With Synchronized Or Controlled Local Oscillator Patents (Class 455/208)
  • Patent number: 10305610
    Abstract: A radio frequency (RF) transmitter for self-sensing power and phase of an RF signal is provided. A local oscillator (LO) is configured to generate a LO signal. A power amplifier is configured to generate the RF signal from the LO signal, wherein the LO and RF signals are periodic signals sharing a waveform and a frequency. An IQ de-modulator is configured to down convert the LO signal and the RF signal into an in-phase (I) signal and a quadrature (Q) signal, wherein direct current (DC) voltages respectively of the I and Q signals define power and phase of the RF signal. A method for self-sensing power and/or phase of an RF signal, and a radar system within which the RF transmitter is arranged, are also provided.
    Type: Grant
    Filed: April 13, 2018
    Date of Patent: May 28, 2019
    Assignee: Infineon Technologies AG
    Inventors: Helmut Kollmann, Jochen Oliver Schrattenecker, Florian Starzer
  • Patent number: 10250314
    Abstract: Certain aspects of the present disclosure provide multi-way diversity receivers with multiple synthesizers. Such a multi-way diversity receiver may be implemented in a carrier aggregation (CA) transceiver. One example wireless reception diversity circuit generally includes three or more receive paths for processing received signals and two or more frequency synthesizing circuits configured to generate local oscillating signals to downconvert the received signals. Each of the frequency synthesizing circuits is shared by at most two of the receive paths, and each pair of the frequency synthesizing circuits may generate a pair of local oscillating signals having the same frequency.
    Type: Grant
    Filed: June 29, 2017
    Date of Patent: April 2, 2019
    Assignee: QUALCOMM Incorporated
    Inventors: Lai Kan Leung, Chiewcharn Narathong, Rajagopalan Rangarajan, Dongling Pan, Yiwu Tang, Aleksandar Miodrag Tasic
  • Patent number: 10090867
    Abstract: A system and method for protecting a cable modem's receiver from transmitter overload when using a splitter/combiner device in place of a conventional (diplex) filter. Instead of a diplex filter to separate transmit and receive bands, a terminal device can use an isolation device, such as the splitter/combiner, or a circulator. This provides an ability to use a frequency band for either upstream transmissions or downstream reception, but creates a problem of receiver overload when the isolation device has insufficient isolation or a back-reflection occurs. Use of agile local oscillators allows the direction of the signal in the band to change very rapidly. Likewise a receive frequency can by dynamically reassigned by retuning a LO, which may employ direct digital synthesis.
    Type: Grant
    Filed: December 21, 2016
    Date of Patent: October 2, 2018
    Assignee: Cable Television Laboratories, Inc.
    Inventor: Thomas Williams
  • Patent number: 10069526
    Abstract: A device is provided for correlating at least one noisy analog signal which is one of a plurality of signals obtained by a plurality of receivers. The device comprises a 1-bit quantization element to which is supplied, in use, the noisy signal; a comparator configured to compare the quantized signal with a reference signal which is a consensus signal obtained by averaging data from the plurality of receivers; and an up/down counter that is configured to be incremented by a subset of the comparison signal.
    Type: Grant
    Filed: April 14, 2017
    Date of Patent: September 4, 2018
    Assignee: Phasor Solutions Limited
    Inventor: Richard Hammond Mayo
  • Patent number: 9948409
    Abstract: A radio frequency (RF) transmitter for self-sensing power and phase of an RF signal is provided. A local oscillator (LO) is configured to generate a LO signal. A power amplifier is configured to generate the RF signal from the LO signal, wherein the LO and RF signals are periodic signals sharing a waveform and a frequency. An IQ de-modulator is configured to down convert the LO signal and the RF signal into an in-phase (I) signal and a quadrature (Q) signal, wherein direct current (DC) voltages respectively of the I and Q signals define power and phase of the RF signal. A method for self-sensing power and phase of an RF signal, and a radar system within which the RF transmitter is arranged, are also provided.
    Type: Grant
    Filed: September 20, 2016
    Date of Patent: April 17, 2018
    Assignee: Infineon Technologies AG
    Inventors: Helmut Kollmann, Jochen Oliver Schrattenecker, Florian Starzer
  • Patent number: 9888525
    Abstract: Dual band wireless local area network (WLAN) transceiver. A wireless communication device includes at least two different transceivers (or radios) therein to effectuate communications with other wireless communication devices using at least two respective frequency bands. Each of these two transceivers may have different respective circuitry (e.g., each may have a different respective power amplifier (PA) and/or other circuitry components). Coordination is made regarding when certain components of one transceiver turn on and operate when another transceiver may be transmitting or receiving communications. For example, the turn on of a PA and/or other circuitry components (e.g., such as components using or requiring high current) within one transceiver can be coordinated as to minimize deleterious effects regarding the operation of another transceiver. Moreover, latency existent within each of the respective transceiver chains within the wireless communication device (e.g.
