Strand Or Fiber Material Is A Blend Of Polymeric Material And A Filler Material Patents (Class 442/365)
  • Patent number: 6448194
    Abstract: Nonwoven fabrics and fabric laminates are formed from continuous filaments or staple fibers of a select blend of specific grades of polyethylene and polypropylene which give improved fabric performance not heretofore recognized or described, such as high abrasion resistance, good tensile properties, excellent softness and the like. Furthermore, these blends have excellent melt spinning and processing properties which permit efficiently producing nonwoven fabrics at high productivity levels. The polymers are present as a lower-melting dominant continuous phase and at least one higher-melting noncontinuous phase dispersed therein The lower-melting continuous phase forms at least 70 percent by weight of the fiber and comprises a linear low density polyethylene polymer of a melt index of greater than 10 and a density of less than 0.945 g/cc. At least one higher-melting noncontinuous phase comprises a polypropylene polymer with melt flow rate of greater than 20 g/10 min.
    Type: Grant
    Filed: January 31, 2001
    Date of Patent: September 10, 2002
    Assignee: BBA Nonwovens Simpsonville, Inc.
    Inventors: Scott L. Gessner, J. Darrell Gillespie, Jared A. Austin, David D. Newkirk, William Fowells
  • Publication number: 20010004574
    Abstract: Nonwoven fabrics and fabric laminates are formed from continuous filaments or staple fibers of a select blend of specific grades of polyethylene and polypropylene which give improved fabric performance not heretofore recognized or described, such as high abrasion resistance, good tensile properties, excellent softness and the like. Furthermore, these blends have excellent melt spinning and processing properties which permit efficiently producing nonwoven fabrics at high productivity levels. The polymers are present as a lower-melting dominant continuous phase and at least one higher-melting noncontinuous phase dispersed therein. The lower-melting continuous phase forms at least 70 percent by weight of the fiber and comprises a linear low density polyethylene polymer of a melt index of greater than 10 and a density of less than 0.945 g/cc. At least one higher-melting noncontinuous phase comprises a polypropylene polymer with melt flow rate of greater than 20 g/10 min.
    Type: Application
    Filed: January 31, 2001
    Publication date: June 21, 2001
    Applicant: BBA Nonwovens Simpsonville, Inc.
    Inventors: Scott L. Gessner, J. Darrell Gillespie, Jared A. Austin, David D. Newkirk, William Fowells
  • Patent number: 6248436
    Abstract: A color exhibition structure comprising a number of minute granular substances dispersed in a transparent substance. The materials of the transparent and granular substances are selected in such a manner as to exhibit a visible color produced by reflection and scattering of a light incident on the color exhibition structure. Alternatively, the color exhibition structure may comprise a number of minute granular substances dispersed in at least one of first and second layers laminated alternatively. The materials of the first and second layers and the granular substances are selected in such a manner as to exhibit a visible color produced by reflection, interference and scattering of a light incident on the color exhibit structure.
    Type: Grant
    Filed: August 7, 1998
    Date of Patent: June 19, 2001
    Assignee: Nissan Motor Co., Ltd.
    Inventors: Kinya Kumazawa, Hiroshi Tabata
  • Publication number: 20010003693
    Abstract: Nonwoven fabrics and fabric laminates are formed from continuous filaments or staple fibers of a select blend of specific grades of polyethylene and polypropylene which give improved fabric performance not heretofore recognized or described, such as high abrasion resistance, good tensile properties, excellent softness and the like. Furthermore, these blends have excellent melt spinning and processing properties which permit efficiently producing nonwoven fabrics at high productivity levels. The polymers are present as a lower-melting dominant continuous phase and at least one higher-melting noncontinuous phase dispersed therein. The lower-melting continuous phase forms at least 70 percent by weight of the fiber and comprises a linear low density polyethylene polymer of a melt index of greater than 10 and a density of less than 0.945 g/cc. At least one higher-melting noncontinuous phase comprises a polypropylene polymer with melt flow rate of greater than 20 g/10 min.
    Type: Application
    Filed: January 31, 2001
    Publication date: June 14, 2001
    Inventors: Scott L. Gessner, J. Darrell Gillespie, Jared A. Austin, David D. Newkirk, William Fowells
  • Patent number: 6207602
    Abstract: Nonwoven fabrics and fabric laminates are formed from continuous filaments or staple fibers of a select blend of specific grades of polyethylene and polypropylene which give improved fabric performance not heretofore recognized or described, such as high abrasion resistance, good tensile properties, excellent softness and the like. Furthermore, these blends have excellent melt spinning and processing properties which permit efficiently producing nonwoven fabrics at high productivity levels. The polymers are present as a lower-melting dominant continuous phase and at least one higher-melting noncontinuous phase dispersed therein. The lower-melting continuous phase forms at least 70 percent by weight of the fiber and comprises a linear low density polyethylene polymer of a melt index of greater than 10 and a density of less than 0.945 g/cc. At least one higher-melting noncontinuous phase comprises a polypropylene polymer with melt flow rate of greater than 20 g/10 min.
