Spun-bonded Nonwoven Fabric Patents (Class 442/401)
  • Patent number: 9585756
    Abstract: A human or animal joint is treated by introduction of a device between the suitably prepared articulating surfaces of the joint, and the device is anchored in both these articular surfaces with a material having thermoplastic properties. For allowing at least limited articulation of the joint after implantation, the device includes two articulating portions, wherein one of the articulating portions is anchored in each articulating surfaces of the joint. On implantation a proximal face of the device is contacted with a vibrating tool and the vibration is transmitted through parts of the device to locations in which the material having thermoplastic properties is near the bone tissue of the articulating surfaces of the joint and in which liquefaction is desired. The liquefied material penetrates the bone tissue and, on re-solidification forms a positive fit connection between the device and the bone tissue.
    Type: Grant
    Filed: September 20, 2011
    Date of Patent: March 7, 2017
    Assignee: SPINEWELDING AG
    Inventors: Jorg Mayer, Marcel Aeschlimann, Mario Lehmann, Andreas Wenger, Stephanie Goebel-Mehl
  • Patent number: 9539357
    Abstract: A nonwoven web material including fibers formed of a polyolefin and a polyester is disclosed. The fibers may include fine fibers produced by, for example, a meltblowing process. The polyolefin may be polypropylene and the polyester may be polylactic acid. The polylactic acid may be obtained and included by recycling scrap nonwoven material containing a polylactic acid component, hydrolyzing the polylactic acid component to reduce its viscosity, blending the hydrolyzed polylactic acid with a polyolefin resin, and melt-spinning the blended material to form fibers. A related process is disclosed.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: January 10, 2017
    Assignee: The Procter & Gamble Company
    Inventors: Arman Ashraf, Ronald Thomas Gorley
  • Patent number: 9212432
    Abstract: Disclosed herein is a spunbond fiber of visbroken polypropylene having an Mw/Mn of from 3.5 to 7.0, an Mz/Mw of from greater than 2.0 and a melt flow rate (230/2.16) of from 50 to 100 dg/min. Also disclosed is a process for producing spunbond fibers comprising melt blending a polypropylene having a melt flow rate (230/2.16) of from 10 to 30 dg/min with a peroxide visbreaker such that the resulting melt flow rate of the visbroken polypropylene is from 50 to 100 dg/min; melt extruding the visbroken polypropylene through a die block such that filaments of the visbroken polypropylene being produced are exposed to a cabin pressure of from 4500 to 7000 Pa; and forming fibers of from less than 6.0 denier. Nonwoven fabrics and multiple-layer structures can be made from the fibers described herein that are useful for filtering and absorption related articles.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: December 15, 2015
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: William M. Ferry, Galen C. Richeson
  • Publication number: 20150111019
    Abstract: The present invention is directed toward an electret nanofibrous web comprising a single source randomly intermingled fiber network with a range of fiber diameters that yields improved mechanical strength.
    Type: Application
    Filed: October 21, 2014
    Publication date: April 23, 2015
    Inventors: TAO HUANG, Gelnn Creighton Catlin, Jay J. Croft, Thomas Patrick Daly, Zachary R. Dilworth, Thomas William Harding, Vindhya Mishra, Carl Saquing, Wai-Shing Yung
  • Patent number: 8980772
    Abstract: A barrier fabric with a nano-fibrous layer for mechanical retention of organic substances formed by a sandwich structure containing a basic material from unwoven fabric of “spunbond” type with areal weight of 15 to 50 g/m2 to which at least one nano-fibrous layer is arranged, selected from hydrophilic polymer, a hydrophobic polymer, or in the case of double-layer arrangement, a combination of the hydrophilic polymer in one layer and the hydrophobic polymer in the other layer. The nano-fibrous layer is equipped with a protective covering layer, and the individual layers of the sandwich are connected to each other. The nano-fibrous layer has an organic polymer material with areal weight of 0.05 to 0.3 g/m2 and thickness from 90 to 150 nm. The covering layer is selected from an unwoven fabric of “spunbond” type, “meltblown” type, cotton textile and/or a mixture of cotton and polyester.
    Type: Grant
    Filed: August 9, 2013
    Date of Patent: March 17, 2015
    Assignee: Ceska Vcela s.r.o.
    Inventor: Miroslav Kubin
  • Patent number: 8975197
    Abstract: A flexible non-porous laminate film structure is provided comprising a textile substrate having a fluorinated film laminated thereto, which is laminated at a temperature lower than the softening point of the predominant polymeric component of the fluoropolymer fiber. The resulting product is resistant to delamination.
    Type: Grant
    Filed: April 19, 2013
    Date of Patent: March 10, 2015
    Assignee: Stern & Stern Industries, Inc.