    Type: Grant
    Filed: April 28, 2015
    Date of Patent: February 6, 2018
    Assignee: AVAGO TECHNOLOGIES GENERAL IP (SINGAPORE) PTE. LTD
    Inventor: Bijoy Bhukania
  • Patent number: 9768790
    Abstract: Disclosed are circuits and method for reducing or eliminating reference spurs in frequency synthesizers. In some implementations, a phase-locked loop (PLL) such as a Frac-N PLL of a frequency synthesizer can include a phase frequency detector (PFD) configured to receive a reference signal and a feedback signal. The PFD can be configured to generate a first signal representative of a phase difference between the reference signal and the feedback signal. The PLL can further include a compensation circuit configured to generate a compensation signal based on the first signal. The PLL can further includes a voltage-controlled oscillator (VCO) configured to generate an output signal based on the compensation signal. The compensation signal can include at least one feature for substantially eliminating one or more reference spurs associated with the PLL.
    Type: Grant
    Filed: May 10, 2016
    Date of Patent: September 19, 2017
    Assignee: Skyworks Solutions, Inc.
    Inventors: Ardeshir Namdar-Mehdiabadi, Darren Roger Frenette, John William Mitchell Rogers
  • Patent number: 9520954
    Abstract: A system and method supply a test signal having a first tone at a first RF frequency and a second tone at a second RF frequency to a frequency converter; provide a local oscillator (LO) signal to the frequency converter, wherein an IF output signal of the frequency converter is supplied to an input of an intermediate frequency (IF) filter, in response to which the IF filter provides a filtered IF output signal; for each of N>1 different LO frequencies, measure the filtered IF output signal at a pair of IF frequencies corresponding to differences between the first and second RF frequencies and the LO frequency, where the measurements of the filtered IF output signal measure time-invariant phase; and ascertain N?1 values of phase dispersion D of the IF filter at N?1 corresponding IF frequencies from the N measurements of the filtered IF output signal at the N different LO frequencies.
    Type: Grant
    Filed: January 28, 2016
    Date of Patent: December 13, 2016
    Assignee: Keysight Technologies, Inc.
    Inventors: Jan Verspecht, Keith F. Anderson
  • Patent number: 9252844
    Abstract: Disclosed is a resonate power generator and a resonate power receiver. The resonate power generator may include a modulator to control modulation of transmission data transmitted to a target resonator, and to control transmission of the modulated transmission data to a power carrier signal of a source resonator, a demodulator to demodulate received data received from the target resonator, and a coupling unit to couple the modulator, the demodulator, and the source resonator.
    Type: Grant
    Filed: December 15, 2010
    Date of Patent: February 2, 2016
    Assignee: Samsung Electronics Co., Ltd.
    Inventors: Nam Yun Kim, Sang Wook Kown
  • Patent number: 9191016
    Abstract: Fast phase coordinating systems and methods are disclosed. An example system includes a phase locator configured to detect a first phase of a reference signal and a first phase of a coordinating signal after the first phase of the reference signal. An integrator is configured to integrate from the first phase of the reference signal to a location phase of the coordinating signal and integrate oppositely from the first phase of the coordinating signal to a time-shifted phase of the reference signal and output the result. A control function is configured to shift the phase of the coordinating signal in response to output from the integrator.
    Type: Grant
    Filed: February 4, 2013
    Date of Patent: November 17, 2015
    Inventor: Jed Griffin
  • Patent number: 9154337
    Abstract: An OFDM receiver generates an initial channel impulse response in response to a received OFDM signal. The receiver determines the time span within the initial channel impulse response in which significant paths are present. An intermediate channel impulse response estimator identifies paths within the initial channel impulse response and generates an improved intermediate channel impulse response. A channel impulse response estimator performs a second non-linear process to generate a channel impulse response. An equalizer responds to the channel impulse response and the OFDM symbol to equalize the OFDM symbol. Metrics are generated that can be used for effectively stopping the second iterative non-linear process.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 6, 2015
    Assignee: Acorn Technologies, Inc.
    Inventors: Steven C Thompson, Roee Kalinksy, Fernando Lopez de Victoria
  • Patent number: 9008601
    Abstract: A circuit for a single differential-inductor oscillator with common-mode resonance may include a tank circuit formed by coupling a first inductor with a pair of first capacitors; a cross-coupled transistor pair coupled to the tank circuit; and one or more second capacitors coupled to the tank circuit and the cross-coupled transistors. The single differential-inductor oscillator may be configured such that a common mode (CM) resonance frequency (FCM) associated with the single differential-inductor oscillator is at twice a differential resonance frequency (FD) associated with the single differential-inductor oscillator.
