Spun-bonded Nonwoven Fabric Patents (Class 442/401)
  • Publication number: 20120145632
    Abstract: The invention relates to a process for the preparation of polyamide nanofibers by electrospinning, wherein the process is a multi-nozzle electrospinning process with the use of a multi-nozzle device or a nozzle-free electrospinning with the use of nozzle free device, comprising steps wherein a high voltage is applied, a polymer solution comprising a polymer and a solvent is fed to the multi-nozzle device or the nozzle free device and transformed under the influence of the high voltage into charged jet streams the jet streams are deposited on a substrate or taken up by a collector, and the polymer in the jet streams solidifies thereby forming nanofibres, and wherein the polymer comprises a semi-crystalline polyamide having a C/N ratio of at most 5.5 and a weight average molecular weight (Mw) of at most 35,000. The invention also relates polyamide nanofibers made by the electrospinning process, as well as to products made thereof and use thereof.
    Type: Application
    Filed: July 15, 2009
    Publication date: June 14, 2012
    Inventors: Konraad Albert Louise Hector Dullaert, Markus Johannes Henricus Bulters, Rudy Rulkens, Arnaud David Henri Chiche
  • Patent number: 8168003
    Abstract: The present invention relates to a fiber having starch and a surfactant, and a web employing such a fiber.
    Type: Grant
    Filed: March 31, 2011
    Date of Patent: May 1, 2012
    Assignee: The Procter & Gamble Company
    Inventors: Valerie Ann Bailey, Larry Neil Mackey, Paul Dennis Trokhan
  • Patent number: 8162153
    Abstract: Herein are disclosed high loft spunbonded webs that are substantially free of crimped fibers and gap-formed fibers. The webs exhibit a solidity of from less than 8.0% to about 4.0% and a ratio of Effective Fiber Diameter to Actual Fiber Diameter of at least 1.40. Also disclosed are methods of making such webs.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: April 24, 2012
    Assignee: 3M Innovative Properties Company
    Inventors: Andrew R. Fox, John D. Stelter, Michael R. Berrigan, Jonathan M Lise
  • Patent number: 8163385
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 24, 2012
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Publication number: 20120094567
    Abstract: A hydroengorged spunmelt nonwoven formed of thermoplastic continuous fibers and a pattern of fusion bonds. The nonwoven has either a percentage bond area of less than 10 percent, or a percentage bond area of at least 10% wherein the pattern of fusion bonds is anisotropic.
    Type: Application
    Filed: December 12, 2011
    Publication date: April 19, 2012
    Applicant: FIRST QUALITY NONWOVENS, INC.
    Inventors: Mordechai Turi, Michael Kauschke
  • Patent number: 8158244
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: April 17, 2012
    Assignee: Eastman Chemical Company
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Publication number: 20120088424
    Abstract: Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. When the thermoplastic polyester is selected to include aliphatic and aromatic polyesters, a spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. When the thermoplastic polyester is selected from aliphatic polyesters, a meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
    Type: Application
    Filed: March 23, 2010
    Publication date: April 12, 2012
    Inventors: Moore M. Eric, Stelter D. John, Berrigan R. Michael, Porbeni E. Francis, Scholz T. Matthew, Landgrebe D. Kevin, Fennessey F. Sian, Jennen M. Jay
  • Patent number: 8153238
    Abstract: Elastic composite laminates are disclosed. The laminates include an elastic member bonded to at least one facing material. In accordance with the present disclosure, an adhesive composition is coextruded with an elastomeric material to form the elastic member. In this manner, the elastic member can be bonded to the facing material in a stretched state without having to apply a separate adhesive layer between the two materials. In one embodiment, the elastic member can be bonded to the facing material according to a pattern that includes bonded areas and non-bonded areas.