    Inventors: Peter B. Thornton, Arthur Russell Nelson
  • Publication number: 20150060354
    Abstract: A separation membrane support includes a nonwoven fabric and has excellent membrane formability that achieves a high and stable yield when the separation membrane support supports various separation membranes, having excellent processability when a fluid separation element is produced, and having excellent mechanical strength. The nonwoven fabric has a boiling water shrinkage of ?0.2 to 2.0% in the length direction (longitudinal direction) after treatment in boiling water for 5 minutes.
    Type: Application
    Filed: February 20, 2013
    Publication date: March 5, 2015
    Inventors: Ryoichi Hane, Masaki Higashi, Hitoshi Yamasaki, Hiroyuki Matsuura, Yoshikazu Yakake
  • Publication number: 20150044926
    Abstract: The invention concerns a hygiene product comprising at least one layer of a nonwoven wherein the nonwoven layer comprises man-made cellulosic fibers wherein the layer or the layers has or have a rewet value of equal to or less than 30% and a liquid strike through time of equal to or less than 6 seconds for the use in disposable hygiene products, such as diapers, feminine pads and incontinence products or in wet wipes like toilet wipes, facial wipes, cosmetic wipes, baby wipes and sanitary wipes for cleaning and disinfection.
    Type: Application
    Filed: February 22, 2013
    Publication date: February 12, 2015
    Inventors: Shayda Rahbaran, Bianca Schachtner
  • Publication number: 20150030828
    Abstract: Provided is matte film including: a film layer that is formed in a nano-web shape by electrospinning a polymer material; an ink layer that is coated on one surface of the film layer: and an adhesive layer that is laminated on the other surface of the film layer through electrospinning. Since the film layer is formed in a nano-web shape so that fiber strands are accumulated, the matte film can be thinly produced and have a non-glossy function of performing scattered reflection of light and a fingerprint-preventive function of making fingerprints imprinted. Further. the surface strength of the matte film can be reinforced.
    Type: Application
    Filed: February 22, 2013
    Publication date: January 29, 2015
    Inventors: Seung Hoon Lee, Yong Sik Jung, Yun Mi So, In Yong Seo
  • Publication number: 20150031262
    Abstract: Fibers can include a polypropylene composition, which can include a metallocene random copolymer of propylene and a comonomer that is an alpha-olefin different from propylene. The metallocene random copolymer can have a comonomer content of from 1.2 wt % to 1.8 wt %, a molecular weight distribution of at least 1.0 and of at most 4.0 obtained without thermal or chemical degradation, and a melting temperature Tmelt of at most 140° C. A nonwoven can include the fibers, and a laminate can include the nonwoven. The fibers can be produced by polymerizing the propylene and comonomer in presence of a metallocene-based polymerization catalyst to obtain the metallocene random copolymer. The polypropylene composition can be melt-extruded to obtain a molten polypropylene stream, which can be extruded from capillaries of a spinneret to obtain filaments. A diameter of the filaments can be rapidly reduced to obtain a final diameter.
    Type: Application
    Filed: August 28, 2012
    Publication date: January 29, 2015
    Inventors: Gaëtan Henry, Guillaume Pavy, John Bieser, Hugues Haubruge, Alain Standaert
  • Publication number: 20150030797
    Abstract: Provided is an adhesive tape including: a substrate; and an adhesive layer laminated on one surface or both surfaces of the substrate, wherein one or both of the substrate and the adhesive layer are produced in a nano-web form in which fiber strands are captured by a spinning method. Thus, the adhesive tape can be made thin, and an adhesive strength can be improved. In addition, the adhesive tape can be precisely attached on a corrugated surface. When the adhesive tape attached between components is separated from the components, the adhesive layers can be prevented from remaining on the surfaces of the components.
    Type: Application
    Filed: February 22, 2013
    Publication date: January 29, 2015
    Inventors: In Yong Seo, Seung Hoon Lee, Yong Sik Jung, Yun Mi So
  • Publication number: 20150024163
    Abstract: A process of forming a non-woven web including spinning continuous polymeric filaments including one selected from a poly(phenylene ether) component, a poly(phenylene ether)-polysiloxane block copolymer, and combinations thereof. The filaments can have a length to diameter ratio that is more than 1,000,000, and a diameter ranging from 50 nanometers to 5 microns. The spinning can include passing a polymer through a spinneret having a plurality of orifices in a non-electrospinning environment. The process can further include chopping the plurality of continuous filaments and obtaining a plurality of chopped nano-fibers and forming the nano-fibers into a nonwoven web. The spinning can be conducted at a rate of at least 300 grams/hour/spinneret.
