Kenichi Oyaizu, Fumiaki Kato, Naoki Sano
  • Patent number: 8895982
    Abstract: An organic light-emitting display apparatus in which electrical communication between an opposing electrode and an electrode power supply line can be more easily checked without adding an additional process in a manufacturing process, and a method of manufacturing the organic light-emitting display apparatus, is provided. The organic light-emitting display apparatus includes thin film transistors and pixel electrodes electrically connected to the thin film transistors in an active area of a substrate, an opposing electrode in the active area and a dead area of the substrate, an electrode power supply line in the dead area of the substrate and having a surface contacting the opposing electrode and configured to supply power to the opposing electrode, and a test line in the dead area of the substrate separated from the electrode power supply line and contacting the opposing electrode.
    Type: Grant
    Filed: September 3, 2013
    Date of Patent: November 25, 2014
    Assignee: Samsung Display Co., Ltd.
    Inventors: Jeong-Hwan Kim, Jong-Hyun Park, Seong-Kweon Heo, Kyung-Hoon Park
  • Patent number: 8895850
    Abstract: The present invention provides a phthalocyanine nanorod; an ink composition containing the phthalocyanine nanorod; a transistor containing the phthalocyanine nanorod; a material for a photoelectric conversion device, the material containing the phthalocyanine nanorod; and a photoelectric conversion device containing the phthalocyanine nanorod between the positive electrode and the negative electrode. Since an ink composition containing a nanorod according to the present invention can be formed into a film by a wet process such as a coating method or a printing method, an electronic device that is less likely to fail and is lightweight and inexpensive can be produced on a flexible plastic substrate.
    Type: Grant
    Filed: May 19, 2011
    Date of Patent: November 25, 2014
    Assignee: DIC Corporation (Tokyo)
    Inventors: Hideki Etori, Hideyuki Murata, Norimasa Fukazawa, Shou Inagaki
  • Patent number: 8896071
    Abstract: A technique for isolating electrodes on different layers of a multilayer electronic device across an array containing more than 100000 devices on a plastic substrate. The technique comprises depositing a bilayer of a first dielectric layer (6) of a solution-processible polymer dielectric and a layer of parylene (9) to isolate layers of conductor or semiconductor on different levels of the device. The density of defects located in the active area of one of the multilayer electronic devices is typically more than 1 in 100000.
    Type: Grant
    Filed: May 12, 2008
    Date of Patent: November 25, 2014
    Assignee: Plastic Logic Limited
    Inventors: Timothy Von Werne, Catherine Mary Ramsdale, Henning Sirringhaus
  • Patent number: 8895352
    Abstract: Techniques for forming a thin coating of a material on a carbon-based material are provided. In one aspect, a method for forming a thin coating on a surface of a carbon-based material is provided. The method includes the following steps. An ultra thin silicon nucleation layer is deposited to a thickness of from about two angstroms to about 10 angstroms on at least a portion of the surface of the carbon-based material to facilitate nucleation of the coating on the surface of the carbon-based material. The thin coating is deposited to a thickness of from about two angstroms to about 100 angstroms over the ultra thin silicon layer to form the thin coating on the surface of the carbon-based material.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: November 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Katherina Babich, Alessandro Callegari, Zhihong Chen, Edward Kiewra, Yanning Sun
  • Patent number: 8895355
    Abstract: A method of arranging a diamagnetic rod includes levitating a diamagnetic rod above a contact line at which a first magnet contacts a second magnet, the first magnet and the second magnet having diametric magnetization in a direction perpendicular to the contact line.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: November 25, 2014
    Assignee: International Business Machines Corporation
    Inventors: Qing Cao, Oki Gunawan
  • Patent number: 8895354
    Abstract: Method for producing a semiconductor device such as an organic thin film transistor, and a device produced by the method, the method including the steps of forming conducting electrodes over a substrate, treating a surface of the electrodes with an arene substituted with an electron-withdrawing group to form an electrode contact layer over the electrodes, and forming an organic semiconductor layer over the substrate and electrodes, in which the substrate and electrodes are baked before the organic semiconductor layer is formed so as to reduce contaminants on the electrode contact layer and thereby promote improved crystal nucleation on a surface of the electrode.