    Type: Grant
    Filed: December 14, 2005
    Date of Patent: April 10, 2012
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Gregory K. Hall, Peiguang Zhou, Xiaomin Zhang, Daniel Wideman, Thomas Vercauteren
  • Patent number: 8148279
    Abstract: The invention provides durable nonwoven fabrics comprising staple fibers. Methods of preparing durable nonwoven fabrics based on staple fibers are also provided. The methods can include the steps of at least one of needle punching and hydroentangling. The durable nonwoven fabric can be subjected to additional bonding techniques, such as resin bonding and/or thermal bonding. The durable nonwoven fabrics of the invention provide improved durability over conventional nonwoven fabrics. Further advantages of the inventive nonwoven fabrics include maintaining the smooth surface qualities of the fabric and desirable feel of the fabric even with the enhanced durability. The inventive nonwoven fabrics can also be subjected to additional post-processing techniques that conventional nonwoven fabrics would otherwise be unable to withstand. Further, inks and/or dyes can more readily become adhered to the smooth nature of the surfaces of the inventive durable nonwoven fabrics.
    Type: Grant
    Filed: April 9, 2009
    Date of Patent: April 3, 2012
    Assignee: North Carolina State University
    Inventors: Nagendra Anantharamaiah, Behnam Pourdeyhimi
  • Patent number: 8138107
    Abstract: Disclosed is a spunbonded non-woven made of polyolefin filaments having a titer <1.6 dtex, the spunbonded non-woven having a surface weight ?20 g/m2, a density ?0.06 g/cm3, a maximum tensile force of between 9.5 and 62 N in the direction of the machine and of between 4.5 and 35 N perpendicular to the direction of the machine.
    Type: Grant
    Filed: March 13, 2009
    Date of Patent: March 20, 2012
    Assignee: Fiberweb Corovin GmbH
    Inventors: Steffen Bornemann, Markus Haberer, Stefanie Streich, Dag Fohlin
  • Publication number: 20120064789
    Abstract: A nonwoven fabric is provided that has biodegradability and has excellent mechanical strength and excellent texture in combination, and a fiber product containing the nonwoven fabric is provided. The biodegradable nonwoven fabric contains at least two kinds of fibers including a fiber A and a fiber B, in which the fiber A contains a first component having biodegradability, and the fiber B contains a second component having biodegradability. The nonwoven fabric contains a mixed fiber web having a mixing ratio (weight ratio) of the fiber A and the fiber B in a range of from 5/95 to 95/5. The first component contains at least one member selected from the group consisting of an aliphatic polyester and an aliphatic polyester copolymer each having a melting point that is higher than a melting point of the second component. A half crystallization time at 85 degree Celsius of the second component is longer than a half crystallization time at 85 degree Celsius of the first component.
    Type: Application
    Filed: April 23, 2010
    Publication date: March 15, 2012
    Inventors: Junji Iwata, Yasushi Matsuda, Mitsuru Kojima
  • Publication number: 20120058701
    Abstract: One-part binder compositions are described that may include a protein and a crosslinking combination. The crosslinking combination may include at least a first crosslinking compound and a second crosslinking compound. The first and second crosslinking compounds are individually crosslinkable with each other and with the protein. Examples of the protein include soy protein. Fiber products and methods of making the fiber products are also described. The fiber products may include organic fibers, inorganic fibers, or both, in a cured thermoset binder based on solutions of the one-part binder compositions.
    Type: Application
    Filed: November 15, 2011
    Publication date: March 8, 2012
    Inventors: Mingfu Zhang, Jawed Asrar, Zhihua Guo
  • Publication number: 20120045956
    Abstract: Fabricated articles are disclosed which comprise a polypropylene impact copolymer. The propylene impact copolymer composition comprises from 60 to 90 percent by weight of the impact copolymer composition of a matrix phase, which can be a homopolymer polypropylene or random polypropylene copolymer having from 0.1 to 7 mol percent of units derived from ethylene or C4-C10 alpha olefins. The propylene impact copolymer composition also comprises from 10 to 40 percent by weight of the impact copolymer composition of a dispersed phase, which comprises a propylene/alpha-olefin copolymer having from 6 to 40 mol percent of units derived from ethylene or C4-C10 alpha olefins, wherein the dispersed phase has a comonomer content which is greater than the comonomer content in the matrix phase. The propylene impact copolymer composition is further characterized by having the ratio of the matrix MFR to the dispersed phase MFR being 1.2 or less.
    Type: Application
    Filed: August 19, 2010
    Publication date: February 23, 2012
    Applicant: Dow Global Technologies Inc.
