Emissive Type Patents (Class 445/51)
  • Patent number: 12062650
    Abstract: A laminated body is provided in a circumferential shape with a gap formed in a part of a circumferential direction on a semiconductor layer. In the laminated body, a first insulating layer, a gate layer, a second insulating layer, and a drain layer are layered in this order from the semiconductor layer side. An impurity diffusion layer is formed on a surface of the semiconductor layer, and a backside electrode on a backside surface. The impurity diffusion layer extends from a position in contact with side walls in a channel space to an outside of the laminated body through a region corresponding to the gap on the surface of the semiconductor layer. A portion of the impurity diffusion layer beyond the laminated body is a contact region to which a wiring for applying a predetermined voltage is connected. A cover layer made of an insulating material is formed in an upper portion and a periphery of the annular portion including the laminated body and the gap.
    Type: Grant
    Filed: October 31, 2022
    Date of Patent: August 13, 2024
    Inventors: Yoshiyuki Ando, Rieko Ando, Yukiko Noguchi, Emiko Takahira
  • Patent number: 12041335
    Abstract: The present disclosure provides a camera module, a circuit board assembly and a manufacturing method thereof, and an electronic device with the camera module, wherein the circuit board assembly comprises at least one electronic component, a substrate, and a molding unit. At least one of the electronic components is connected to the substrate conductively on a back face of the substrate. The molding unit comprises a back molding portion and a molding base, wherein the molding base is bonded to a front face of the substrate integrally when the back molding portion is bonded to at least a part of an area of the back face of the substrate integrally. There may be no need to reserve a position on the front face of the substrate to conductively connect the electronic components, so that the length and width of the camera module can be reduced, thereby reducing the volume of the camera module.
    Type: Grant
    Filed: November 14, 2022
    Date of Patent: July 16, 2024
    Assignee: NINGBO SUNNY OPOTECH CO., LTD.
    Inventors: Mingzhu Wang, Nan Guo, Zhenyu Chen, Bojie Zhao, Takehiko Tanaka, Feifan Chen, Ye Wu
  • Patent number: 11915921
    Abstract: An electron source according to the present disclosure includes a columnar portion made of a first material having an electron emission characteristic; and a tubular portion that is disposed to surround the columnar portion and made of a second material having a higher work function than the first material, wherein a hole that extends in a direction from one end face toward the other end face and has a substantially circular cross-sectional shape is formed in the tubular portion, and the columnar portion has a substantially triangular or substantially quadrangular cross-sectional shape and is fixed to the tubular portion in an abutting engagement with an inner surface of the hole.
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: February 27, 2024
    Assignee: Denka Company Limited
    Inventors: Dai Tsukada, Hiromitsu Chatani, Daisuke Ishikawa
  • Patent number: 11915920
    Abstract: The present invention provides a simpler method for sharpening a tip of an emitter. In addition, the present invention provides an emitter including a nanoneedle made of a single crystal material, an emitter including a nanowire made of a single crystal material such as hafnium carbide (HfC), both of which stably emit electrons with high efficiency, and an electron gun and an electronic device using any one of these emitters. A method for manufacturing the emitter according to an embodiment of the present invention comprises processing a single crystal material in a vacuum using a focused ion beam to form an end of the single crystal material, through which electrons are to be emitted, into a tapered shape, wherein the processing is performed in an environment in which a periphery of the single crystal material fixed to a support is opened.
    Type: Grant
    Filed: October 20, 2020
    Date of Patent: February 27, 2024
    Assignee: NATIONAL INSTITUTE FOR MATERIALS SCIENCE
    Inventors: Jie Tang, Shuai Tang, Ta-Wei Chiu, Tadakatsu Ohkubo, Jun Uzuhashi, Kazuhiro Hono, Luchang Qin
  • Patent number: 11906563
    Abstract: To provide an electric potential measuring device that can further improve evaluation quality.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: February 20, 2024
    Assignee: SONY SEMICONDUCTOR SOLUTIONS CORPORATION
    Inventor: Naohiko Kimizuka
  • Patent number: 11866327
    Abstract: Boron nitride nanotube (BNNT) material can be placed in large volume configurations such as needed for cryopumps, high surface area filters, scaffolding for coatings, transition radiation detectors, neutron detectors, and similar systems where large volumes may range from cubic millimeters to cubic meters and beyond. The technology to secure the BNNT material includes creating a scaffold of a material acceptable to the final system such as stainless steel wires for a cryopump. The BNNTs can be arranged in the scaffold by freeze drying, filtration technologies, conformal surface attachment and BNNT “glue” where the as-synthesized BNNT material has been partially purified or fully purified and dispersed in a dispersant.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: January 9, 2024
    Assignee: BNNT, LLC
    Inventors: Thomas G Dushatinski, Kevin C. Jordan, Michael W. Smith, Jonathan C. Stevens, R. Roy Whitney
  • Patent number: 11832460
    Abstract: The present invention relates to a working electrode (1a) for a photovoltaic device, comprising a light absorbing layer (3) and a conductive layer (6) arranged in electrical contact with the light absorbing layer (3), and the light absorbing layer (3) comprises a light absorbing photovoltaic material consisting of a plurality of dye molecules. The light absorbing layer (3) is formed by a layer of a plurality of clusters (7), whereby each cluster (7) is formed by dye molecules and each dye molecule in the cluster (7) is bonded to its adjacent dye molecules.