    Type: Grant
    Filed: June 30, 2011
    Date of Patent: November 25, 2014
    Assignee: Cambridge Display Technology Limited
    Inventors: Thomas Kugler, Christopher Newsome, Mohd K. Othman
  • Patent number: 8895353
    Abstract: Counter anions having oxidative properties alter the performance of solution processed multilayer polymer light emitting diodes (PLEDs) that use cationic conjugated polyelectrolytes (CPEs) as electron injection layers (EILs). In some versions, PLEDs with poly(2-methoxy-5-(2?-ethylhexyloxy)-1,4-phenylene vinylene) (MEH-PPV) emissive layers and cationic CPE EILs are altered with halide counter anions to exhibit a systematic increase in device performance. Exemplary oxidative counter anions are halide counter anions with F?>Cl?>Br?>I? in terms of device performance.
    Type: Grant
    Filed: October 21, 2009
    Date of Patent: November 25, 2014
    Assignee: The Regents of the University of California
    Inventors: Thuc-Quyen Nguyen, Andres Garcia, Jacek Brzezinski
  • Patent number: 8895962
    Abstract: Laser pyrolysis reactor designs and corresponding reactant inlet nozzles are described to provide desirable particle quenching that is particularly suitable for the synthesis of elemental silicon particles. In particular, the nozzles can have a design to encourage nucleation and quenching with inert gas based on a significant flow of inert gas surrounding the reactant precursor flow and with a large inert entrainment flow effectively surrounding the reactant precursor and quench gas flows. Improved silicon nanoparticle inks are described that has silicon nanoparticles without any surface modification with organic compounds. The silicon ink properties can be engineered for particular printing applications, such as inkjet printing, gravure printing or screen printing. Appropriate processing methods are described to provide flexibility for ink designs without surface modifying the silicon nanoparticles.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: November 25, 2014
    Assignee: NanoGram Corporation
    Inventors: Shivkumar Chiruvolu, Igor Altman, Bernard M. Frey, Weidong Li, Guojun Liu, Robert B. Lynch, Gina Elizabeth Pengra-Leung, Uma Srinivasan
  • Publication number: 20140339514
    Abstract: An organic light-emitting display device includes a substrate. A buffer layer is formed on the substrate. A thin film transistor is disposed on the buffer layer. The thin film transistor includes an active layer, a gate electrode, a source electrode, a drain electrode, a first insulating layer, and a second insulating layer. An uneven pattern is formed by patterning the buffer layer. A first pixel electrode is disposed in an opening formed in the second insulating layer. The first pixel electrode includes a transparent conductive oxide. A second pixel electrode is disposed on the first pixel electrode. The second pixel electrode includes a semi-transmissive layer. An organic lighting-emitting layer is formed on the second pixel electrode. An opposite electrode is formed on the organic lighting-emitting layer.
    Type: Application
    Filed: October 17, 2013
    Publication date: November 20, 2014
    Applicant: SAMSUNG DISPLAY CO., LTD.
    Inventors: JAE-HWAN OH, JAE-BEOM CHOI, SEONG-HYUN JIN, SE-HUN PARK, WON-KYU LEE, YEOUNG-JIN CHANG
  • Patent number: 8889474
    Abstract: In an interlayer insulating layer, upper surface portions in edge regions near banks are located higher than an upper surface portion in a central region. In an anode formed to extend along upper surface portions, upper surface portions in edge regions near banks are located higher than an upper surface portion in a central region. In hole injection transporting layer formed to extend along upper surface portions, upper surface portions in edge regions near banks are located higher than an upper surface portion in central region. In an organic light-emitting layer, upper surface portions in edge regions (regions C1 and C2) near banks are located higher than an upper surface portion in a central region (region C3). As a result, in an organic light-emitting layer, thicknesses D1 and D2 are equal to thickness D3.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: November 18, 2014
    Assignee: Panasonic Corporation
    Inventor: Hideaki Matsushima
  • Patent number: 8889472
    Abstract: Techniques related to nanocomposite dielectric materials are generally described herein. These techniques may be embodied in apparatuses, systems, methods and/or processes for making and using such material. An example process may include: providing a film having a plurality of nanoparticles and an organic medium; comminuting the film to form a particulate; and applying the particulate to a substrate. The example process may also include providing a nanoparticle film having nanoparticles and voids located between the nanoparticles; contacting the film with a vapor containing an organic material; and curing the organic material to form the nanocomposite dielectric film. Various described techniques may provide nanocomposite dielectric materials with superior nanoparticle dispersion which may result in improved dielectric properties.