    Type: Application
    Filed: July 11, 2014
    Publication date: January 22, 2015
    Inventors: Jacob Labelle, Richard Peters, Erich Teutsch
  • Publication number: 20150017411
    Abstract: A continuous filament spun-laid web includes a plurality of polymer fibers within the web, the web having a first thickness and the web being free of any thermal or mechanical bonding treatment. Activation of the web results in at least one of an increase from the first thickness prior to activation to a second thickness post activation in which the second thickness is at least about two times greater than the first thickness, a decrease in density of the web post activation in relation to a density of the web prior to activation, the web being configured to withstand an elastic elongation from about 10% to about 350% in at least one of a machine direction (MD) of the web and a cross-direction (CD) of the web, and the web having a tensile strength from about 50 gram-force/cm2 to about 5000 gram-force/cm2.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 15, 2015
    Inventors: Arnold Wilkie, James Brang, Jeffrey Haggard, Angel Antonio De La Hoz
  • Patent number: 8932704
    Abstract: Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. A spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. A meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. Antishrinkage and antistatic additives are also added to the fibrous webs. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
    Type: Grant
    Filed: February 16, 2011
    Date of Patent: January 13, 2015
    Assignee: 3M Innovative Properties Company
    Inventors: Francis E. Porbeni, Chetan P. Jariwala, Mahfuza B. Ali, Matthew T. Scholz
  • Publication number: 20150011139
    Abstract: An improved process for forming a PTFE mat is described. The process includes providing a dispersion with PTFE, a fiberizing polymer and a solvent wherein said dispersion has a viscosity of at least 50,000 cP. An apparatus is provided which comprises a charge source and a target a distance from the charge source. A voltage source is provided which creates a first charge at the charge source and an opposing charge at the target. The dispersion is electrostatically charged by contact with the charge source. The electrostatically charged dispersion is collected on the target to form a mat precursor which is heated to remove the solvent and the fiberizing polymer thereby forming the PTFE mat.
    Type: Application
    Filed: July 15, 2014
    Publication date: January 8, 2015
    Inventors: Bruce L. Anneaux, Robert L. Ballard, David P. Garner
  • Patent number: 8927443
    Abstract: A biodegradable nonwoven laminate is provided. The laminate comprises a spunbond layer formed from substantially continuous filaments that contain a first aliphatic polyester having a melting point of from about 50° C. to about 160° C. The meltblown layer is formed from microfibers that contain a second aliphatic polyester having a melting point of from about 50° C. to about 160° C. The first aliphatic polyester, the second aliphatic polyester, or both have an apparent viscosity of from about 20 to about 215 Pascal-seconds, as determined at a temperature of 160° C. and a shear rate of 1000 sec-1. The first aliphatic polyester may be the same or different than the second aliphatic polyester.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: January 6, 2015
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Jayant Chakravarty, Vasily Topolkaraev, Ross T. Kaufman, Stephen Avedis Baratian, Jared L. Martin
  • Publication number: 20150004866
    Abstract: Durable hydrophilic compositions comprising aliphatic polyester, an anionic surfactant, and in some embodiments, a carrier.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventors: MATTHEW T. SCHOLZ, FRANCIS E. PORBENI
  • Publication number: 20140378017
    Abstract: A method for making nonwoven fabrics of fibers comprising one or more primary polypropylenes having a molecular weight distribution of less than 3.5 and a melt flow rate within the range from 5 to 500 dg/min, the fibers having an average diameter of less than 20 ?m, or a denier (g/9000 m) of less than 2.0, thus forming propylene-based fabrics. The propylene-based fabrics may have a MD Tensile Strength (WSP 110.4 (05)) of greater than 20 N/5 cm when calendered at a temperature within the range from 110 to 150° C. Also, the fabrics may have a CD Tensile Strength (WSP 110.4 (05)) of greater than 10 N/5 cm when calendered at a temperature within the range from 110 to 150° C. The fabrics are preferably meltspun, and in particular may be spunbond fabrics.