    Type: Grant
    Filed: November 25, 2020
    Date of Patent: November 28, 2023
    Assignee: EXEGER OPERATIONS AB
    Inventors: Henrik Lindström, Giovanni Fili
  • Patent number: 11653079
    Abstract: The present disclosure provides a camera module, a circuit board assembly and a manufacturing method thereof, and an electronic device with the camera module, wherein the circuit board assembly comprises at least one electronic component, a substrate, and a molding unit. At least one of the electronic components is connected to the substrate conductively on a back face of the substrate. The molding unit comprises a back molding portion and a molding base, wherein the molding base is bonded to a front face of the substrate integrally when the back molding portion is bonded to at least a part of an area of the back face of the substrate integrally. There may be no need to reserve a position on the front face of the substrate to conductively connect the electronic components, so that the length and width of the camera module can be reduced, thereby reducing the volume of the camera module.
    Type: Grant
    Filed: December 25, 2017
    Date of Patent: May 16, 2023
    Assignee: NINGBO SUNNY OPOTECH CO., LTD.
    Inventors: Mingzhu Wang, Nan Guo, Zhenyu Chen, Bojie Zhao, Takehiko Tanaka, Feifan Chen, Ye Wu
  • Patent number: 11585903
    Abstract: Provided is a light emitting device including: a base material mounted on a wiring substrate; a light emitting element array provided on the base material; a first conductive pattern provided on the surface of the base material, the first conductive pattern including a first facing region connected to the light emitting element array, the first facing region being along a side surface of the light emitting element array and facing to the light emitting element array, and a first extending region extended beyond the first facing region; and penetrating members penetrating the base material from the first conductive pattern to a back surface side of the base material, each penetrating member being connected to the first facing region or the first extending region.
    Type: Grant
    Filed: July 15, 2019
    Date of Patent: February 21, 2023
    Assignee: FUJIFILM Business Innovation Corp.
    Inventors: Tomoaki Sakita, Satoshi Inada, Takeshi Minamiru, Daisuke Iguchi, Kazuhiro Sakai, Yoshinori Shirakawa
  • Patent number: 11158617
    Abstract: Reliability of a semiconductor device is improved. The semiconductor device PKG1 includes a wiring substrate SUB1, a semiconductor chip CHP1 and a capacitor CDC mounted on the upper surface 2t of the wiring substrate SUB1, and a lid LD formed of a metallic plate covering the semiconductor chip CHP1 and the wiring substrate SUB1. The semiconductor chip CHP1 is bonded to the lid LD via a conductive adhesive layer, and the capacitor CDC, which is thicker than the thickness of the semiconductor chip CHP1, is disposed in the cut off portion 4d1 provided in the lid LD, and is exposed from the lid LD.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: October 26, 2021
    Assignee: RENESAS ELECTRONICS CORPORATION
    Inventors: Toshihiko Akiba, Kenji Sakata, Nobuhiro Kinoshita, Yosuke Katsura
  • Patent number: 10686095
    Abstract: A photoelectric sensor including at least any one of a light projecting unit for emitting light and a light receiving unit for detecting light includes a substrate on which at least any one of the light projecting unit and the light receiving unit is mounted, a cover which has a protecting portion facing the substrate and for protecting the substrate and a side wall extending from a periphery of the protecting portion, and a sealing member which seals at least any one of the light projecting unit and the light receiving unit that is mounted on the substrate, in which the cover has a protruding portion on a surface which is positioned outside a side surface of the substrate and intersects an extending direction of the side wall, and the protruding portion is in contact with the sealing member.