    Type: Grant
    Filed: April 13, 2011
    Date of Patent: November 18, 2014
    Assignee: Empire Technology Development LLC
    Inventor: Seth Miller
  • Patent number: 8890174
    Abstract: A light emitter and a method of manufacturing a light emitter. The light emitter includes a first electrode, a charge injection transport layer, a light-emitting layer, and a second electrode that are layered in this order. At least the light-emitting layer is defined by a bank that has at least one liquid-repellent surface. The charge injection transport layer is principally composed of a metal compound that is more liquid-philic than the surface of the bank. The charge injection transport layer includes a recessed structure so that in a region defined by the bank, the charge injection transport layer is lower than a bottom surface of the bank.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Kenji Harada, Takayuki Takeuchi, Seiji Nishiyama, Takahiro Komatsu
  • Patent number: 8889475
    Abstract: A carbon-based semiconductor structure includes a substrate and a gate stack. The gate stack includes a carbon-based gate electrode formed on the substrate. The gate stack also includes a gate dielectric formed on the carbon-based gate electrode. The gate stack further includes a carbon-based channel formed on the gate dielectric.
    Type: Grant
    Filed: May 30, 2013
    Date of Patent: November 18, 2014
    Assignee: International Business Machines Corporation
    Inventor: Damon Farmer
  • Patent number: 8890173
    Abstract: A light emitter and method for manufacturing a light emitter. The light emitter includes a first electrode, a charge injection transport layer, a light-emitting layer, and a second electrode that are layered in this order. At least the light-emitting layer is defined by bank. The charge injection transport layer includes a recessed portion having an inner bottom surface in contact with a bottom surface of the light-emitting layer and an inner side surface continuous with the inner bottom surface and in contact at least partly with a side surface of the light-emitting layer. The inner side surface has a lower edge continuous with the inner bottom surface, and an upper edge is aligned with a portion of a bottom periphery of the bank, the portion being in contact with the light-emitting layer or in contact with a bottom surface of the bank.
    Type: Grant
    Filed: August 9, 2011
    Date of Patent: November 18, 2014
    Assignee: Panasonic Corporation
    Inventors: Kenji Harada, Takayuki Takeuchi, Seiji Nishiyama, Takahiro Komatsu
  • Patent number: 8889473
    Abstract: The invention relates to a method for manufacturing adjacent first and second areas of a surface, said areas consisting, respectively, of first and second materials that are different from each other. Said method involves: depositing a first liquid volume that encompasses the first area and comprises a solvent in which the first material is dispersed; depositing a second liquid volume that encompasses the second area and comprises a solvent in which the second material is dispersed; and removing the solvents. According to the invention, the solvents of the first and second volumes are immiscible, and the second volume is simultaneously or consecutively deposited with the deposition of the first volume, before the first volume reaches the second area.
    Type: Grant
    Filed: March 7, 2011
    Date of Patent: November 18, 2014
    Assignee: Commissariat a l'Energie Atomique et aux Energies Alternatives
    Inventors: Mohamed Benwadih, Christophe Serbutoviez, Jean-Marie Verilhac
  • Patent number: 8890122
    Abstract: An organic electroluminescent device is provided and includes: a pair of electrodes; and at least one organic layer between the pair of electrodes, the at least one organic layer including a light-emitting layer. The at least one organic layer contains an indole compound represented by formula (1): in which Ind101 represents a substituted or unsubstituted indole ring, L101 represents a linking group, Ind101 and L101 are connected to each other at 2- or 3-position of Ind101, and n101 represents an integer of 2 or more.
    Type: Grant
    Filed: March 26, 2008
    Date of Patent: November 18, 2014
    Assignee: UDC Ireland Limited
    Inventors: Kazunari Yagi, Ryo Nishio
  • Patent number: 8890129
    Abstract: The present disclosure aims to provide a light-emitter having a favorable luminescence property, a light-emitting device having the light-emitter, and a method of manufacturing the light-emitter. Specifically, the light-emitter has the following structure. A hole injection layer and a light-emitting layer are layered between a first electrode and a second electrode which are transparent, and a light-emitting layer exists in an area defined by a bank. Thus, organic EL elements are formed. The hole injection layer has a recess in an upper surface of the area defined by the bank. An upper peripheral edge of the recess in the hole-injection layer is covered with a portion of the bank.