    Type: Grant
    Filed: August 16, 2013
    Date of Patent: April 14, 2015
    Assignee: Broadcom Corporation
    Inventors: David Patrick Murphy, Hooman Darabi
  • Patent number: 8954055
    Abstract: In a wireless network, a base station (BS) may send a primary synchronization signal (PSS) and a secondary synchronization signal (SSS). The synchronization signals may be used by user equipments (UEs) for cell detection and acquisition. A typical searching operation may involve first locating the PSS sequences transmitted by neighboring BSs, followed by SSS detection. Described further herein are algorithms that result in the detection of the PSS and the SSS from a BS. A method for detecting a BS generally includes sampling a received signal from receiver antennas to obtain a sampled sequence, analyzing the sampled sequence to detect a PSS in a current half-frame (HF), calculating signal-to-noise ratio (SNR) metrics based on the detected PSS, combining the calculated SNR metrics with SNR metrics from previous HFs, analyzing the combined SNR metrics to obtain timing information, and analyzing the sampled sequence using the timing information to detect a SSS.
    Type: Grant
    Filed: November 8, 2012
    Date of Patent: February 10, 2015
    Assignee: QUALCOMM Incorporated
    Inventors: Shivratna Giri Srinivasan, Brian Clarke Banister, Supratik Bhattacharjee
  • Patent number: 8929486
    Abstract: Compressing a variable phase component of a received modulated signal with a second harmonic injection locking oscillator, and generating a delayed phase-compressed signal with a fundamental injection locking oscillator, and combining the phase-compressed signal and the delayed phase-compressed signal to obtain an estimated derivative of the variable phase component, and further processing the estimated derivative to recover data contained within the received modulated signal.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 6, 2015
    Assignee: Innophase Inc.
    Inventors: Yang Xu, Sara Munoz Hermoso
  • Patent number: 8907688
    Abstract: A clock supplying device for supplying a clock signal to be used in an operation of a communication apparatus, includes an oscillator for generating the clock signal; a measurement unit for acquiring a reference clock signal extracted from a transmission line connected to the communication apparatus, and measuring a frequency difference between the clock signal and the reference clock signal; and a determiner for determining whether a warm-up operation of the oscillator unit has been completed or not, in accordance with measurement results of the frequency difference and a status of power supplying.
    Type: Grant
    Filed: August 8, 2011
    Date of Patent: December 9, 2014
    Assignee: Fujitsu Limited
    Inventor: Hiroyoshi Yoda
  • Publication number: 20140323073
    Abstract: Methods, systems, computer-readable media, and apparatuses for locally generating and synchronizing oscillation signals in a phased array system are presented. Multiple sub-array modules are used for collectively transmitting any number of beams on carrier frequencies, wherein each of the sub-array modules includes a transmit antenna, an oscillator configured to generate an oscillation signal, and a control element configured to phase lock the oscillation signal with other oscillation signals used in the system.
    Type: Application
    Filed: December 30, 2013
    Publication date: October 30, 2014
    Applicant: CUBIC CORPORATION
    Inventor: Wayne Edward Richards
  • Publication number: 20140302806
    Abstract: A unidirectional sampling mixer utilizes a stepped phase modulation to shift the frequency of an input signal. An RF input signal is supplied to an RF input switch from an RF input port. An ordered set of phase shift values to be applied to the RF input signal and a set of times each element of which correspond to a time at which a phase shift value is be applied to the RF signal are determined. For each phase shift value within the ordered set of phase shift values, a controller controls the RF input switch to select an input of a phase shifting device and controls an RF output switch to select an output of the phasing shifting device. The input of the phase shifting device and the output of the phase shifting device are selected to apply the phase shift value at its corresponding time to the RF input signal. A frequency shifted signal is supplied to an RF output port from an output of the RF output switch.
    Type: Application
    Filed: June 19, 2014
    Publication date: October 9, 2014
    Inventors: Brecken H. Uhl, Daniel A. Law
  • Patent number: 8849228
    Abstract: A receiver having a mixer for mixing a radio frequency signal and a local oscillator signal so as to generate a base band signal, a detecting unit for generating from the base band signal a detection signal that represents an extent of local oscillation leakage, and an adjusting unit coupled electrically to said mixer for outputting a control signal thereto to control a current operating state of said mixer, said adjusting unit being further coupled electrically to said detecting unit, and determining whether there is a reduction in the extent of local oscillation leakage based on the detection signal from said detecting unit. In operation, the adjusting unit maintains an adjusting direction for the control signal upon determining that the extent of local oscillation leakage is reduced, reverses the adjusting direction upon determining that the extent of local oscillation leakage is not reduced, and adjusts the control signal according to the adjusting direction.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: September 30, 2014
    Assignee: Realtek Semiconductor Corp.
    Inventors: Hong-Ta Hsu, Ying-Hsi Lin
  • Patent number: 8839020
    Abstract: A clock/data recovery circuit includes an edge detector circuit operable to receive a serial data burst and to generate a reset signal in response to a first edge of the serial data burst. The clock/data recovery circuit may also include an oscillator coupled to the edge detector circuit. The oscillator locks onto a target data rate prior to receipt of the serial data burst and locks onto a phase of the serial data burst in response to the reset signal. The clock/data recovery circuit may also include a phase detector circuit that receives the serial data burst. The phase detector circuit is coupled to the oscillator. The phase detector circuit adjusts the oscillator to maintain the lock onto the phase of the serial data burst during the serial data burst.