    Type: Grant
    Filed: February 15, 2019
    Date of Patent: June 16, 2020
    Assignee: OMRON Corporation
    Inventors: Hiroyuki Mizusaki, Makoto Sugimoto, Jumpei Nakamura, Tomohiro Tsuji
  • Patent number: 10546991
    Abstract: A method for forming a unique, environmentally-friendly micron scale autonomous electrical power source is provided in a configuration that generates renewable energy for use in electronic systems, electronic devices and electronic system components. The configuration includes a first conductor with a facing surface conditioned to have a low work function, a second conductor with a facing surface having a comparatively higher work function, and a dielectric layer, not more than 200 nm thick, sandwiched between the respective facing surfaces of the first conductor and the second conductor. The autonomous electrical power source formed according to the disclosed method is configured to harvest minimal thermal energy from any source in an environment above absolute zero.
    Type: Grant
    Filed: October 22, 2018
    Date of Patent: January 28, 2020
    Assignee: Face International Corporation
    Inventor: Clark D Boyd
  • Patent number: 9783255
    Abstract: The present disclosure is directed toward carbon based diodes, carbon based resistive change memory elements, resistive change memory having resistive change memory elements and carbon based diodes, methods of making carbon based diodes, methods of making resistive change memory elements having carbon based diodes, and methods of making resistive change memory having resistive change memory elements having carbons based diodes. The carbon based diodes can be any suitable type of diode that can be formed using carbon allotropes, such as semiconducting single wall carbon nanotubes (s-SWCNT), semiconducting Buckminsterfullerenes (such as C60 Buckyballs), or semiconducting graphitic layers (layered graphene). The carbon based diodes can be pn junction diodes, Schottky diodes, other any other type of diode formed using a carbon allotrope. The carbon based diodes can be placed at any level of integration in a three dimensional (3D) electronic device such as integrated with components or wiring layers.
    Type: Grant
    Filed: June 29, 2016
    Date of Patent: October 10, 2017
    Assignee: Nantero Inc.
    Inventors: Claude L. Bertin, C. Rinn Cleavelin, Thomas Rueckes, X. M. Henry Huang, H. Montgomery Manning
  • Patent number: 9217130
    Abstract: Disclosed is a method of producing a cell culture vessel (10) having a carbon nanotube (CNT) layer (14) on its surface. The method comprises the steps of providing a vessel (12) having a predetermined shape; providing a CNT dispersion of a CNT material composed primarily of CNT dispersed in a dispersion medium at a concentration of not more than 50 mg/L; and forming the carbon nanotube layer (14) on the surface of the vessel (12). The formation of the CNT layer (14) is achieved by alternately repeating a supply step of applying the CNT dispersion solution to the vessel (12) and a drying step of drying the applied dispersion solution one or more times.
    Type: Grant
    Filed: December 11, 2008
    Date of Patent: December 22, 2015
    Assignee: MEIJO NANO CARBON CO., LTD.
    Inventors: Takeshi Hashimoto, Tsukasa Akasaka, Atsuro Yokoyama, Fumio Watari
  • Patent number: 9215759
    Abstract: The present disclosure relates to a method for heating an object. A sheet-shaped heat and light source is provided. The sheet-shaped heat and light source includes a carbon nanotube film curved to form a hollow cylinder, and at least two electrodes spaced from each other, located on a surface of the hollow cylinder and electrically connected to the carbon nanotube film. An object is located in the hollow cylinder. A voltage is supplied between the at least two electrodes.
    Type: Grant
    Filed: April 30, 2014
    Date of Patent: December 15, 2015
    Assignees: Tsinghua University, HON HAI PRECISION INDUSTRY CO., LTD.
    Inventors: Chang-Hong Liu, Shou-Shan Fan
  • Patent number: 9034212
    Abstract: An electron emission source includes nano-sized acicular materials and a cracked portion formed in at least one portion of the electron emission source. The acicular materials are exposed between inner walls of the cracked portion. A method for preparing the electron emission source, a field emission device including the electron emission source, and a composition for forming the electron emission source are also provided in the present invention.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: May 19, 2015
    Assignee: SAMSUNG ELECTRONICS CO., LTD.
    Inventors: Yong-chul Kim, In-taek Han, Ho-suk Kang
  • Publication number: 20150076988
    Abstract: A field emission device comprises one or more emitter elements, each having a high aspect ratio structure with a nanometer scaled cross section; and one or more segmented electrodes, each surrounding one of the one or more emitters. Each of the one or more segmented electrodes has multiple electrode plates. This abstract is provided to comply with rules requiring an abstract that will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims.