    Type: Application
    Filed: September 9, 2014
    Publication date: December 25, 2014
    Inventors: William M. Ferry, Smita Kacker, Olivier J. Georjon
  • Patent number: 8906815
    Abstract: The disclosure relates to composite nonwoven fibrous webs including a population of sub-micrometer fibers having a median diameter less than one micrometer (?m), and a population of microfibers having a median diameter of at least 1 ?m. At least, one of the fiber populations is oriented, and each composite nonwoven fibrous web has a thickness and exhibits a Solidity of less than 10%. The disclosure also relates to methods of making composite nonwoven fibrous webs, and articles including composite nonwoven fibrous webs made according to the methods. In exemplary applications, the articles may be used as gas filtration articles, liquid filtration articles, sound absorption articles, surface cleaning articles, cellular growth support articles, drug delivery articles, personal hygiene articles, or wound dressing articles.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: December 9, 2014
    Assignee: 3M Innovative Properties Company
    Inventors: Eric M. Moore, Michael R. Berrigan
  • Publication number: 20140315462
    Abstract: A method for forming a fiber is provided. The method comprises supplying at least one aromatic polyester to a melt processing device and modifying the aromatic polyester with at least one polyether copolymer within the device to form a thermoplastic composition having a melt flow rate that is greater than the melt flow rate of the aromatic polyester. The polyether copolymer contains a repeating unit (A) having the following formula: wherein, x is an integer from 1 to 250, a the polyether copolymer further containing a repeating unit (B) having the following formula: wherein, n is an integer from 3 to 20; and y is an integer from 1 to 150.
    Type: Application
    Filed: July 1, 2014
    Publication date: October 23, 2014
    Inventors: Aimin He, Vasily A. Topolkaraev, Alan E. Wright, Gregory J. Wideman
  • Publication number: 20140263033
    Abstract: A process is disclosed for forming a three-dimensional structure from a nonwoven web. The web is made of synthetic polymer filaments. The process comprises subjecting the web to a molding force at a temperature between the glass transition temperature and the melting temperature of the polymer. The nonwoven web is constructed so as to allow ample elongation of the constituent filaments. The web is preferentially bonded in selected areas. The filaments are only partially drawn during the spinning process, so as to preserve elongation potential. The three-dimensional structures made by the process can be shaped filters, for example for use in beverage capsules.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: YuCheng Fu, Liberatore A. Trombetta
  • Publication number: 20140277572
    Abstract: Methods to produce structures containing ultrafine fibers with average diameters from 10 nm to 10 ?m and more preferably from 50 nm to 5 ?m, have been developed. These methods produce ultrafine fibers without substantial loss of the polymer's weight average molecular weight. The ultrafine electrospun fibers have an unexpectedly higher degree of molecular orientation, and higher melt temperature than fibers derived by dry spinning. In the preferred embodiment, the polymer comprises 4-hydroxybutyrate. The ultrafine fibers are preferably derived by electrospinning. A solution of the polymer is dissolved in a solvent, pumped through a spinneret, subjected to an electric field, and ultrafine fibers with a high degree of molecular orientation are collected. These structures of ultrafine fibers can be used for a variety of purposes including fabrication of medical devices.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Inventors: David P. Martin, Kai Guo, Said Rizk, Simon F. Williams
  • Publication number: 20140273685
    Abstract: There is described a binding resin for nonwoven fabrics, in particular for manufacturing supports for bituminous membranes, consisting of 100% natural, sustainable raw materials. The resin is an aqueous solution consisting of starch, a crosslinking agent of natural origin and a catalyst.
    Type: Application
    Filed: October 16, 2012
    Publication date: September 18, 2014
    Applicant: POLITEX s.a.s. di FREUDENBERG POLITEX s.r.l.
    Inventors: Massimo Migliavacca, Marinella Levi, Stefano Turri
  • Publication number: 20140276517
    Abstract: Extensible nonwoven fabrics having improved elongation, extensibility, abrasion resistance and toughness. In particular, embodiments of the invention are directed to extensible spunbond fabrics comprising a polymeric blend of a metallocene catalyzed polypropylene, polyethylene, and a third polymer component.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 18, 2014
    Inventors: Stephen O. Chester, Albert Witarsa, Stefanie Streich, Helmut Hartl, Harald Siebner, Daniel Kong, David D. Newkirk
  • Publication number: 20140248811
    Abstract: The instant invention provides nonwoven fabrics and staple or binder fibres prepared from an ethylene-based polymer having a Comonomer Distribution Constant in the range of from greater than from 100 to 400, a vinyl unsaturation of less than 0.1 vinyls per one thousand carbon atoms present in the backbone of the ethylene-based polymer composition; a zero shear viscosity ratio (ZSVR) in the range from 1 to less than 2; a density in the range of 0.930 to 0. 970 g/cm3, a melt index (12) in the range of from 15 to 30 or from 10 to 50 g/10 minutes, a molecular weight distribution (Mw/Mn) in the range of from 2 to 3.5, and a molecular weight distribution (Mz/Mw) in the range of from less than 2.