    Inventors: Li-Min Tau, Gert J. Claasen, Charles R. Crosby, III, Alechia Crown, John Kaarto
  • Publication number: 20120034838
    Abstract: Processes of forming a fiber article and articles formed therefrom are described herein. The processes generally include providing a propylene-based polymer; contacting the propylene-based polymer with polylactic acid in the presence of a reactive modifier, a non-reactive modifier or a combination thereof to form a polymeric blend, wherein the reactive modifier is selected from epoxy-functionalized polyolefins and the non-reactive modifier comprises an elastomer; and forming the polymeric blend into a fiber article.
    Type: Application
    Filed: August 6, 2010
    Publication date: February 9, 2012
    Applicant: Fina Technology, Inc.
    Inventors: Fengkui Li, Tim Coffy, Michel Daumerie, John Bieser, Ryan Albores
  • Patent number: 8101253
    Abstract: The present invention relates to biodegradable multiphase compositions characterized in that they comprise three phases: (a) a continuous phase composed of a matrix of at least one tough hydrophobic polymer incompatible with the starch; (b) a nanoparticulate dispersed starch phase with mean dimensions of less than 0.3 ?m, (c) a further dispersed phase of at least one rigid and fragile polymer with modulus greater than 1000 MPa. Such compositions having a Modulus greater than 300 MPa and a substantial isotropy in the two longitudinal and transverse directions in relation to tear propagation.
    Type: Grant
    Filed: September 26, 2007
    Date of Patent: January 24, 2012
    Assignee: Novamont S.p.A.
    Inventors: Catia Bastioli, Giovanni Floridi, Gianfranco Del Tredici
  • Patent number: 8088696
    Abstract: This invention relates to nonwoven fabrics with advantageous characteristics and the method to produce these fabrics. Advantageously, the fabrics of the subject invention have increased thickness (loft) compared to conventional nonwoven fabrics and have high air permeability and open space while maintaining softness and strength at the same basis weight.
    Type: Grant
    Filed: October 21, 2002
    Date of Patent: January 3, 2012
    Assignee: The Procter & Gamble Company
    Inventors: Albert E. Ortega, R. Wayne Thomley, Jan Mackey
  • Patent number: 8080043
    Abstract: The invention relates to a bioabsorbable surgical osteosynthesis plate, operable to be secured by at least one fastener through at least one fastener opening formed in the plate to a bone. The osteosynthesis plate has first and second surfaces, and it is formed to one piece from a bioabsorbable polymer material that is oriented multiaxially and is substantially rigid and substantially deformable at a first thermochemical state. The plate comprises an oblique (diagonal) orientation gradient in relation to the direction of a reference axis of the plate.
    Type: Grant
    Filed: July 17, 2006
    Date of Patent: December 20, 2011
    Assignee: Bioretec Oy
    Inventors: Pertti Törmälä, Harri Heino, Mikko Huttunen
  • Patent number: 8067320
    Abstract: There is provided by the present invention a spunbonded nonwoven fabric which is formed from fibers comprising a propylene-based polymer and has MFR of 65 to 150 g/10 min and a fineness of 0.01 to 1.5 deniers, wherein the basis weight is in the range of 5 to 40 g/m2 and the embossed area ratio is in the range of 6.5 to 25%.
    Type: Grant
    Filed: January 29, 2007
    Date of Patent: November 29, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventor: Takashi Hisamoto
  • Patent number: 8067071
    Abstract: The present invention is directed to implantable bioabsorbable non-woven self-cohered web materials having a high degree of porosity. The web materials are very supple and soft, while exhibiting proportionally increased mechanical strength in one or more directions. The web materials often possess a high degree of loft. The web materials can be formed into a variety of shapes and forms suitable for use as implantable medical devices or components thereof.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: November 29, 2011
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Ted R. Farnsworth, Charles Flynn, Charles F. White
  • Patent number: 8060973
    Abstract: A textile sheet element having selectively applied arrays of surface projection elements defining raised zones across an active surface for cleaning and/or personal care, The textile sheet element is adapted for use by itself and/or for attachment to a user manipulated support with or without a handle such as a mop head or the like.
    Type: Grant
    Filed: May 6, 2008
    Date of Patent: November 22, 2011
    Assignee: Tietex International, Ltd.