    Type: Application
    Filed: September 12, 2014
    Publication date: March 19, 2015
    Inventors: Thomas Plettner, Mehran Nasser-Ghodsi
  • Patent number: 8983037
    Abstract: An X-ray tube with a rotatable anode for generating X-rays and an X-ray apparatus and a method for balancing the rotary anode of an X-ray tube include balancing of the rotary anode applicable to an anode mounted inside an X-ray tube. The rotatable anode includes an anode disc fixedly mounted to a rotatably driven support body, which is rotatably supported by a bearing arrangement. The anode includes at least one balancing cavity to adjust the center of gravity of the anode. The balancing cavity is partly filled with a balancing material being solid at operating temperature of the X-ray tube and liquid at a higher temperature. The balancing method includes determining an imbalance of the anode; heating liquefy balancing material; dislocating the balancing material inside the balancing cavity to compensate the imbalance; and cooling to solidify the balancing material.
    Type: Grant
    Filed: September 8, 2010
    Date of Patent: March 17, 2015
    Assignee: Koninklijke Philips N.V.
    Inventors: Rolf Karl Otto Behling, Christoph Bathe
  • Patent number: 8968045
    Abstract: A cathode selection method includes measuring, by using a cathode having an electron emission surface which is a flat surface and a emission area which is limited, a total emission emitted from the cathode; calculating, using a measured total emission value, work function by a Richardson Dash Man's formula; and determining whether or not the cathode has the work function equal to or under an acceptable value.
    Type: Grant
    Filed: October 28, 2013
    Date of Patent: March 3, 2015
    Assignee: NuFlare Technology, Inc.
    Inventor: Kenichi Saito
  • Publication number: 20150056883
    Abstract: A method for producing a thermoelectron emission source for an electron gun used in an electron beam writing apparatus, the thermoelectron emission source producing method comprising, preparing a first material that emits a thermoelectron, coating the first material with a second material having a work function larger than that of the first material, exposing the first material from part of the second material by machine processing, and decreasing a diameter of the exposed portion of the first material by heating treatment when the diameter of the exposed portion is larger than a predetermined diameter value.
    Type: Application
    Filed: August 13, 2014
    Publication date: February 26, 2015
    Inventor: Ryoei KOBAYASHI
  • Publication number: 20150035428
    Abstract: Various embodiments are described herein for nanostructure field emission cathode structures and methods of making these structures. These structures generally comprise an electrode field emitter comprising a resistive layer having a first surface, a connection pad having a first surface disposed adjacent to the first surface of the resistive layer, and a nanostructure element for emitting electrons in use, the nanostructure element being disposed adjacent to a second surface of the connection pad that is opposite the first surface of the connection pad. Some embodiments also include a coaxial gate electrode that is disposed about the nanostructure element.
    Type: Application
    Filed: August 2, 2013
    Publication date: February 5, 2015
    Inventors: Yonghai SUN, Tze-wei YEOW, David Anthony JAFFRAY
  • Patent number: 8922107
    Abstract: A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.
    Type: Grant
    Filed: May 9, 2012
    Date of Patent: December 30, 2014
    Assignee: Brookhaven Science Associates, LLC
    Inventors: Triveni Rao, John Walsh, Elizabeth Gangone
  • Patent number: 8900029
    Abstract: The present application relates to a method for making a carbon nanotube field emitter. A carbon nanotube film is drawn from the carbon nanotube array by a drawing tool. The carbon nanotube film includes a triangle region. A portion of the carbon nanotube film closed to the drawing tool is treated into a carbon nanotube wire including a vertex of the triangle region. The triangle region is cut from the carbon nanotube film by a laser beam along a cutting line. A distance between the vertex of the triangle region and the cutting line can be in a range from about 10 microns to about 5 millimeters.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: December 2, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Shou-Shan Fan
  • Publication number: 20140292181
    Abstract: An electron emission device and a method of manufacturing the same are provided. The electron emission device includes i) a hydrophilic resin substrate and ii) carbon nano tubes that are positioned on the resin substrate. Surface roughness Ra of the resin substrate is 7.3 ?m to 9.75 ?m.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 2, 2014
    Applicant: Intellectual Discovery Co., Ltd.
    Inventor: Intellectual Discovery Co., Ltd.
  • Patent number: 8814622
    Abstract: Disclosed is an encapsulated micro-diode and a method for producing same. The method comprises forming a plurality columns in the substrate with a respective tip disposed at a first end of the column, the tip defining a cathode of the diode; disposing a sacrificial oxide layer on the substrate, plurality of columns and respective tips; forming respective trenches in the sacrificial oxide layer around the columns; forming an opening in the sacrificial oxide layer to expose a portion of the tips; depositing a conductive material in of the opening and on a surface of the substrate to form an anode of the diode; and removing the sacrificial oxide layer.