    Type: Application
    Filed: October 4, 2012
    Publication date: September 4, 2014
    Applicant: Dow Global Technologies LLC
    Inventors: Jacquelyn A. Degroot, Gert J. Claasen, Selim Bensason, Mehmet Demirors, Thor Gudmundsson, Jason C. Brodil
  • Publication number: 20140235129
    Abstract: A nanoweb of polymeric nanofibers in which all of the polymeric fibers have a mean curl index when measured over any 100 micron long segment of less than 0.10 and the nanoweb has a uniformity index of less than 5.0. The nanoweb may have a fiber orientation index of between 0.8 and 1.2 or a mean flow pore size minus the mode of the pore size is less than 1.0 and simultaneously the ratio of the 99% width of the pore size distribution (W) to the width at half height of the pore size distribution (HM0) is less than 10.0.
    Type: Application
    Filed: February 20, 2014
    Publication date: August 21, 2014
    Applicant: E I DU PONT DE NEMOURS AND COMPANY
    Inventors: Tao Huang, Joseph Robert Guckert
  • Patent number: 8809213
    Abstract: A textile applicator for application of a sanitizing and/or disinfecting solution to a surface. The applicator incorporates a plurality of direct spun polyester microfiber yarns to define a textile surface which does not bind or inactivate quaternary ammonium compounds, chlorine-based or peracetic and/or other peroxygen based sanitizing and/or disinfecting agents. Thus, the sanitizing and/or disinfecting agent is readily released to the surface being treated without any requirement of pre-loading surface binding sites or applying a charge-modifying surface treatment.
    Type: Grant
    Filed: February 14, 2012
    Date of Patent: August 19, 2014
    Assignee: Tietex International, Ltd
    Inventors: Martin Wildeman, David R. Harry, Jr., Michelis Hardegree, Lori S. Sears
  • Publication number: 20140194025
    Abstract: The present invention concerns stable aqueous protein dispersions comprising in an aqueous phase at least one self-assembling protein in dispersed form and also at least one specific dispersant for the self-assembling protein; processes for producing such stable aqueous dispersions; processes for electrospinning self-assembling proteins using such stable aqueous dispersions; processes for producing fibrous sheet bodies or fibers from such aqueous dispersions; the use of such aqueous dispersions for coating surfaces; the use of the materials produced by electrospinning in the manufacture of medical devices, hygiene articles and textiles; and also fibrous or fibrous sheet bodies produced by an electrospinning process of the present invention.
    Type: Application
    Filed: February 3, 2014
    Publication date: July 10, 2014
    Applicants: Freudenberg Forschungsdienste KG, BASF SE
    Inventors: Evgueni Klimov, Burghard Liebmann, Thomas Subkowski, Martin Möller, Doris Klee, Artem Davidenko, Wiebke Voigt, Gunter Scharfenberger
  • Patent number: 8765251
    Abstract: A roofing underlayment having a slip-resistant surface includes a woven polypropylene scrim laminated to a top layer made from a non-woven spun-bond polypropylene fabric. During lamination, the scrim is bonded to the top layer by a polypropylene coating that impregnates the scrim, thereby forming a structural bottom layer comprising the polypropylene-impregnated scrim. The non-woven fibers of the top layer provide a micro-textured, slip-resistant surface. A second polypropylene coating may be applied to the bottom surface of the bottom structural layer. An adhesive layer may optionally be applied either to the bottom surface of the bottom structural layer, or, if used, to the bottom surface of the second polypropylene coating.
    Type: Grant
    Filed: July 21, 2006
    Date of Patent: July 1, 2014
    Assignee: Kirsch Research and Development, LLC
    Inventor: Mark C. Strait
  • Patent number: 8764904
    Abstract: The present invention relates to a fiber having starch and a high polymer, and a web employing such a fiber.
    Type: Grant
    Filed: March 23, 2012
    Date of Patent: July 1, 2014
    Assignee: The Procter & Gamble Company
    Inventors: Valerie Ann Bailey, Larry Neil Mackey, Paul Dennis Trokhan
  • Publication number: 20140155854
    Abstract: This invention relates to polypropylene fibers and fabrics containing polypropylene fibers, the fibers comprising propylene polymers comprising at least 50 mol % propylene, said polymers having: a) a melt flow rate (MFR, ASTM 1238, 230° C., 2.16 kg) of about 10 dg/min to about 25 dg/min; b) a dimensionless Stress Ratio/Loss Tangent Index R2 [defined by Eq. (8)] at 190° C. from about 1.5 to about 30; c) an onset temperature of crystallization under flow, Tc,rheol, (as determined by SAOS rheology, 190° C., 1° C./min, where said polymer has 0 wt % nucleating agent present), of at least about 123° C.; d) an average meso run length determined by 13C NMR of at least about 55 or higher; and e) optionally, a loss tangent, tan ?, [defined by Eq. (2)] at an angular frequency of 0.1 rad/s at 190° C. from about 14 to about 70.
    Type: Application
    Filed: December 3, 2012
    Publication date: June 5, 2014
    Applicants: ExxonMobil Chemical Patents Inc.