    Inventors: Martin Wildeman, Michelis Hardegree, William D. Bell, Robert A. Johnson, David K. Osteen, Wade Wallace
  • Patent number: 8057881
    Abstract: A fungi resistant asphalt is combined with a base sheet to form a fungi resistant asphalt containing sheet material. Typically, the base sheet is a fibrous base sheet that, by itself, may or may not be fungi resistant. The fungi resistant asphalt is at least partially absorbed by the base sheet to form the fungi resistant asphalt containing sheet material and typically forms one or both major surfaces of the fungi resistant asphalt containing sheet material.
    Type: Grant
    Filed: October 17, 2006
    Date of Patent: November 15, 2011
    Assignee: Johns Manville
    Inventors: Ralph Michael Fay, Angela R. Bratsch, Blake Boyd Bogrett, Anthony E. Moore
  • Patent number: 8053380
    Abstract: Impact copolymers, comprising an in-reactor blend of homopolymer polypropylene and an ethylene-propylene rubber, can be processed into spunbond non-woven fabrics. These fabrics have been shown to have increased ultimate extension without reduction in the ultimate tensile strength, as compared to conventional homopolymer polypropylene derived spunbond non-wovens.
    Type: Grant
    Filed: June 15, 2009
    Date of Patent: November 8, 2011
    Assignee: Braskem America, Inc.
    Inventors: Richard A. Campbell, Thomas A. Debowski
  • Publication number: 20110268896
    Abstract: A composition comprising an organic fluorophore having a structure of: or a derivative thereof; as well as articles of manufacture marked with the fluorophore, methods for marking articles with the fluorophore, and methods for producing a fluorescent fiber.
    Type: Application
    Filed: July 13, 2011
    Publication date: November 3, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventors: Thomas Potrawa, Joachim Schulz
  • Patent number: 8048503
    Abstract: The present invention is directed to implantable bioabsorbable non-woven self-cohered web materials having a high degree of porosity. The web materials are very supple and soft, while exhibiting proportionally increased mechanical strength in one or more directions. The web materials often possess a high degree of loft. The web materials can be formed into a variety of shapes and forms suitable for use as implantable medical devices or components thereof.
    Type: Grant
    Filed: July 29, 2005
    Date of Patent: November 1, 2011
    Assignee: Gore Enterprise Holdings, Inc.
    Inventors: Ted R. Farnsworth, Charles Flynn, Charles F. White
  • Publication number: 20110250378
    Abstract: Patterned spunbond fibrous webs include a population of spunbond filaments captured in an identifiable pattern corresponding to a patterned collector surface and bonded together without the use of an adhesive prior to removal from the collector surface. The webs may exhibit a high degree of filament orientation and/or a gradient of filament density in one or more directions determined by the patterned collector surface. Methods of making patterned spunbond fibrous webs, and articles including patterned spunbond fibrous webs made according to the methods, are also disclosed. In exemplary applications, the webs may be used in gas filtration articles, liquid filtration articles, sound absorption articles, surface cleaning articles, cellular growth support articles, drug delivery articles, personal hygiene articles, or wound dressing articles.
    Type: Application
    Filed: December 10, 2009
    Publication date: October 13, 2011
    Inventors: Bradley W. Eaton, Michael R. Berrigan, John D. Stelter, Timothy J. Diekmann
  • Publication number: 20110244750
    Abstract: Bicomponent fibers, methods of forming bicomponent fibers and articles formed from bicomponent fibers, are described herein. The bicomponent fibers generally include a sheath component and a core component, wherein the sheath component consists essentially of a first metallocene polypropylene and the core component consists essentially of a second metallocene polypropylene.
    Type: Application
    Filed: June 13, 2011
    Publication date: October 6, 2011
    Applicant: Fina Technology, Inc.
    Inventors: John Bieser, Guillaume Pavy, Hughes Haubruge, Alain Sandaert, William R. Wheat
  • Patent number: 8021997
    Abstract: A multicomponent spunbonded nonwoven is provided which is composed of at least two polymers which form interfaces toward one another, which are produced by at least one spinning machine having uniform spinning nozzle apertures, and which are hydrodynamically drawn, lapped in a sheet-like manner, and bonded, the multicomponent spunbonded nonwoven being composed of different filaments which contain at least two polymers, or it being composed of a mixture of multicomponent filaments and monocomponent filaments which each contain only one of the polymers, the multicomponent filament being composed of at least two elementary filaments and the titer of the individual filaments varying by the number of elementary filaments contained in the filaments.