    Type: Grant
    Filed: November 17, 2011
    Date of Patent: August 26, 2014
    Assignee: Sandia Corporation
    Inventors: Paul J. Resnick, Eric Langlois
  • Patent number: 8808049
    Abstract: The present disclosure relates to a method for making the sheet-shaped heat and light source. An array of carbon nanotubes on a substrate is provided. A carbon nanotube film is formed by pressing the array of carbon nanotubes. A first electrode and a second electrode are electrically connected with the carbon nanotube film. Furthermore, a method for heating an object is related.
    Type: Grant
    Filed: April 15, 2013
    Date of Patent: August 19, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Chang-Hong Liu, Shou-Shan Fan
  • Patent number: 8801487
    Abstract: A method for making an emitter is disclosed. A number of carbon nanotubes in parallel with each other are provided. The carbon nanotubes have a number of first ends and a number of second ends opposite to the number of first ends. The first ends are attached on a first electrode and the second ends are attached on a second electrode. The first electrode and the second electrode are spaced from each other. A voltage is supplied between the first electrode and the second electrode to break the carbon nanotubes.
    Type: Grant
    Filed: March 11, 2013
    Date of Patent: August 12, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Yang Wei, Peng Liu, Liang Liu, Shou-Shan Fan
  • Publication number: 20140166494
    Abstract: A method for fabricating the field emission cathode structure includes following steps. A first carbon nanotube structure is provided. The first carbon nanotube structure is suspended. A voltage is applied to heat the first carbon nanotube structure to form a temperature gradient. A number of second carbon nanotubes are grown on a surface of the first carbon nanotube structure to form a second carbon nanotube structure.
    Type: Application
    Filed: February 11, 2014
    Publication date: June 19, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: PENG LIU, SHOU-SHAN FAN
  • Publication number: 20140139100
    Abstract: A thermionic cathode of an embodiment includes a carbon coating applied to an outer surface of the side, the carbon coating comprising a contiguous extended portion surrounding the upper section and spaced apart from said upper section by a gap having 1 ?m or more and 10 ?m or less in width and having a difference of 1 ?m or less in the width between a maximum value and a minimum value in a periphery of the electron emitting surface.
    Type: Application
    Filed: October 7, 2013
    Publication date: May 22, 2014
    Applicant: NUFLARE TECHNOLOGY, INC.
    Inventor: Ryoei KOBAYASHI
  • Publication number: 20140117837
    Abstract: A vacuum encapsulated, hermetically sealed cathode capsule for generating an electron beam of secondary electrons, which generally includes a cathode element having a primary emission surface adapted to emit primary electrons, an annular insulating spacer, a diamond window element comprising a diamond material and having a secondary emission surface adapted to emit secondary electrons in response to primary electrons impinging on the diamond window element, a first cold-weld ring disposed between the cathode element and the annular insulating spacer and a second cold-weld ring disposed between the annular insulating spacer and the diamond window element. The cathode capsule is formed by a vacuum cold-weld process such that the first cold-weld ring forms a hermetical seal between the cathode element and the annular insulating spacer and the second cold-weld ring forms a hermetical seal between the annular spacer and the diamond window element whereby a vacuum encapsulated chamber is formed within the capsule.
    Type: Application
    Filed: May 9, 2012
    Publication date: May 1, 2014
    Inventors: Triveni Rao, John Walsh, Elizabeth Gangone
  • Publication number: 20140111081
    Abstract: Disclosed is a field emitter electrode including a bonding unit formed on a substrate, and a plurality of carbon nanotubes fixed to the substrate by the bonding unit, in which the bonding unit includes a carbide-based first inorganic filler and a second inorganic filler formed of a metal.
    Type: Application
    Filed: October 18, 2013
    Publication date: April 24, 2014
    Applicant: Electronics and Telecommunications Research Institute
    Inventors: Jin Woo Jeong, Jae-woo Kim, Yoon-Ho Song, Jun Tae Kang, Sungyoul Choi
  • Publication number: 20140097736
    Abstract: An improved cathode comprises a cone-shaped emitter with a carbon-based coating applied to the emitter cone surface, in which there is a narrow annular gap between the emitter body and the carbon coating. The gap prevents direct contact between the carbon coating and the crystalline emitting material, thereby preventing damaging interactions and extending the useful lifetime of the cathode.
    Type: Application
    Filed: October 4, 2012
    Publication date: April 10, 2014
    Applicant: NUFLARE TECHNOLOGY, INC.