    Type: Grant
    Filed: March 15, 2012
    Date of Patent: September 16, 2014
    Assignee: QUALCOMM Incorporated
    Inventors: Jingcheng Zhuang, Nam V. Dang, Xiaohua Kong, Zhi Zhu, Tirdad Sowlati, Behnam Amelifard
  • Patent number: 8804875
    Abstract: Compressing a variable phase component of a received modulated signal with a second harmonic injection locking oscillator, and generating a delayed phase-compressed signal with a fundamental injection locking oscillator, and combining the phase-compressed signal and the delayed phase-compressed signal to obtain an estimated derivative of the variable phase component, and further processing the estimated derivative to recover data contained within the received modulated signal.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: August 12, 2014
    Assignee: Innophase Inc.
    Inventors: Yang Xu, Sara Munoz Hermoso
  • Patent number: 8755466
    Abstract: A receiver, receiving method, and use of an in-phase signal and a quadrature-phase signal is provided, that includes a mixer in the receiving path, an oscillator whose output is connected to a mixer input of the mixer, whereby the oscillator is formed to output a base signal, oscillating at a base frequency, at the output, a clock generation device to generate a clock signal from the base signal, whose input is connected to the output of the oscillator, whereby the clock generation device has a frequency converter for converting a base frequency of the base signal by the factor F=x+A, where x is a positive whole number and A a rational number between 0 and 1, and a signal processing device, which is connected downstream of the mixer in the receive path, whereby the signal processing device is connected to the clock generation device for control with the clock signal.
    Type: Grant
    Filed: January 23, 2009
    Date of Patent: June 17, 2014
    Assignee: Atmel Corporation
    Inventor: Marco Schwarzmueller
  • Patent number: 8744385
    Abstract: A frequency conversion system includes a mixer, which is coupled to mix an input signal with a Local Oscillator (LO) signal, so as to produce an output signal. Control circuitry is configured to adjust an actual level of the LO signal provided to the mixer, so as to maintain the actual level substantially constant. A nulling signal generator is coupled to inject a nulling signal into the input signal prior to mixing with the LO signal adjusted by the control circuitry.
    Type: Grant
    Filed: September 1, 2009
    Date of Patent: June 3, 2014
    Assignee: Provigent Ltd
    Inventors: Nir Yahav, Ofer Rahmanony
  • Patent number: 8725092
    Abstract: In accordance with an example embodiment of the present invention, an apparatus comprises a first multiplier configured to convert a first frequency signal into a second frequency signal based at least in part on a first complex-valued local oscillator signal, a pair of low-pass filters configured to filter the second frequency signal, and a second multiplier configured to convert the filtered second frequency signal into a third frequency signal based at least in part on a second complex-valued local oscillator signal wherein the first frequency signal and the third frequency signal share the same frequency position and the pair of low-pass filters is configured based on an indication of allocated transmitted channels.
    Type: Grant
    Filed: November 11, 2009
    Date of Patent: May 13, 2014
    Assignee: Nokia Corporation
    Inventors: Markus Nentwig, Risto Ilari Wichman
  • Patent number: 8712356
    Abstract: Apparatus and methods are disclosed related to phase synchronization in transmitters. One such apparatus includes a wireless transmitter with two or more separate and unrelated local oscillators. The apparatus can provide RF signals to multiple antenna elements, which can be implemented in systems such as beamforming systems or multiple input multiple output (MIMO) systems. A phase difference between local oscillators is determined using outputs of receivers. The phase difference can be used to adjust a phase of signals associated with one or more of the local oscillators, such that the phase of each signal provided to the multiple antenna elements can be aligned.
    Type: Grant
    Filed: May 11, 2010
    Date of Patent: April 29, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Antonio Montalvo, Jianxun Fan
  • Patent number: 8712357
    Abstract: Techniques for generating local oscillator (LO) signals are described. In one design, an apparatus may include a deskew circuit and a divider circuit. The deskew circuit may receive a differential input oscillator signal having timing skew and provide a differential output oscillator signal having reduced timing skew. The differential input oscillator signal may include first and second input oscillator signals, and the differential output oscillator signal may include first and second output oscillator signals. In one design, the deskew circuit may include first and second variable delay circuits that receive the first and second input oscillator signals, respectively, and provide the first and second output oscillator signals, respectively. Each output oscillator signal may have an adjustable delay selected to reduce timing skew. The divider circuit may divide the differential output oscillator signal in frequency and provide differential I and Q divided signals, which may be used to generate LO signals.