    Type: Grant
    Filed: July 20, 2005
    Date of Patent: September 20, 2011
    Assignee: Carl Freudenberg KG
    Inventors: Robert Groten, Ulrich Jahn, Georges Riboulet
  • Patent number: 8021996
    Abstract: The present invention provides a nonwoven web prepared from multicomponent fibers which are partially split. The partially split multicomponent fibers have at least one component of the multicomponent fiber separated from the remaining components of the multicomponent fiber along a first section of the longitudinal length of the multicomponent fibers. Along a second section of the longitudinal length of the multicomponent fibers the components of the multicomponent fibers remain together as a unitary fiber structure. In addition, part of the second section of the multicomponent fibers is bonded to part of a second section of an adjacent multicomponent fiber.
    Type: Grant
    Filed: December 23, 2008
    Date of Patent: September 20, 2011
    Assignee: Kimberly-Clark Worldwide, Inc.
    Inventors: Susan Kathleen Walser, Leon Eugene Chambers, Jr., Reginald Smith, Nancy J. Zimmerman, Kiran K. Reddy, Nina Frazier, David Myers
  • Patent number: 8021995
    Abstract: A fiber mixture according to the invention comprises fibers A comprising a polymer A containing a thermoplastic polyurethane elastomer and fibers B comprising a thermoplastic polymer B other than the thermoplastic polyurethane elastomer, said thermoplastic polyurethane elastomer having a starting temperature for solidifying of 65° C. or above as measured by a differential scanning calorimeter (DSC) and containing 3.00×106 or less polar-solvent-insoluble particles per g counted on a particle size distribution analyzer, which is based on an electrical sensing zone method, equipped with an aperture tube having an orifice of 100 ?m in diameter. An elastic nonwoven fabric comprises the fiber mixture.
    Type: Grant
    Filed: January 23, 2004
    Date of Patent: September 20, 2011
    Assignee: Mitsui Chemicals, Inc.
    Inventors: Kenichi Suzuki, Shigeyuki Motomura, Satoshi Yamasaki, Daisuke Nishiguchi, Hisashi Kawanabe
  • Publication number: 20110217895
    Abstract: The invention relates to wipes for use on either a human or a household surface. The wipe of this invention has at least a wet layer, a dry layer and a moisture impervious layer there between. The moisture impervious layer is impermeable to all liquid leaching from the wet layer to the dry layer.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 8, 2011
    Applicant: Paradise Wipes, Inc.
    Inventor: Arlesia Peterson
  • Patent number: 7998384
    Abstract: A spunbond nonwoven fabric useful as a topsheet is produced from polypropylene filaments including a high level of reclaimed polypropylene, while maintaining a product quality, including superior formation, comparable to that obtained when using 100 percent virgin polymer. The spunbond nonwoven fabric is made with multicomponent filaments having at least two different polymer components occupying different areas within the filament cross section, and wherein one of the polymer components comprises reclaimed polypropylene recovered from previously spun polypropylene fiber or webs comprised of previously spun polypropylene fiber. In a specific embodiment, the filaments are sheath-core bicomponent filaments and the reclaimed polypropylene is present in the core component. The core of the bicomponent filament can be comprised of up to 100% reclaimed polypropylene.
    Type: Grant
    Filed: August 2, 2001
    Date of Patent: August 16, 2011
    Assignee: Fiberweb Simpsonville, Inc.
    Inventors: Jay Darrell Gillespie, Daniel Deying Kong, Robert C. Alexander
  • Patent number: 7994081
    Abstract: A nonwoven fabric is provided having a plurality of semi-crystalline filaments that are thermally bonded to each other and are formed of the same polymer and exhibit substantially the same melting temperature. The fabric is produced by melt spinning an amorphous crystallizable polymer to form two components having different levels of crystallinity. During spinning, a first component of the polymer is exposed to conditions that result in stress-induced crystallization such that the first polymer component is in a semi-crystalline state and serves as the matrix or strength component of the fabric. The second polymer component is not subjected to stress induced crystallization and thus remains in a substantially amorphous state which bonds well at relatively low temperatures. In a bonding step, the fabric is heated to soften and fuse the binder component. Under these conditions, the binder component undergoes thermal crystallization so that in the final product, both polymer components are semi-crystalline.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: August 9, 2011
    Assignee: Fiberweb, Inc.