    Inventor: Victor Katsap
  • Publication number: 20140055027
    Abstract: A method for fabricating field emission cathode, a field emission cathode, and a field emission lighting source are provided. The method includes: forming a catalyst crystallite nucleus layer on the surface of cathode substrate by self-assembly of a noble metal catalyst, growing a composited nano carbon material on the cathode substrate by using a TCVD process, in which the composited nano carbon material includes coil carbon nano tubes and coil carbon nano fibers. The measured quantity of total coil carbon nano tubes and coil carbon nano fibers is higher than 40%. The field emission cathode is fabricated by the aforementioned method, and the field emission lighting source includes the aforementioned field emission cathode.
    Type: Application
    Filed: March 20, 2013
    Publication date: February 27, 2014
    Applicant: National Defense University
    Inventors: MING-DER GER, NEN-WEN PU, YIH-MING LIU, KUN-JU CHUNG
  • Publication number: 20140028192
    Abstract: In one embodiment of the present invention, an electronic device includes a first emitter/collector region and a second emitter/collector region disposed in a substrate. The first emitter/collector region has a first edge/tip, and the second emitter/collector region has a second edge/tip. A gap separates the first edge/tip from the second edge/tip. The first emitter/collector region, the second emitter/collector region, and the gap form a field emission device.
    Type: Application
    Filed: July 25, 2012
    Publication date: January 30, 2014
    Applicant: INFINEON TECHNOLOGIES AG
    Inventors: Alfons Dehe, Damian Sojka, Andre Schmenn, Carsten Ahrens
  • Patent number: 8628370
    Abstract: A method for making cathode slurry is provided and includes the following steps. First, a number of electron emitters, an inorganic binder, and an organic carrier are provided. Second, the electron emitters, the inorganic binder, and the organic carrier are mixed to obtain a mixture. Third, the mixture is mechanically pressed and sheared.
    Type: Grant
    Filed: October 1, 2012
    Date of Patent: January 14, 2014
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Qi Cai, Tong-Feng Gao, Jie Tang, Shou-Shan Fan
  • Publication number: 20140004768
    Abstract: A method for making carbon nanotube field emitter includes providing a carbon nanotube array formed on a surface of a substrate. A plurality of carbon nanotubes of the carbon nanotube array is selected and pulled out a carbon nanotube film by a drawing tool, wherein the carbon nanotube film includes a plurality of carbon nanotubes oriented along a fixed direction. The carbon nanotube film is cut to a plurality of uniform carbon nanotube sub-films along the fixed direction. The plurality of carbon nanotube sub-films is treated to a plurality of carbon nanotube yarns. The plurality of carbon nanotube yarns is fixed on a surface of a conductive base, and cutting off the plurality of carbon nanotube yarns by a laser beam, to form a carbon nanotube field emitter.
    Type: Application
    Filed: December 28, 2012
    Publication date: January 2, 2014
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: PENG LIU, LI-JIANG XU, DUAN-LIANG ZHOU, CHUN-HAI ZHANG, SHOU-SHAN FAN
  • Publication number: 20130342098
    Abstract: Micro-fabricated charge-emission devices comprise an electrically conductive gate electrode with an aperture, an electrically conductive base electrode, a charge-emitting microstructure extending from a surface in electrical contact with the base electrode and terminating near the aperture of the gate electrode, and a dielectric layer stack disposed between the base electrode and the gate electrode. The dielectric layer stack comprises a first dielectric layer and a second dielectric layer. The first dielectric layer is disposed between the second dielectric layer and the base electrode. The first dielectric layer is of a different selectively etchable dielectric material than the second dielectric layer. The dielectric layer stack h formed therein a cavity within which the charge-emitting emitting microstructure is disposed. The cavity has a corrugated wall shaped by the first dielectric layer undercutting the second dielectric layer.
    Type: Application
    Filed: March 13, 2012
    Publication date: December 26, 2013
    Applicant: SRI INTERNATIONAL
    Inventors: Christopher E. Holland, Charles A. Spindt
  • Patent number: 8593049
    Abstract: A field electron emitter including a metal electrode; and a plurality of carbon nanotubes, wherein a portion of the plurality of carbon nanotubes protrude from a surface of the metal electrode and a portion of the plurality of carbon nanotubes are in the metal electrode. Also disclosed is a field electron emission device including the field electron emitter and a method of manufacturing the field electron emitter.
    Type: Grant
    Filed: September 18, 2009
    Date of Patent: November 26, 2013
    Assignees: Samsung Electronics Co., Ltd., Korea University Research and Business Foundation
    Inventors: Yoon-chul Son, Yong-chul Kim, Jeong-na Heo, Woo-sung Cho, Byeong-kwon Ju
  • Patent number: 8593048
    Abstract: Provided are an electron source which allows a high-angle current density operation even at a low extraction voltage, and reduces excess current that causes vacuum deterioration; and an electronic device using the electron source. The electron source has a cathode composed of single-crystal tungsten, and a diffusion source provided in the intermediate portion of the cathode. In the cathode, the angle between the axial direction of the cathode and <100> orientation of the cathode is adjusted so that electrons to be emitted from the vicinity of the boundary between surface and surface formed on the tip of the cathode, are emitted substantially parallel to the axis of the cathode. The electronic device is provided with the electron source.