    Type: Grant
    Filed: January 22, 2013
    Date of Patent: November 18, 2014
    Assignee: Panasonic Corporation
    Inventor: Seiji Nishiyama
  • Publication number: 20140332760
    Abstract: A method is provided for forming an epoxy-based planarization layer overlying an organic semiconductor (OSC) film. Generally, the method forms a fluoropolymer passivation layer overlying the OSC layer. A photopatternable adhesion layer is formed overlying the fluoropolymer passivation layer, and patterned. A photopatternable planarization layer, comprising an epoxy-based organic resin, is formed overlying the photopatternable adhesion layer and patterned to expose the fluoropolymer passivation layer. Then, the fluoropolymer passivation layer is plasma etched to expose the OSC layer. More explicitly, the method can be used to fabricate a bottom gate or top gate organic thin-film transistor (OTFT). Top gate and bottom gate OTFT devices are also provided.
    Type: Application
    Filed: May 13, 2013
    Publication date: November 13, 2014
    Applicant: Sharp Laboratories of America, Inc.
    Inventors: Karen Nishimura, Lisa Stecker, Themistokles Afentakis, Kurt Ulmer
  • Publication number: 20140332774
    Abstract: For a display device and manufacturing method for the display device, the method comprises steps of: disposing a plurality of recesses on the cover body; coating glass frit in the recesses; sintering the glass frit for forming sintered blocks; disposing display auxiliary members on the cover body having the sintered blocks formed thereon; and irradiating the sintered blocks by laser to combine the cover and the display substrate with the sintered blocks. The present invention can prevent the display auxiliary members of the cover from being damaged in the packaging process of the display device.
    Type: Application
    Filed: June 26, 2013
    Publication date: November 13, 2014
    Inventor: Tai-pi Wu
  • Patent number: 8884273
    Abstract: Methods for producing nanostructures, particularly Group III-V semiconductor nanostructures, are provided. The methods include use of novel Group III and/or Group V precursors, novel surfactants, oxide acceptors, high temperature, and/or stable co-products. Related compositions are also described. Methods and compositions for producing Group III inorganic compounds that can be used as precursors for nanostructure synthesis are provided. Methods for increasing the yield of nanostructures from a synthesis reaction by removal of a vaporous by-product are also described.
    Type: Grant
    Filed: October 7, 2011
    Date of Patent: November 11, 2014
    Assignee: Nanosys, Inc.
    Inventors: Erik C. Scher, Mihai A. Buretea, William P. Freeman, Joel Gamoras, Baixin Qian, Jeffery A. Whiteford
  • Patent number: 8884277
    Abstract: The invention relates to a thick film conductive composition comprising metal particles wherein the specific surface area of the silver particles measured by BET according to ISO 9277 is equal to or more than 1.8 m2/g; manganese oxide; glass particles; and an organic vehicle.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: November 11, 2014
    Assignee: Heraeus Precious Metals GmbH & Co. KG
    Inventors: Markus König, Michael Neidert, Matthias Hörtheis, Carsten Mohr
  • Patent number: 8883546
    Abstract: The present invention relates to a process for preparing improved electronic devices, in particular organic field effect transistors (OFETs), with patterned insulator and organic semiconductor layers.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: November 11, 2014
    Assignee: Merck Patent GmbH
    Inventors: David Christoph Mueller, Toby Cull, Pawel Miskiewicz, Miguel Carrasco-Orozco
  • Patent number: 8883553
    Abstract: An OLED apparatus is provided that includes a first electrode having a first polarity, and an electrode arrangement spaced apart from the first electrode and having a second polarity. The OLED apparatus also includes a first organic emissive layer interposed between the first electrode and the electrode arrangement, and a second electrode spaced apart from the electrode arrangement in a direction opposite the first electrode. The second electrode has the first polarity. The OLED apparatus further includes a second organic emissive layer interposed between the second electrode and the electrode arrangement, and a drive circuit for providing a first energizing signal to the first electrode and the electrode arrangement and a second energizing signal to the second electrode and the electrode arrangement. A method for manufacturing an OLED array is provided.