    Type: Grant
    Filed: November 13, 2008
    Date of Patent: April 29, 2014
    Assignee: Qualcomm Incorporated
    Inventors: Vinod V. Panikkath, Prasad S. Gudem, Steven C. Ciccarelli
  • Publication number: 20140080433
    Abstract: Embodiments of the present invention provide a receiver and a receiving method of the receiver, so that monolithic integration of multiple receiving channels can be implemented. The receiver includes: a zero intermediate frequency channel, performing in-phase/quadrature (IQ) down conversion on a radio frequency signal at a first frequency band using a frequency division or frequency multiplication signal of a first oscillation signal; and a superheterodyne channel, performing down conversion on a radio frequency signal at a second frequency band using the frequency division or frequency multiplication signal of the first oscillation signal, where the first frequency band is different from the second frequency band.
    Type: Application
    Filed: November 21, 2013
    Publication date: March 20, 2014
    Applicant: Huawei Technologies Co., Ltd.
    Inventors: Zhuobiao He, Jianfeng Wu, Zhengxiang Ma
  • Patent number: 8671302
    Abstract: Methods and systems for operating a wireless clock system for multimedia datastream transmission and display. Source clock frames are compared with a reference clock frames and the clock difference are transmitted to a wireless clock receiver which also receives the same reference clock frames. Source clock frames are re-constructed using the reference clock frames, clock difference information and the receiver's local clock system.
    Type: Grant
    Filed: June 11, 2008
    Date of Patent: March 11, 2014
    Assignee: Picongen Wireless, Inc.
    Inventors: Sai Manapragada, Alvin Dale Kluesing
  • Patent number: 8638174
    Abstract: The invention relates to a digital signal generator for providing one or more phases of a local oscillator signal for use in digital to analogue converters and harmonic rejection mixers. Embodiments disclosed include a local oscillator signal generator (200) for a mixer of a radiofrequency receiver, the signal generator (200) comprising a bit sequence generator (201) having a plurality of parallel output lines (203), a digital signal generator (202) having a serial output line (204) and a plurality of input lines connected to respective output lines (203) of the bit sequence generator (201) and a clock signal input line (205), wherein the digital signal generator (202) is configured to provide an output bit sequence on the serial output line (204) at a rate given by a clock signal provided on the clock signal input line (205) and a sequence given by a sequence of bits from the bit sequence generator (201) on the plurality of input lines (203).
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: January 28, 2014
    Assignee: Integrated Device Technology inc.
    Inventors: Nenad Pavlovic, Johannes Hubertus Antonius Brekelmans, Jan van Sinderen
  • Patent number: 8630679
    Abstract: A wireless communication unit has two or more communication modes including one or more mobile phone mode, in which mobile phone mode the wireless communication unit is able to transmit or receive wireless signals via an antenna from and/or to a mobile phone network in accordance with a communication protocol. The unit includes a baseband module and a radiofrequency module. A radiofrequency interface of the baseband module is connected to the radiofrequency module, for receiving and/or transmitting baseband signals from and/or to the radiofrequency module. The radiofrequency module includes a baseband interface, for receiving and/or transmitting the baseband signals to the baseband module and an antenna interface (AI) connectable to an antenna for receiving and/or transmitting radiofrequency signals from and/or to the antenna. A clock system is connected to the radiofrequency interface and the baseband interface.
    Type: Grant
    Filed: May 25, 2007
    Date of Patent: January 14, 2014
    Assignee: Freescale Semiconductor, Inc.
    Inventors: Paul Kelleher, Conor Okeeffe, Daniel B Schwartz, Kevin Traylor
  • Patent number: 8626102
    Abstract: Systems, methods, and other embodiments associated with radio coexistence using clock rate adaptation are described. According to one embodiment, a device includes a system bus configured to transmit and receive data at a clock rate. The device also includes a radio logic configured to receive radio frequency signals. The device further includes a clock logic configured to adjust the clock rate of the system bus when the radio logic is receiving the radio frequency signals.
    Type: Grant
    Filed: August 3, 2011
    Date of Patent: January 7, 2014
    Assignee: Marvell International Ltd.
    Inventors: Sameer Bidichandani, Ashley Teiko Uyehara, Srinivasa H. Garlapati, Ken Yeung
  • Publication number: 20130324061
    Abstract: An electrically small receiver system is provided. The receiver system includes a plurality of antennas and a signal processing circuit. The plurality of antennas includes a first antenna configured to receive a first signal and a second antenna configured to receive a second signal. The signal processing circuit includes a phase shifter configured to apply a phase shift to the received second signal. The phase shift applied by the phase shifter is a function of an angle of incidence of the second signal measured relative to a boresight direction of the plurality of antennas. The signal processing circuit is configured to form an output signal that is a combination of the received first signal and the phase shifted second signal.