    Type: Grant
    Filed: November 30, 2010
    Date of Patent: November 26, 2013
    Assignee: Denki Kagaku Kogyo Kabushiki Kaisha
    Inventors: Ryozo Nonogaki, Toshiyuki Morishita
  • Patent number: 8581480
    Abstract: A method and system for treating emissions includes charging particles in an exhaust stream, producing one or more radicals, and oxidizing at least a portion of the charged particles with at least a portion of the produced radicals. At least a portion of the charged particles in the exhaust stream are then attracted on at least one attraction surface which is one of oppositely charged from the charged particles and grounded. The attracted particles are oxidized with another portion of the one or more produced radicals to self regenerate the at least one attraction surface. Downstream from where the attracted particles are oxidized, at least a portion of one or more first compounds in the exhaust stream are converted to one or more second compounds downstream from the attracting. Additionally, at least a portion of any remaining charged particles are oxidized into one or more gases.
    Type: Grant
    Filed: September 2, 2011
    Date of Patent: November 12, 2013
    Assignee: Rochester Institute of Technology
    Inventors: Ali Ogut, Cheng Chen
  • Publication number: 20130295815
    Abstract: Provided are an electron emission source, a display apparatus using the same, an electronic device, and a method of manufacturing the display apparatus. The electron emission source includes a substrate, a cathode separately manufactured from the substrate, and a needle-shaped electron emission material layer, e.g., carbon nanotube (CNT) layer, fixed to the cathode by an adhesive layer. The CNT layer is formed by a suspension filtering method, and electron emission density is increased by a subsequent taping process on the electron emission material layer.
    Type: Application
    Filed: July 11, 2013
    Publication date: November 7, 2013
    Applicant: KOREA UNIVERSITY INDUSTRIAL & ACADEMIC COLLABORATION FOUNDATION
    Inventors: Cheol Jin LEE, Seung Il Jung
  • Publication number: 20130264936
    Abstract: Devices for use in cold-field emission and methods of forming the device are generally presented. In one example, a method may include providing a conductive base, dispersing carbon-filled acrylic onto the conductive base to form a conductive film, coupling a copper plate to a first side of the conductive film, and irradiating the conductive film. The method may further include dispersing carbon nanotubes (CNTs) on a second side of the conductive film to form a substantially uniform layer of CNTs, removing excess CNTs from the second side, and curing the conductive film. In one example, a device may include a polycarbonate base, a layer of carbon-filled acrylic on one side of the polycarbonate base and a layer of irradiated carbon-filled acrylic on the other, a copper plate coupled to the carbon-filled acrylic, and a substantially uniform layer of randomly aligned CNTs dispersed on the irradiated carbon-filled acrylic.
    Type: Application
    Filed: April 14, 2011
    Publication date: October 10, 2013
    Applicant: INDIAN INSTITUTE OF SCIENCE BANGALORE
    Inventors: Sandeep Venkit Anand, Arvind Krishnaswamy, Debiprosad Roy Mahapatra
  • Publication number: 20130260634
    Abstract: The present application relates to a method for making a carbon nanotube field emitter. A carbon nanotube film is drawn from the carbon nanotube array by a drawing tool. The carbon nanotube film includes a triangle region. A portion of the carbon nanotube film closed to the drawing tool is treated into a carbon nanotube wire including a vertex of the triangle region. The triangle region is cut from the carbon nanotube film by a laser beam along a cutting line. A distance between the vertex of the triangle region and the cutting line can be in a range from about 10 microns to about 5 millimeters.
    Type: Application
    Filed: October 22, 2012
    Publication date: October 3, 2013
    Inventors: PENG LIU, SHOU-SHAN FAN
  • Publication number: 20130249386
    Abstract: An electron emission element (1) includes an electrode substrate (2) and a thin film electrode (3), and emits electrons from the thin film electrode (3) by voltage application across the electrode substrate (2) and the thin film electrode (3). An electron accelerating layer (4) containing at least insulating fine particles (5) is provided between the electrode substrate (2) and the thin film electrode (3). The electrode substrate (2) has a convexoconcave surface. The thin film electrode (3) has openings (6) above convex parts of the electrode substrate (2).