    Type: Grant
    Filed: October 9, 2012
    Date of Patent: November 11, 2014
    Assignee: eMagin Corporation
    Inventors: Tariq Ali, Amulkumar P. Ghosh, Ilyas Khayrullin
  • Publication number: 20140326980
    Abstract: The purpose of the invention is to provide: a composition for an organic semiconductor insulating film, which is capable of forming an insulating film that exhibits excellent hydrophobicity and smoothness of the surface, while having excellent electrical stability; and an organic semiconductor insulating film obtained by using the composition for an organic semiconductor insulating film. The present composition contains a polysiloxane and an organic polymer compound. The polysiloxane is a polyhedral silsesquioxane having an oxetanyl group and/or an oxetanyl group containing silicon compound represented by the following formula (1). In the formula (1), each of R1-R3 independently represents a monovalent organic group (provided that at least one of R1-R3 is a monovalent organic group having an oxetanyl group); and each of v, w, x and y independently represents 0 or a positive number (provided that w and at least one of v, x and y are positive numbers).
    Type: Application
    Filed: November 13, 2012
    Publication date: November 6, 2014
    Applicant: TOAGOSEI CO., LTD.
    Inventors: Hiroshi Suzuki, Akinori Kitamura, Takashi Hamada
  • Patent number: 8878162
    Abstract: A method for depositing one or more organic layers onto a substrate, which includes: transferring the one or more layers from a depositing surface of a stamp to the substrate by bringing the layer coated depositing surface of the stamp into contact with the substrate, and the use of either or both of the steps of: (i) contacting the polymer with a plasticizer; and (ii) heating the substrate and/or stamp, in order to create favorable conditions for conformal contact and uniform layer transfer.
    Type: Grant
    Filed: January 31, 2008
    Date of Patent: November 4, 2014
    Assignee: Imperial Innovations Limited
    Inventors: Donal Bradley, Lichun Chen, Patrick Dagenaar
  • Patent number: 8877547
    Abstract: Provided is a thin film transistor including a gate electrode on a substrate; a gate insulating layer on the gate electrode; source and drain electrodes including first source and drain layers on the gate insulating layer, respectively, and spaced apart from each other, wherein at lease one of the first source and drain layers includes indium-tin-oxide doped with at least one Group III element; and an organic semiconductor layer on the gate insulating layer and contacting the first source and drain layers.
    Type: Grant
    Filed: May 25, 2011
    Date of Patent: November 4, 2014
    Assignee: LG Display Co., Ltd.
    Inventors: Hyun-Sik Seo, Nack-Bong Choi
  • Patent number: 8877548
    Abstract: Certain example embodiments relate to organic light emitting diode (OLED)/polymer light emitting diode (PLED) devices, and/or methods of making the same. A first transparent conductive coating (TCC) layer is disposed, directly or indirectly, on a glass substrate. An outermost major surface of the TCC layer is planarized by exposing the outermost major surface thereof to an ion beam. Following said planarizing, the first TCC layer has an arithmetic mean value RMS roughness (Ra) of less than 1.5 nm. A hole transporting layer (HTL) and an electron transporting and emitting layer (ETL) are disposed, directly or indirectly, on the planarized outermost major surface of the first TCC layer. A second TCC layer is disposed, directly or indirectly, on the HTL and the ETL. One or both TCC layers may include ITO. The substrate and/or an optional optical out-coupling layer stack system may be planarized using an ion beam.
    Type: Grant
    Filed: July 3, 2013
    Date of Patent: November 4, 2014
    Assignees: Guardian Industries Corp., Centre Luxembourgeois de Recherches pour le Verre et la Ceramique S.A. (C.R.V.C.)
    Inventors: Vijayen S. Veerasamy, Jens-Peter Muller, Tukaram K. Hatwar
  • Patent number: 8877549
    Abstract: A system and method for forming a phase change memory material on a substrate, in which the substrate is contacted with precursors for a phase change memory chalcogenide alloy under conditions producing deposition of the chalcogenide alloy on the substrate, at temperature below 350° C., with the contacting being carried out via chemical vapor deposition or atomic layer deposition. Various tellurium, germanium and germanium-tellurium precursors are described, which are useful for forming GST phase change memory films on substrates.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: November 4, 2014
    Assignee: Advanced Technology Materials, Inc.