    Type: Grant
    Filed: March 12, 1997
    Date of Patent: March 27, 2001
    Assignee: BBA Nonwovens Simpsonville, Inc.
    Inventors: Scott L. Gessner, J. Darrell Gillespie, Jared A. Austin, David D. Newkirk, William Fowells
  • Patent number: 6169046
    Abstract: The present invention provides an absorbable barrier membrane for guided tissue regeneration which is useful for regeneration of animal tissues, including those of humans, the absorbable barrier membrane being superior in heat stability, processability, reproducibility, storage stability, bioabsorbablity, and tissue regeneration effects, and further provides a method for regeneration, using the absorbable barrier membrane, of a mandible, periodontal tissue, or defective tubulous bone, and particularly a defective tubulous bone which possesses a segmental bone defect in which both ends of the bone are in separate segments. The above objects are attained by an absorbable barrier membrane for use in guided tissue generation, comprising a lactic copolyester in which a polymerization catalyst is deactivated, as an essential component.
    Type: Grant
    Filed: March 19, 1998
    Date of Patent: January 2, 2001
    Assignee: Director-General of National Institute for Research in Organic Materials
    Inventors: Toshiki Shikata, Yasutoshi Kakizawa, Jyunzo Tanaka, Yasushi Suetsugu, Masanori Kikuchi, Hiroo Miyairi, Kazuo Takakuda, Yoshihisa Koyama
  • Patent number: 6090730
    Abstract: A filament non-woven fabric comprising thermoplastic conjugated filaments comprising at least one low melting point resin or low softening point resin selected from the group consisting of olefin binary copolymer or olefin terpolymer as the first component and crystalline thermoplastic resin as the second component. The thermoplastic conjugated filament contains inorganic powder in at least the first component, wherein the content of the inorganic powder is 500 to 50000 weight ppm with respect to the fibers. The present invention can provide a filament non-woven fabric that is excellent in the high adhesive property, low temperature adhesive property, hand feeling such as softness or touch etc., and uniformity. Furthermore, operating efficiency such as the spinning property is good. Absorbent articles can be produced using the above mentioned filament non-woven fabrics.
    Type: Grant
    Filed: January 20, 1998
    Date of Patent: July 18, 2000
    Assignee: Chisso Corporation
    Inventors: Toshikatsu Fujiwara, Taiju Terakawa, Shigeyuki Sugawara
  • Patent number: 6010970
    Abstract: Improved sheets of bonded plexifilamentary film-fibril strands spun from a polyolefin and a pigment are provided. The polyolefin comprises at least 90% by weight of the fibril strands, and the pigment comprises between 0.05% and 10% by weight of the fibril strands. The sheet has a high opacity and high smoothness, even when the sheet is bonded to a delamination strength greater than 120 N/m or when subjected to calendering. The sheet material is highly printable.
    Type: Grant
    Filed: March 5, 1998
    Date of Patent: January 4, 2000
    Assignee: E.I. du Pont de Nemours and Company
    Inventors: David Jackson McGinty, Stasys K. Rudys, David M. Harriss
  • Patent number: 5994244
    Abstract: A filament non-woven fabric comprises thermally adhesive conjugated filaments comprising a first component that contains not less than 20 weight % of ethylene-acrylic ester-maleic anhydride copolymer and that is formed in at least a part of the filament surface in the longitudinal direction of the filament, and a second component that is a crystalline thermoplastic resin having a melting point higher than that of the first component. At least the first component contains an inorganic powder and the content of the inorganic powder is 500 to 50000 weight ppm with respect to filament. The present invention can provide the non-woven fabric comprising filaments which is excellent in the high adhesive property, low temperature adhesive property, adhesion property to other kinds of materials, hand feeling such as softness or touch etc., and uniformity. Furthermore, the operating efficiency such as the spinning property is desirable.
    Type: Grant
    Filed: February 8, 1999
    Date of Patent: November 30, 1999
    Assignee: Chisso Corporation
    Inventors: Toshikatsu Fujiwara, Shingo Horiuchi, Shigeyuki Sugawara
  • Patent number: 5976998
    Abstract: A fiber having increased cut resistance is made from a fiber-forming polymer and a hard filler having a Mohs Hardness Value greater than about 3. The filler is included in an amount of about 0.05% to about 20% by weight. In preferred embodiments, the fiber-forming polymer is poly(ethylene terephthalate) or a liquid crystalline polyester comprising monomer units derived from 6-hydroxy-2-naphthoic acid and 4-hydroxybenzoic acid. Preferred fillers include tungsten and alumina.