    Inventors: Gregory W. Farell, Edward Keith Willis
  • Publication number: 20110189463
    Abstract: Fine fibers comprising aliphatic polyester and a viscosity modifier. The fine fibers are preferably made by a Blown microfiber process.
    Type: Application
    Filed: June 11, 2009
    Publication date: August 4, 2011
    Inventors: Eric M. Moore, Matthew T. Scholz, Korey W. Karls, Francis E. Porbeni, Kevin D. Landgrebe, Jay M. Jennen
  • Patent number: 7989372
    Abstract: A molded respirator and method of making are disclosed, wherein the molded respirator is made from a porous nonwoven web containing meltblown fibers and staple fibers. The meltblown fibers may be present as a bimodal mixture of microfibers and mesofibers, and comprise an intermingled mixture with staple fibers further intermingled therein. The molded respirator may also contain at least one secondary filtration layer.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: August 2, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Seyed A. Angadjivand, John M. Brandner, James E. Springett
  • Patent number: 7989371
    Abstract: A porous nonwoven web and method of making are disclosed, wherein the web contains meltblown fibers and staple fibers. The meltblown fibers may be present as a bimodal mixture of microfibers and mesofibers, and comprise an intermingled mixture with staple fibers further intermingled therein.
    Type: Grant
    Filed: June 22, 2007
    Date of Patent: August 2, 2011
    Assignee: 3M Innovative Properties Company
    Inventors: Seyed A. Angadjivand, John M. Brandner, James E. Springett
  • Patent number: 7977260
    Abstract: The present invention provides a separator for an electric double layer capacitor comprising a porous sheet containing fibrillated heat-resistant fibers, polyester fibers having a fineness of 0.01 dtex to less than 0.10 dtex, and fibrillated cellulose, which is suitable for use as a separator for an electric double layer capacitor operating at high voltages of 3 V or more.
    Type: Grant
    Filed: November 28, 2006
    Date of Patent: July 12, 2011
    Assignee: Mitsubishi Paper Mills Limited
    Inventors: Takahiro Tsukuda, Masatoshi Midorikawa, Tomohiro Sato
  • Publication number: 20110165811
    Abstract: An article of fibers includes a cured compound. The fibers are formed from electrospinning a dispersion. The dispersion includes a liquid and a condensation curable compound. A content of the liquid in the dispersion is reduced such that the condensation curable compound cures. The article is formed from a method of manufacturing which includes the step of forming the dispersion. The method also includes the step of electro spinning the dispersion to reduce the content of the liquid such that the condensation curable compound cures.
    Type: Application
    Filed: August 28, 2009
    Publication date: July 7, 2011
    Applicant: DOW CORNING CORPORATION
    Inventors: Randal M. Hill, Eric J. Joffre, Donald T. Liles, Bonnie J. Ludwig
  • Patent number: 7968025
    Abstract: The present invention relates to a method for manufacturing nonwoven and nonwoven obtainable by said method. Particularly, the invention relates to a nonwoven provided with improved tactile and absorbent characteristics, which make it suitable for use in the field of surface cleaning, personal hygiene, or formation of garments.
    Type: Grant
    Filed: July 29, 2004
    Date of Patent: June 28, 2011
    Assignee: Ahlstrom Corporation
    Inventor: Roberto Pedoja
  • Patent number: 7968480
    Abstract: Nonwoven polymer materials and articles made therefrom. Materials of the invention include at least one nonwoven polymer web with at least one layer of at least about 50% by weight of a multi-lobal fiber. Materials and articles of the invention have improved properties, such as particle retention capacity, acoustic absorption, stiffness, crop color uniformity, and crop yield, when compared with nonwoven polymer materials and articles made with round fiber in place of all of the multi-lobal fiber.