    Type: Application
    Filed: June 1, 2012
    Publication date: December 5, 2013
    Inventor: Nader Behdad
  • Publication number: 20130316668
    Abstract: Low noise amplifiers (LNAs) supporting carrier aggregation are disclosed. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit, etc.) includes an amplifier circuit, a transformer, and a plurality of downconverters. The amplifier circuit receives and amplifies an input radio frequency (RF) signal and provides an amplified RF signal. The input RF signal includes transmissions sent on multiple carriers at different frequencies to a wireless device. The transformer includes a primary coil coupled to the amplifier circuit and a plurality of secondary coils providing a plurality of output RF signals. The plurality of downconverters downconvert the plurality of output RF signals with a plurality of local oscillator (LO) signals at different frequencies. Each downconverter includes a pair of mixers that receives one output RF signal and one LO signal and provides inphase and quadrature downconverted signals for one set of carriers being received.
    Type: Application
    Filed: August 30, 2012
    Publication date: November 28, 2013
    Applicant: QUALCOMM Incorporated
    Inventors: Anosh Bomi Davierwalla, Aleksandar Miodrag Tasic
  • Publication number: 20130316669
    Abstract: Low noise amplifiers (LNAs) supporting carrier aggregation are disclosed. In an exemplary design, an apparatus (e.g., a wireless device, an integrated circuit, etc.) includes first and second amplifier circuits and a divert cascode transistor. Each amplifier circuit may include a gain transistor and a cascode transistor. The divert cascode transistor is coupled between the output of the first amplifier circuit and the gain transistor in the second amplifier circuit. The first and second amplifier circuits receive an input radio frequency (RF) signal including transmissions sent on multiple carriers at different frequencies to a wireless device. The first and second amplifier circuits and the divert cascode transistor are controlled to amplify the input RF signal and provide (i) one amplified RF signal for one set of carriers in a first operating mode or (ii) two amplified RF signals for two sets of carriers in a second operating mode.
    Type: Application
    Filed: September 10, 2012
    Publication date: November 28, 2013
    Applicant: QUALCOMM INCORPORATED
    Inventors: Anosh Bomi Davierwalla, Aleksandar Miodrag Tasic
  • Patent number: 8570887
    Abstract: Apparatus having corresponding methods and non-transitory computer-readable media comprise an amplifier configured to amplify signals according to a bias current, wherein the signals represent packets of data; a packet module configured to recover the packets of data from the signals amplified by the amplifier; and a control module configured to control the bias current according to one or more characteristics of the packets of data.
    Type: Grant
    Filed: November 11, 2010
    Date of Patent: October 29, 2013
    Assignee: Marvell World Trade Ltd.
    Inventors: Thomas B. Cho, Li Lin, Mao Yu, Atul Salhotra
  • Patent number: 8515379
    Abstract: An adjusting method for reducing local oscillation leakage or I/Q mismatch in a receiver includes the steps of: (a) detecting a current extent of local oscillation leakage or I/Q mismatch; (b) determining if an adjusting direction is correct with reference to the current extent of local oscillation leakage or I/Q mismatch thus detected, maintaining the adjusting direction if correct, and reversing the adjusting direction upon determining that the adjusting direction is incorrect; and (c) adjusting a control signal according to the adjusting direction.
    Type: Grant
    Filed: July 1, 2011
    Date of Patent: August 20, 2013
    Assignee: Realtek Semiconductor Corp.
    Inventors: Hong-Ta Hsu, Ying-Hsi Lin
  • Patent number: 8503950
    Abstract: Approaches for crest factor reduction in a multiband transmitter. An input data signal is placed on a first frequency band, and a second frequency band that is inactive is selected. The second frequency band is out-of-band from the first frequency band. A peak-reducing waveform placed on the second frequency band is generated. The peak-reducing waveform is configured to reduce a plurality of peaks in the data signal. The peak-reducing waveform and the data signal are combined to produce a crest-factor-reduced signal. The crest-factor-reduced signal is transmitted from the multiband transmitter.
    Type: Grant
    Filed: August 2, 2011
    Date of Patent: August 6, 2013
    Assignee: Xilinx, Inc.
    Inventor: Christopher H. Dick
  • Patent number: 8498601
    Abstract: A polar receiver using injection-locking technique includes an antenna, a first filter, a first voltage-controlled oscillator, a first mixer, a frequency discriminator, a second filter, a third filter, a first analog-digital converter, a second analog-digital converter and a digital signal processing unit. Mentioned polar receiver enables to separate an envelope signal and a frequency-modulated signal from a radio frequency signal received from the antenna via the injection locking technique of the first voltage-controlled oscillator and the frequency discriminator. The envelope component and the frequency-modulated component can be digitally processed by the digital signal processing unit to accomplish polar demodulation.