    Type: Grant
    Filed: October 13, 1998
    Date of Patent: November 2, 1999
    Assignee: Hoechst Celanese Corporation
    Inventors: Robert Bruce Sandor, Michele C. Carter, Gunilla E. Gillberg-LaForce, William F. Clear, John A. Flint, Herman Leslie Lanieve, Scott W. Thompson, Etheridge Odell Oakley, Jr.
  • Patent number: 5885907
    Abstract: A towel, sponge and gauze made from a plurality of fibers of polyvinyl alcohol that are only water soluble at temperatures above 37.degree. C. The polyvinyl alcohol fibers have a degree of hydrolysis of at least 80% with a degree of polymerization between approximately 300 to 3000.
    Type: Grant
    Filed: November 4, 1997
    Date of Patent: March 23, 1999
    Assignee: Isolyser Company, Inc.
    Inventors: Travis W. Honeycutt, Baosheng Lee
  • Patent number: 5880044
    Abstract: In the present invention elvan (a ceramic material) and a plastic are mixed and formed into a fiber. The fiber is made into non woven fabric products having antibacterial properties.
    Type: Grant
    Filed: May 28, 1997
    Date of Patent: March 9, 1999
    Assignee: Mi Soo Seok
    Inventor: Shigeo Shimiz
  • Patent number: 5804286
    Abstract: A fabric comprising at least two layers wherein at least one layer is an extensible, bonded non-woven composed of a fiber comprising multiple different polymers such as a fiber comprising isotactic polypropylene, polyethylene and a block or grafted polyolefin copolymer or terpolymer which is at least partially miscible with said polypropylene and polyethylene.
    Type: Grant
    Filed: August 27, 1996
    Date of Patent: September 8, 1998
    Assignee: Fiberweb North America, Inc.
    Inventors: Thomas E. Quantrille, Harold E. Thomas, Barry D. Meece, Scott L. Gessner, J. Darrell Gillespie, Jared A. Austin, David D. Newkirk, William Fowells
  • Patent number: 5786059
    Abstract: The disclosure is a composite material having at least one layer of fiber web and aerogel particles, wherein the fiber web comprises at least one bicomponent fiber material, the bicomponent fiber material having lower and higher melting regions and the fibers of the web being bonded not only to the aerogel particles but also to each other by the lower melting regions of the fiber material, a process for its production and its use.
    Type: Grant
    Filed: June 19, 1997
    Date of Patent: July 28, 1998
    Assignee: Hoechst Aktiengesellschaft
    Inventors: Dierk Frank, Franz Thonnessen, Andreas Zimmermann
  • Patent number: 5726106
    Abstract: EMI shielding materials in form of plates, panels, and fabrics and methods for their preparation and for preparing highly filled ferromagnetic fibers therefore are described. In the method the ferromagnetic filler is treated in an ultrasonic dispenser or a ball mill in the presence of a binder polymer and then the fiber is made by wet spinning from a dispersion containing solution or gel of the polymer.
    Type: Grant
    Filed: November 12, 1996
    Date of Patent: March 10, 1998
    Inventors: Tore Carl Fredrik Klason, Josef Kubat, Anatoliy Tikhonovich Ponomarenko, Aleksei Vladimirovich Buts, Elena Sergeevna Grinenko, Igor Nikolaevich Ponomarev, Vitaliy Georgievich Shevchenko
  • Patent number: 5688582
    Abstract: A biodegradable filament nonwoven fabric comprising a nonwoven web made up of filaments, each filament comprising a high melting point component composed of a first aliphatic polyester having biodegradability and a low melting point component composed of a second aliphatic polyester having biodegradability with a melting point lower than that of the high melting point component, the nonwoven web processed to a predetermined nonwoven fabric configuration. At least one of the high melting point component and the low melting point component is arranged in a plurality of divisions within the cross section of the filament. Both the high melting point component and the low melting point component extend continuously in the axial direction of the filament and are exposed on the surface of the filament. A method for manufacturing the biodegradable filament nonwoven fabric is also disclosed herein.
    Type: Grant
    Filed: February 20, 1996
    Date of Patent: November 18, 1997
    Assignee: Unitika Ltd.
    Inventors: Koichi Nagaoka, Shigetaka Nishimura, Fumio Matsuoka, Naoji Ichise, Yasuhiro Yonezawa, Keiko Sakota
  • Patent number: 5620786
    Abstract: Towel, sponge and gauze products composed of fibers of polyvinyl alcohol resin. The fibers are selectively soluble in aqueous solutions only above approximately 93.degree. C. Polyvinyl alcohol fibers have a degree of hydrolysis of at least 99%, are composed of no more than 1/2% sodium acetate, 1/10% methyl alcohol and an average degree of polymerization between approximately 1300 to 1500. The polyvinyl alcohol fibers being produced by a process of dope extrusion.
    Type: Grant
    Filed: August 5, 1994
    Date of Patent: April 15, 1997
    Assignee: Isolyser Co. Inc.
    Inventors: Travis W. Honeycutt, Baosheng Lee