    Inventors: Jeanne Marie MacDonald, Antonios K. Doufas, Jerome Sarrazin, William Michael Ferry, Rahul Ravindra Kulkarni, Derek Wade Thurman, Cynthia Ann Mitchell, Detlef Frey, Peter Schlag, Hans-Georg Geus, Claudio Cinquemani
  • Patent number: 8741083
    Abstract: A method for producing an elastically stretchable laminate having at least three layers, the method including the steps of: a) producing a first laminate having a first non-elastic fibrous nonwoven web and an elastic film; b) activating the first laminate by incremental stretching in at least one activation direction to render the first laminate elastically stretchable; c) stretching the activated first laminate to 10-200% in the activation direction; and d) laminating the stretched first laminate to a second non-elastic nonwoven web. An elastically stretchable laminate produced in accordance with the method is also disclosed.
    Type: Grant
    Filed: May 12, 2006
    Date of Patent: June 3, 2014
    Assignee: SCA Hygiene Products AB
    Inventors: Margareta Wennerbäck, Jan Wästlund-Karlsson, Elisabeth Lakso
  • Patent number: 8728960
    Abstract: The invention described relates to a polyolefin blend composition suitable for spunbond fiber or filament compositions, and to fabric compositions and composite constructions therefrom, said blend comprising a) from 60-98 wt % of at least one random propylene copolymer having a comonomer content of from 8 to 25 wt % and a crystalline melting point (Tm) as determined by differential scanning calorimetry (DSC) of from about 40° C. to about 110° C.; and b) from 2-40 wt % of at least one substantially isotactic polypropylene homopolymer or copolymer comprising one or more C2 and/or C4-C8 comonomer, having a crystalline melting point (Tm) as determined by DSC greater than or equal to 120° C. The blends of the present invention typically have a melt flow rate (MFR) of from 100 g/10 min to about 500 g/10 min.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: May 20, 2014
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Smita Kacker, Chia Yung Cheng
  • Publication number: 20140134911
    Abstract: A propylene and 1-hexene copolymer containing from 0.5 wt % to less than 5 wt % of 1-hexene derived units said copolymer having: a) a melting point higher than 145° C.; b) a melt flow rate (MFR2) determined according to ISO method 1133 (230° C., 2.16 kg ranging from 10 dl/10 min to less than 60 dl/10 min; said copolymer being chemically degradated to MFR2 and wherein the ratio MFR2/MFR1 is comprised between 15 and 56; wherein MFR1 is the melt flow rate measured according to ISO method 1133 (230° C., 2.
    Type: Application
    Filed: July 6, 2012
    Publication date: May 15, 2014
    Applicant: Basell Poliolefine Italia S.r.l.
    Inventors: Claudio Cavalieri, Monica Calvan, Fiorella Pradella
  • Publication number: 20140113125
    Abstract: A method of forming a needled fiberglass glass insulation product is provided. The formation of the needled insulation product may be conducted in a process in which the fibers are formed, a binder is sprayed onto the fibers, the fibers are collected and formed into a fiberglass pack, the fiberglass pack is passed through the oven, and at least partially cured insulation blanket is passed through a needling apparatus. The reduction in thickness and increased density caused by the needling process permits the production of lower thickness and high density insulation products.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 24, 2014
    Applicant: Owens Corning Intellectual Capital, LLC
    Inventors: Jacob Chacko, Robert P. Collier, Edward A. Martine
  • Publication number: 20140091033
    Abstract: The object of the present invention is to provide carbon fiber material having high electrical conductivity at a low cost. A manufacturing method of carbon fiber material comprises a dispersion liquid preparation step, a centrifugal spinning step and a denaturation step. The dispersion liquid preparation step is a step in which dispersion liquid containing resin and carbon particles is prepared. The centrifugal spinning step is a step in which nonwoven fabric made of a carbon fiber precursor is formed from the dispersion liquid. The denaturation step is a step in which the carbon fiber precursor denatures into carbon fiber.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 3, 2014
    Applicant: Tec One Co., Ltd.
    Inventor: Takahiro Kitano
  • Patent number: 8679992
    Abstract: An elastic composite formed from a laminate that contains an elastic film and a lightweight nonwoven facing having a low strength in the cross-machine direction (“CD”) is provided. Due to the low strength of the facing, it is desirable that the elastic film have a sufficient thickness and weight to enhance the strength of the resulting composite. Unfortunately, the ability to join an elastic film to such a lightweight nonwoven facing becomes increasingly difficult as the thickness of the film increases. In this regard, the present inventors have discovered that a second laminate may be employed in the elastic composite that is formed from a thermoplastic film and nonwoven facing to impart increased strength to the composite. The film and facing of the second laminate may be formed from the same or different materials than the film and facing of the first laminate. Regardless, the laminates are positioned so that the elastic and thermoplastic films are in a face-to-face relationship.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: March 25, 2014
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: James Austin, Oomman P. Thomas, Stephen C. Meyer, Howard M. Welch, Jose A. Siqueira
  • Publication number: 20140080377
    Abstract: Crosslinking systems suitable for use in a polymer melt composition wherein the polymer melt composition comprises a hydroxyl polymer; polymeric structures made from such polymer melt compositions; and processes/methods related thereto are provided.