    Type: Grant
    Filed: June 1, 2012
    Date of Patent: July 30, 2013
    Assignee: National Sun Yat-Sen University
    Inventors: Tzyy-Sheng Horng, Chi-Tsan Chen, Chieh-Hsun Hsiao, Kang-Chun Peng
  • Patent number: 8483322
    Abstract: A receiver front end receives a local frequency reference signal and a Frequency Shift Keying modulated signal comprising a synchronisation sequence, and downconverts the Frequency Shift Keying modulated signal to provide baseband in-phase and quadrature signals. A pulse generator receives the in-phase and quadrature signals, generates an in-phase pulse signal ILEAD comprising pulses aligned with edges of the baseband in-phase and quadrature signals when the baseband in-phase signal leads the baseband quadrature signal, and generates a quadrature pulse signal QLEAD comprising pulses aligned with edges of the baseband quadrature and in-phase signals when the baseband quadrature signal leads the baseband in-phase signal. A frequency corrector receives the in-phase and quadrature pulse signals during receipt of the synchronisation sequence, compares the pulse signals to a target, and generates a control signal for controlling the local signal generator in dependence upon the result of the comparison.
    Type: Grant
    Filed: July 28, 2008
    Date of Patent: July 9, 2013
    Assignee: Toumaz Technology Limited
    Inventor: Ganesh Kathiresan
  • Patent number: 8483731
    Abstract: A wireless communications system includes a radio resource manager, one or more base stations, and one or more wireless transceivers capable of communicating with the base stations. The wireless transceivers are configured to be able to measure the difference in network parameter (e.g. frequency and timing offset) between base stations within their range. These network parameter differences along with other information is communicated to the radio resource manager which is then able to update or correct the signal or signals of one or more base stations using the information from the wireless transceivers.
    Type: Grant
    Filed: February 8, 2010
    Date of Patent: July 9, 2013
    Assignee: Eden Rock Communications, LLC
    Inventor: Eamonn Gormley
  • Publication number: 20130165066
    Abstract: A unidirectional sampling mixer utilizes a stepped phase modulation to shift the frequency of an RF input signal supplied to an RF input switch. An ordered set of phase shift values to be applied to the RF input signal and a set of times each element of which corresponds to a time at which a phase shift value is be applied to the RF signal are determined. For each phase shift value, a controller controls the RF input switch to select an input of a phase shifting device and controls an RF output switch to select an output of the phasing shifting device. The input and the output of the phase shifting device are selected to apply the phase shift value at its corresponding time to the RF input signal. A frequency shifted signal is supplied to an RF output port from an output of the RF output switch.
    Type: Application
    Filed: December 18, 2012
    Publication date: June 27, 2013
    Applicant: Invertex Corporation
    Inventors: Brecken H. Uhl, Daniel A. Law
  • Patent number: 8457578
    Abstract: A discrete time receiver includes a low noise transconductance amplifier (LNTA), a discrete time sampler, a passive discrete time circuit, and a switched capacitor amplifier. The LNTA amplifies a received RF signal and provides an amplified RF signal. The discrete time sampler samples the amplified RF signal (e.g., with multiple phases of a sampling clock) and provides first analog samples. The passive discrete time circuit decimates and filters the first analog samples and provides second analog samples. The switched capacitor amplifier amplifies the second analog samples and provides third analog samples. The discrete time receiver may further include a second passive discrete time circuit, a second switched capacitor amplifier, and an analog-to-digital converter (ADC) that digitizes baseband analog samples and provides digital samples. The discrete time receiver can flexibly support different system bandwidths and center frequencies.
    Type: Grant
    Filed: December 30, 2008
    Date of Patent: June 4, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Joseph Patrick Burke, Chengzhi Pan, Russell John Fagg
  • Patent number: 8442147
    Abstract: A local carrier wave output from a synthesizer to quadrature demodulators is multiplied by an offset that makes a frequency shift by an integer number of subcarriers in units of sub-carrier bands. The offset is set to a value obtained by multiplying the number sequentially counted up from 0 to the number of unused sub-carriers included in guard tones in a signal band by the bandwidth of a sub-carrier. By shifting the frequency of the local carrier wave at the time of quadrature demodulation with the offset, the SNR of a baseband signal is prevented from being constantly degraded by a frequency characteristic possessed by the circuit of a receiver in a particular sub-carrier signal. Especially, by preventing a pilot signal from being constantly degraded, the signal can be received with higher accuracy.
    Type: Grant
    Filed: September 4, 2009
    Date of Patent: May 14, 2013
    Assignee: Fujitsu Semiconductor Limited
    Inventor: Taiji Kondo
  • Patent number: 8426342
    Abstract: The invention relates to the use of one or more compounds of the formula (I) or salts thereof, wherein the groups R1 to R8 are defined as set forth herein, optionally in the presence of additional agrochemical active ingredients, for selective weed control on turf or lawn.
    Type: Grant
    Filed: July 21, 2009
    Date of Patent: April 23, 2013
    Assignee: Bayer Cropscience AG
    Inventors: Michael Kilian, Eckhard Rose, Erwin Hacker, Hansjoerg Dietrich, Klemens Minn, Donald Myers
  • Patent number: 8416761
    Abstract: Disclosed are a wireless communication system, method, and site controller for mitigating at least one of a transmission timing synchronization loss and a receiving timing synchronization loss at a base station. The method includes determining, at a first base station, a loss of a timing reference the timing reference is used by the first base station for timing synchronization of at least one of a transmission and reception of wireless data. The timing synchronization is predefined and common between at least the first base station and a second base station. The method further includes adjusting, in response to the determining, at least one of a transmit guard time and a receive guard time by at least one symbol time.
