Abstract: A bone, cartilage, and disk removal tool assembly is provided with a motor mounted in a housing. A spindle is mounted for rotation to the housing. A rack-and-pinion mechanism is operably driven by the motor and connected to the spindle to oscillate the spindle for providing a rotary oscillating cutting operation. According to at least another embodiment, a plurality of cams is supported in the housing and driven for rotation by the motor. A plurality of followers is mounted for rotation to the housing, in engagement with the plurality of cams so that one rotation of the plurality of cams oscillates the plurality of followers more than once while preventing over-rotation of the plurality of followers. A peak angular acceleration of the spindle is less than nine million radians per second squared.
Type:
Grant
Filed:
May 11, 2012
Date of Patent:
February 5, 2019
Inventors:
Peter L. Bono, James D. Lark, Corey A. Freimark, Anthony J. Ruhala
Abstract: Methods and devices for milling a channel-shaped cavity by a five-axis computer numerical control (CNC) machine by selecting a workpiece to be machined, determining cutting tool flow along the channel-shaped cavity, determining cutting tool in-depth penetration, determining a trochoid path, and determining auxiliary movements.
Abstract: The invention provides a grinding machine for grinding grinding material by means of grinding bodies or wheels, having at least one grinding unit and two parts rotatable relative thereto, which has a container for receiving grinding material and a rotary disk placed above a container base, accompanied by the formation of a finite gap.
Abstract: This invention relates to a spiral-flow barrel finishing machine having a cylindrical stationary metallic barrel equipped with a lining layer at a lower inside portion. A rotating barrel is equipped with a lining layer on a metallic rotational body and is loosely engaged with the lower part inside of the cylindrical stationary barrel so as to rotate freely. A constant clearance is kept between the inner wall of the stationary barrel and the outer wall of the rotating barrel, regardless of the temperature change and the moisture content change. A measure to allow for thermal expansion having a specific vertical width, properly corresponding to the vertical width of the clearance, is circularly arranged between the inner wall of the metallic stationary barrel and the outer wall of the lining layer on the metallic stationary barrel. This makes an allowance for thermal expansion of the lining layer on the stationary barrel toward wall side of the metallic stationary barrel.