    Type: Application
    Filed: November 30, 2011
    Publication date: September 26, 2013
    Applicant: SHARP KABUSHIKI KAISHA
    Inventors: Toshihiro Kaneko, Tadashi Iwamatsu, Ayae Nagaoka
  • Publication number: 20130234025
    Abstract: A field-emission electron gun including an electron emission tip, an extractor anode, and a mechanism creating an electric-potential difference between the emission tip and the extractor anode. The emission tip includes a metal tip and an end cone produced by chemical vapor deposition on a nanofilament, the cone being aligned and welded onto the metal tip. The electron gun can be used for a transmission electron microscope.
    Type: Application
    Filed: September 16, 2011
    Publication date: September 12, 2013
    Applicant: CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE (CNRS)
    Inventors: Marc Monthioux, Florent Houdellier
  • Publication number: 20130221828
    Abstract: A microchannel plate (1) for a microchannel plate electron multiplier, comprising: a substrate (5) forming a plate having first and second opposing faces and having a plurality of parallel channels therethrough from first to second faces and; a first electrode (3) on the first face, the first electrode (3) having a first side adjacent to the substrate and a second side opposite to the first side; a second electrode (4) on the second face, the second electrode (4) having a first side adjacent to the substrate (5) and a second side opposite to the first side; and a layer (6, 7) of resistive and secondary emissive material on the second side of the first electrode and the second electrode.
    Type: Application
    Filed: February 27, 2013
    Publication date: August 29, 2013
    Applicant: Photek Limited
    Inventor: Jonathan Ross Howorth
  • Patent number: 8512090
    Abstract: A method for making a field emission cathode device is provided. A filler, a substrate, and a metal plate are provided. The metal plate has a first surface and a second surface opposite to the first surface, and defines at least one through hole extending through from the first surface to the second surface. At least one electron emitter is inserted into the at least one through hole. The first surface of the metal plate is attached to the substrate. At least a part of the at least one electron emitter is located between the first surface and the substrate. The at least one through hole is filled with the filler to firmly fix the at least one electron emitter.
    Type: Grant
    Filed: January 30, 2013
    Date of Patent: August 20, 2013
    Assignees: Tsinghua University, Hon Hai Precision Industry Co., Ltd.
    Inventors: Peng Liu, Hai-Yan Hao, Shou-Shan Fan
  • Patent number: 8481860
    Abstract: A conductive paste composition is provided. The conductive paste composition includes 20 to 70 weight % of silver nanoparticles having an average particle size of 1 nm to 250 nm based on a total weight of the conductive paste composition, and 0.01 to 2 weight % of silver-decorated carbon nanotubes based on the total weight of the conductive paste composition.
    Type: Grant
    Filed: June 7, 2011
    Date of Patent: July 9, 2013
    Assignee: LS Cable & System, Ltd
    Inventors: Yoon-Jin Kim, Chang-Mo Ko, Ho-Souk Cho
  • Publication number: 20130169143
    Abstract: A field emission light source device, comprising: cathode plate comprising substrate and cathode conductive layer disposed on surface of substrate, and anode plate comprising base formed from transparent ceramic material and anode conductive layer disposed on one surface of base, and insulating support member by which cathode plate and anode plate are integrally fixed, and vacuum-tight chamber formed with anode plate, cathode plate and insulating support member; anode conductive layer and the cathode plate are disposed opposite each other. Because of advantages of good electrical conductivity, high light transmittance, stable electron-impact resistance performance and uniform luminescence, using transparent ceramic as the base of the anode plate in the field emission light source device can increase electron beam excitation efficiency effectively, increase light extraction efficiency of the field emission light source device, and finally increase its luminous efficiency.
    Type: Application
    Filed: September 20, 2010
    Publication date: July 4, 2013
    Inventors: Mingjie Zhou, Wenbo Ma, Qingtao Li
  • Publication number: 20130165011
    Abstract: A method for making a field emission cathode device, including the following steps: (S1) providing a substrate including a first surface, and a carbon nanotube structure defining a first portion and a second portion, the carbon nanotube structure including a plurality of carbon nanotubes, a longitudinal direction of the plurality of carbon nanotubes being from the first portion to the second portion; (S2) placing the carbon nanotube structure on the first surface of the substrate, and fastening the first portion to the substrate; and (S3) repeatedly rubbing the carbon nanotube structure along the direction from the first portion to the second portion.
    Type: Application
    Filed: August 21, 2012
    Publication date: June 27, 2013
    Applicants: HON HAI PRECISION INDUSTRY CO., LTD., TSINGHUA UNIVERSITY
    Inventors: PENG LIU, SHOU-SHAN FAN