    Type: Application
    Filed: November 20, 2013
    Publication date: March 20, 2014
    Applicant: THE PROCTER & GAMBLE COMPANY
    Inventors: Stephen Wayne HEINZMAN, Linda EVERS SMITH, Gregory Charles GORDON, Larry Neil MACKEY, John Gerhard MICHAEL, Mark Ryan RICHARDS
  • Publication number: 20140072788
    Abstract: Disclosed are highly extensible bonded webs or multilayered sheets containing these. These products can be processed in a ring-roll process without damage. The bonded webs or multilayered sheets can be used, for example in the manufacture of diapers.
    Type: Application
    Filed: September 19, 2013
    Publication date: March 13, 2014
    Inventors: Thomas Burkhart, Walter D. Daniels, Helmut Hartl, Jonathan A. Lu, Deying Kong, David Dudley Newkirk, Robert H. Turner, Lisa Reynolds, Tonny Debeer
  • Publication number: 20140057516
    Abstract: The present invention relates to a thermally insulating batt comprising: (i) 10 to 70% by weight staple flash spun plexifilamentary fibers or staple melt spun fibrillated fibers; (ii) 10 to 70% by weight staple fibers; and (ii) 5 to 30% by weight binding agent that can also be used in a thermally insulating composite suitable for use in exterior portions of residential and commercial buildings.
    Type: Application
    Filed: December 17, 2012
    Publication date: February 27, 2014
    Applicant: E I Du Pont De Nemours and Company
    Inventors: Patrick Henry Young, Wazir Nobbee
  • Patent number: 8658548
    Abstract: One embodiment of the present invention is a nonwoven fabric comprising a support web and a fibrous barrier web, having a hydrohead of at least about 145 cm and a Frazier permeability of at least about 0.3 m3/m2-min.
    Type: Grant
    Filed: March 28, 2011
    Date of Patent: February 25, 2014
    Assignee: E I du Pont de Nemours and Company
    Inventor: Michael Allen Bryner
  • Publication number: 20140051316
    Abstract: A centrifugal electrospinning apparatus, centrifugal electrospinning method for the production of fibrous structures, and electrospun fibrous structures are provided.
    Type: Application
    Filed: August 16, 2013
    Publication date: February 20, 2014
    Applicant: University of Washington through its Center for Commercialization
    Inventors: Miqin Zhang, Ashleigh Cooper, Dennis Edmondson
  • Publication number: 20140051315
    Abstract: The present invention relates to fibers comprising at least 98 wt % of a propylene polymer having, in particular, a specific molecular weight distribution Mw/Mn and xylene solubles content. The present invention also relates to nonwovens, laminates and composites comprising such fibers. Furthermore, the present invention relates to a process for producing such fibers, nonwovens, laminates and composites.
    Type: Application
    Filed: December 12, 2008
    Publication date: February 20, 2014
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Alain Standaert, Hugues Haubruge, GuilLaume Pavy, Jerome Gromada
  • Publication number: 20140051317
    Abstract: A method for producing a sheet material is disclosed, comprising the steps of providing a carrier material solution comprising a carrier material, and depositing the carrier material onto a collector by electrospinning the carrier material solution out of a spinning device, the collector having a first electrical polarity and the spinning device having a second electrical polarity being opposite to the first polarity. The collector comprises at least one differential section, the electrical polarity of which is adjusted during deposition of the carrier material in such a manner that it either resembles the electrical polarity of the remaining sections of the collector or differs from it. The invention further relates to a device for carrying out said method and a sheet material which can be produced by said method.
    Type: Application
    Filed: November 23, 2011
    Publication date: February 20, 2014
    Applicant: SpinPlant GmbH
    Inventors: Timothy Ganey, Jorg Meisel
  • Patent number: 8652977
    Abstract: The present invention provides a heat-resistant nonwoven fabric wherein the nonwoven fabric is formed from a poly(phenylene sulfide) fiber, and 30% by weight or more of the poly(phenylene sulfide) fiber has a crystallinity of 25 to 50%. Moreover, the properties of the heat-resistant nonwoven fabric can be further improved by making the nonwoven fabric have a multilayer structure in which layers composed of a poly(phenylene sulfide) filamentary fiber and layers composed of a poly(phenylene sulfide) fine fiber are stacked and integrated.