    Type: Grant
    Filed: February 14, 2007
    Date of Patent: June 28, 2011
    Assignee: Polymer Group, Inc.
    Inventors: Nyle Bishop, Enrique Martinez, Pierre D. Grondin, Michel Delattre, Jorge Santisteban
  • Publication number: 20110151738
    Abstract: Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. A spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. A meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. In some embodiments, the fibers comprise a viscosity modifier and/or an anionic surfactant. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 23, 2011
    Inventors: Eric M. Moore, John D. Stelter, Michael R. Berrigan, Francis E. Porbeni, Matthew T. Scholz, Kevin D. Landgrebe, Korey W. Karls, Sian F. Fennessey, Jay M. Jennen
  • Publication number: 20110151737
    Abstract: Dimensionally stable nonwoven fibrous webs include a multiplicity of continuous fibers formed from one or more thermoplastic polyesters and polypropylene in an amount greater than 0% and no more than 10% by weight of the web. The webs have at least one dimension which decreases by no greater than 10% in the plane of the web when heated to a temperature above a glass transition temperature of the fibers. A spunbond process may be used to produce substantially continuous fibers that exhibit molecular orientation. A meltblown process may be used to produce discontinuous fibers that do not exhibit molecular orientation. The webs may be used as articles for filtration, sound absorption, thermal insulation, surface cleaning, cellular growth support, drug delivery, personal hygiene, medical apparel, or wound dressing.
    Type: Application
    Filed: December 17, 2010
    Publication date: June 23, 2011
    Inventors: Eric M. Moore, John D. Stelter, Michael R. Berrigan, Francis E. Porbeni, Matthew T. Scholz, Sian F. Fennessey, Jay M. Jennen
  • Patent number: 7947613
    Abstract: The present invention is directed to a low-density substrate, which has an optimized pore volume distribution. The optimized pore volume distribution allows the substrate to hold at least 50 percent of its cumulative volume within pores with a radius size of about 110 to 250 microns. The optimized pore volume distribution can also be characterized by having a dry fibrous web that absorbs less than 20 percent of the cumulative volume of the fibrous web at a pore radius of 75 microns. The optimized pore volume distribution of the substrate enables it to controllably release a fluid composition effectively onto a surface. The basis weight of the substrate is about 80 to 20 gsm and the density of the substrate is below 0.1 g/cc. The substrate may be a pre-loaded wipe, which is either moistened by a consumer prior to use or moistened prior to packaging. The composition loaded onto the substrate may contain dry and/or liquid compositions preferably for cleaning hard or soft surfaces.
    Type: Grant
    Filed: March 1, 2010
    Date of Patent: May 24, 2011
    Assignee: The Clorox Company
    Inventors: William Ouellette, Nikhil Dani, Richard Suk
  • Patent number: 7938908
    Abstract: The present invention relates to a fiber including unmodified and/or modified starch and a crosslinking agent, and a web employing such a fiber.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: May 10, 2011
    Assignee: The Procter & Gamble Company
    Inventors: Valerie Ann Bailey, Larry Neil Mackey, Paul Dennis Trokhan
  • Patent number: 7935646
    Abstract: Disclosed is a nonwoven web material (10) comprising thermoplastic fibers or filaments and a method of manufacture thereof. The web material has properties desirable for use on machinery having conventional heat sealing stations (26). Also, disclosed is a nonwoven infusion web material comprising thermoplastic fibers or filaments and a method of manufacture thereof. The infusion web material has properties desirable for use in making infusion packages.
    Type: Grant
    Filed: June 12, 2001
    Date of Patent: May 3, 2011
    Assignee: Ahlstrom Nonwovens LLC
    Inventors: Helen Viazmensky, John M. Allen, Richard T. Giovannoni
  • Patent number: 7935645
    Abstract: A method of producing a nonwoven fabric comprising spinning a set of bicomponent fibers which include an external fiber component and an internal fiber component. The external fiber enwraps said internal fiber and has a higher elongation to break value than the internal fiber and a lower melting temperature than the internal fiber component. The set of bicomponent fibers are positioned onto a web and thermally bonded to produce a nonwoven fabric.