    Inventors: Jeffrey F. Roeder, Thomas H. Baum, Bryan C. Hendrix, Gregory T. Stauf, Chongying Xu, William Hunks, Tianniu Chen, Matthias Stender
  • Patent number: 8877546
    Abstract: Methods and apparatus provide for a transistor, including: a semiconductor layer including molecules, protons, and/or ions, etc. diffused therein from a photoactive material; a channel disposed on or in the semiconductor layer; a source disposed on or in the semiconductor layer; a drain disposed on or in the semiconductor layer; and a gate electrically coupled to the semiconductor layer.
    Type: Grant
    Filed: May 28, 2010
    Date of Patent: November 4, 2014
    Assignee: Corning Incorporated
    Inventors: Hon Hang Fong, Mingqian He
  • Publication number: 20140322850
    Abstract: The present invention provides a method for forming an organic device having a patterned conductive layer that includes providing a substrate, depositing organic materials over the substrate to form one or more organic layers, coating a photoresist solution over the one or more organic layers to form a photo-patternable layer, wherein the solution includes a fluorinated photoresist material and a first fluorinated solvent, selectively exposing portions of the photo-patternable layer to radiation to form a first pattern of exposed fluorinated photoresist material and a second pattern of unexposed fluorinated photoresist material, exposing the substrate to a second fluorinated solvent to develop the photo-patternable layer, removing the second pattern of unexposed fluorinated photoresist material without removing the first pattern of exposed fluorinated photoresist material, coating one or more conductive layers over the one or more organic layers and removing a portion of the one or more of the conductive laye
    Type: Application
    Filed: April 27, 2011
    Publication date: October 30, 2014
    Applicant: ORTHOGONAL, INC.
    Inventors: Jin-Kyun Lee, Alexander Zakhidov, John Defranco
  • Publication number: 20140319466
    Abstract: An electrochemically-gated field-effect transistor includes a source electrode, a drain electrode, a gate electrode, a transistor channel and an electrolyte. The transistor channel is located between the source electrode and the drain electrode. The electrolyte completely covers the transistor channel and has a one-dimensional nanostructure and a solid polymer-based electrolyte that is employed as the electrolyte.
    Type: Application
    Filed: April 24, 2013
    Publication date: October 30, 2014
    Applicant: KARLSRUHER INSTITUT FUER TECHNOLOGIE
    Inventor: KARLSRUHER INSTITUT FUER TECHNOLOGIE
  • Patent number: 8871545
    Abstract: A method is provided for forming a multi-color OLED device that includes providing a substrate, coating the substrate with a fluorinated photoresist solution to form a first photo-patternable layer and exposing it to produce a first pattern of exposed fluorinated photoresist material and a second pattern of unexposed fluorinated photoresist material, developing the photo-patternable layer with a fluorinated solvent to remove the second pattern of unexposed fluorinated photoresist material without removing the first pattern of exposed fluorinated photoresist material, depositing a first organic light-emitting material over the substrate to form a first organic light-emitting layer for emitting a first color of light and applying the first pattern of exposed fluorinated photoresist material to control the removal of a portion of the first organic light-emitting layer.
    Type: Grant
    Filed: April 27, 2011
    Date of Patent: October 28, 2014
    Assignees: Orthogonal, Inc., Cornell University
    Inventors: Jin-Kyun Lee, Alexander Zakhidov, John DeFranco
  • Patent number: 8871563
    Abstract: A method of manufacturing an organic-light-emitting-diode (OLED) flat-panel light-source apparatus. The method includes depositing a metal layer on a substrate and patterning the metal layer to form a plurality of subsidiary electrodes, forming an insulating layer on the substrate including the plurality of subsidiary electrodes and forming a first subsidiary electrode layer by etching the insulating layer until some of the plurality of subsidiary electrodes are exposed, and sequentially forming an anode, an organic emission layer (EML), and a cathode on the substrate on which the first subsidiary electrode layer is formed.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: October 28, 2014
    Assignee: Electronics and Telecommunications Research Institute
    Inventors: Jun Han Han, Hye Yong Chu, Jeong Ik Lee, Doo Hee Cho, Jong Hee Lee, Joo Won Lee, Jin Wook Shin