    Type: Grant
    Filed: September 21, 2007
    Date of Patent: February 18, 2014
    Assignee: Asahi Kasei Fibers Corporation
    Inventors: Toshiyuki Shimizu, Masahiko Maeda
  • Patent number: 8603281
    Abstract: An elastic composite formed from a lightweight nonwoven facing that has a low degree of strength in the cross-machine direction (“CD”) is provided. Through selective control over certain parameters of the materials employed in the composite and the formation process, the present inventors have discovered that such low strength and lightweight facings may be readily laminated to an elastic film without significantly damaging their integrity. For example, in one embodiment, the elastic film may possess a multi-layered construction that includes an elastomeric elastic layer positioned adjacent to a strength-enhancing thermoplastic layer. The polymer content and thickness of the thermoplastic layer are generally selected to impart additional strength and integrity to the film. Likewise, the polymer content of the elastic layer may also be selected so that the film possesses a sufficient tack for adhering to the facing.
    Type: Grant
    Filed: June 30, 2008
    Date of Patent: December 10, 2013
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Howard M. Welch, James Austin, Lisa Sanabria, Jose A. Siqueira, Wing-Chak Ng, Bryan D. Haynes, Oomman P. Thomas, Iris V. Schumacher, Christopher Laslie, Stephen C. Meyer
  • Patent number: 8597745
    Abstract: The present invention is directed to implantable bioabsorbable non-woven self-cohered web materials having a high degree of porosity. The web materials are very supple and soft, while exhibiting proportionally increased mechanical strength in one or more directions. The web materials often possess a high degree of loft. The web materials can be formed into a variety of shapes and forms suitable for use as implantable medical devices or components thereof.
    Type: Grant
    Filed: September 16, 2009
    Date of Patent: December 3, 2013
    Assignee: W. L. Gore & Associates, Inc.
    Inventors: Ted R. Farnsworth, Charles Flynn, Charles F. White
  • Patent number: 8598052
    Abstract: A highly air-permeable and water-resistance sheet according to the present invention includes a hydrophobic non-woven fabric layer having 100 mm H2O or more of water pressure resistance and a fine cellulose fiber layer layered on the hydrophobic non-woven fabric layer, and a water repellent layer is layered on either surface of the highly air-permeable and water-resistance sheet. A highly air-permeable and water-resistance sheet composite according to the present invention includes the highly air-permeable and water resistance sheet and another non-woven fabric layered onto the water-repellant layer.
    Type: Grant
    Filed: March 1, 2007
    Date of Patent: December 3, 2013
    Assignee: Daio Paper Corporation
    Inventors: Migaku Suzuki, Akira Kawase
  • Patent number: 8592329
    Abstract: Methods for enhancing one or more physical properties of wet-laid or dry-laid fiber mats, such as a glass fiber, cellulosic or polymeric fiber mats are disclosed and fiber mats made according to such processes. Certain embodiments of the methods involve vibrational compression of a wet-laid or dry-laid fiber mat. In some embodiments the methods produce a fiber mat having increased apparent density and/or tensile strength as compared to a mat that has not been vibrationally compressed. Exemplar fiber mats suitable for use in the disclosed methods include, for example, glass, polyolefin, ethylene terephthalate, or cellulose fibers, or mixtures thereof. Glass, cellulosic or polymeric fiber mats that are structurally improved by the disclosed methods are also disclosed.
    Type: Grant
    Filed: October 6, 2004
    Date of Patent: November 26, 2013
    Assignee: Hollingsworth & Vose Company
    Inventors: Larry K. Coon, George Zguris, Patrick Svoboda
  • Publication number: 20130309931
    Abstract: The method of producing a spunbond nonwoven fabric promotes the bleed out of the additive, which has pleasant texture such as tactile feel and excellent flexibility. The spunbond nonwoven fabric is obtained by this method. Specifically, (1) the method of producing a spunbond nonwoven fabric includes annealing a spunbond nonwoven fabric formed by using a crystalline resin composition (I) containing a low crystalline olefin polymer (a) with an elastic modulus of 10 to 450 MPa in a content of 1 to 50% by mass, a high crystalline olefin polymer (b) with an elastic modulus of 500 to 2,000 MPa, the content of the component (b) being the rest, and an additive (c) in a content of 1 to 20,000 ppm by mass.
    Type: Application
    Filed: January 31, 2012
    Publication date: November 21, 2013
    Applicant: IDEMITSU KOSAN CO., LTD
    Inventors: Yohei Koori, Tomoaki Takebe, Yutaka Minami