    Type: Grant
    Filed: September 26, 2008
    Date of Patent: May 3, 2011
    Assignee: North Carolina State University
    Inventors: Behnam Pourdeyhimi, Nataliya V. Fedorova, Stephen R. Sharp
  • Patent number: 7935644
    Abstract: A machine for producing a nonwoven feeds continuous filaments onto two surfaces that form a convergent passage. At least one of the surfaces is moving to drive the continuous filaments through the passage to form the nonwoven web. The continuous filaments have filament portions that are respectively received on the two surfaces to form spaced lateral web parts joined by a central web part formed by the continuous filament portions bridging the convergent passage. A vacuum is applied through the surfaces to assist placement of the filament portions and to direct the web as it emerges from the passage onto a horizontal take-up conveyor.
    Type: Grant
    Filed: April 8, 2009
    Date of Patent: May 3, 2011
    Assignee: Maschinenfabrik Rieter AG
    Inventors: Frederic Noelle, Rolf Helmut Joest, Peter Anderegg
  • Publication number: 20110092936
    Abstract: The object of the present invention is to provide a mixed fiber spun bonded nonwoven fabric which has excellent bulkiness, initial hydrophilicity, long-lasting hydrophilicity, flexibility, resistance to fluff, stretchability and touch and low stickiness, and is suitable for a surface sheet for absorbent articles such as sanitary napkins, panty liners, incontinence pads, disposable diapers and other absorbent articles. The mixed fiber spun-bonded nonwoven fabric comprises 90 to 10% by weight of a long fiber type thermoplastic resin (A) and 10 to 90% by weight of a long fiber type thermoplastic elastomer (B) wherein at least, the long fiber type thermoplastic resin (A) is hydrophilized. The present invention also provides a surface sheet and a second sheet for absorbent articles which sheets comprise the mixed fiber spun bonded nonwoven fabric and provides absorbent articles.
    Type: Application
    Filed: May 21, 2009
    Publication date: April 21, 2011
    Inventor: Naosuke Kunimoto
  • Publication number: 20110092931
    Abstract: Disclosed are multicomponent fibers derived from a blend of a sulfopolyester with a water non-dispersible polymer wherein the as-spun denier is less than about 6 and wherein the water dispersible sulfopolyester exhibits a melt viscosity of less than 12,000 poise measured at 240° C. at a strain rate of 1 rad/sec, and wherein the sulfopolyester comprising less than about 25 mole % of residues of at least one sulfomonomer, based on the total moles of diacid or diol residues. The multicomponent fiber is capable of being drawn at a relatively high fiber speed, particularly at least about 2000 m/min, and may be used to produce microdenier fibers. Fibrous articles may be produced from the multicomponent fibers and microdenier fibers. Also disclosed is a process for multicomponent fibers, nonwoven fabrics, and microdenier webs.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Applicant: EASTMAN CHEMICAL COMPANY
    Inventors: Rakesh Kumar Gupta, Scott Ellery George, Daniel William Klosiewicz, Kab Sik Seo, Coralie McKenna Fleenor, Allen Lynn Crain
  • Publication number: 20110086568
    Abstract: The present invention relates to fibers comprising at least 98 wt % of a propylene polymer having, in particular, a specific molecular weight distribution Mw/Mn and xylene solubles content. The present invention also relates to nonwovens, laminates and composites comprising such fibers. Furthermore, the present invention relates to a process for producing such fibers, nonwovens, laminates and composites.
    Type: Application
    Filed: December 12, 2008
    Publication date: April 14, 2011
    Applicant: TOTAL PETROCHEMICALS RESEARCH FELUY
    Inventors: Alain Standaert, Hugues Haubruge, GuilLaume Pavy, Jerome Gromada
  • Patent number: RE42695
    Abstract: A reinforced silt retention sheet and systems for silt retention are provided. The reinforced silt retention sheet includes a non-woven fabric having a series of entangled polymer fibers with a reinforcing material secured within the fabric. The resultant reinforced silt retention sheet further can have openings of a desired size to enable filtering of a flow of fluid passing through the reinforced silt retention sheet.
    Type: Grant
    Filed: June 12, 2009
    Date of Patent: September 13, 2011
    Assignee: Silt-Saver, Inc.
    Inventor: Earl R. Singleton