    Type: Grant
    Filed: September 28, 2006
    Date of Patent: April 9, 2013
    Assignee: Motorola Mobility LLC
    Inventor: Alan P. Rottinghaus
  • Publication number: 20130078936
    Abstract: An RF receiver includes an RF signal reception path to process an input signal for the receiver for a first mode of the receiver; an oscillator; and a harmonic generator. The harmonic generator generates a harmonic signal in response to operation of the oscillator to replace the input signal with the harmonic signal for a second mode of the receiver.
    Type: Application
    Filed: September 25, 2011
    Publication date: March 28, 2013
    Inventors: Hendricus De Ruijter, Tamas Marozsak, Peter Onody
  • Patent number: 8406795
    Abstract: A wireless terminal using OFDM signaling supporting both terrestrial and satellite base station connectivity operates using conventional access probe signaling in a first mode of operation to establish a timing synchronized wireless link with a terrestrial base station. In a second mode of operation, used to establish a timing synchronized wireless link with a satellite base station, a slightly modified access protocol is employed. The round trip signaling time and timing ambiguity between a wireless terminal and a satellite base station is substantially greater than with a terrestrial base station. The modified access protocol uses coding of access probe signals to uniquely identify a superslot index within a beaconslot. The modified protocol uses multiple access probes with different timing offsets to further resolve timing ambiguity and allows the satellite base station access monitoring interval to remain small in duration.
    Type: Grant
    Filed: April 16, 2009
    Date of Patent: March 26, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Frank A. Lane, Rajiv Laroia, Junyi Li
  • Patent number: 8406707
    Abstract: Various embodiments of systems and methods for generating local oscillator (LO) signals for a harmonic rejection mixer are provided. One embodiment is a system for generating local oscillator (LO) signals for a harmonic rejection mixer. One such system comprises a local oscillator, a divide-by-N frequency divider, a divide-by-three frequency divider, and a harmonic rejection mixer. The local oscillator is configured to provide a reference frequency signal. The divide-by-N frequency divider is configured to divide the reference frequency signal by a value N and provide an output signal. The divide-by-three frequency divider is configured to receive the output signal of the divide-by-N frequency divider and divide the output signal into three phase-offset signals. The harmonic rejection mixer is configured to receive the three phase-offset signals and eliminate third frequency harmonics.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: March 26, 2013
    Assignee: Skyworks Solutions, Inc.
    Inventors: Rajasekhar Pullela, Dmitriy Rozenblit, Hamid Firouzkouhi
  • Patent number: 8355752
    Abstract: A cellular telephone includes cellular telephone circuitry and an FM receiver. An FM signal being received is downconverted by a mixer. The downconverted signal is processed to generate an FM signal that is supplied to a digital IF filter. If a blocker emitted by the cellular telephone circuitry would interfere with receiving of the FM signal due to interaction of an LO harmonic with the blocker if a conventional LO frequency were used, then a different LO frequency is used. Subsequent processing of the downconverted FM signal (for example, by a digital complex conjugate selector and an IF rotator) results in the signal supplied to the digital IF filter having the same center frequency as the digital IF filter despite the use of the different LO frequency. In some embodiments, the LO is shifted by different amounts depending on cellular telephone mode and on the FM signal.
    Type: Grant
    Filed: November 2, 2009
    Date of Patent: January 15, 2013
    Assignee: QUALCOMM Incorporated
    Inventors: Pushp Trikha, Luca Blessent, Xiaoyong Li, Rahul A. Apte
  • Patent number: 8340672
    Abstract: A wireless synchronization device is used to coordinate the timing and activities of individual, possibly physically separated, wireless service providers with defined coverage area. Further, the synchronization information is used to coordinate the timing and activities of portable wireless client devices in an autonomous, wireless proximity sensing and data transfer network. Moreover, one or more of the wireless service providers can be arranged to simultaneously monitor broadcasts from the wireless synchronization device and communicate with one or more of the portable wireless client devices.
    Type: Grant
    Filed: January 5, 2007
    Date of Patent: December 25, 2012
    Assignee: Proxense, LLC
    Inventors: David L. Brown, Fred Hirt
  • Patent number: RE46095
    Abstract: Herbicide combinations comprising an effective amount of components (A) and (B), where component (A) is/are one or more herbicides of the formula (I) or salts thereof, in which R1 is H or a group of the formula CZ1Z2Z3, where Z1, Z2 and Z3 are as defined in claim 1, R2 and R3 are each H, alkyl, haloalkyl, alkenyl, haloalkenyl, alkynyl, haloalkynyl having in each case up to 4 carbon atoms or acyl, R4 is H, (C1-C6)-alkyl or (C1-C6)-alkoxy; R5, R6, R7 and R8 are each H, (C1-C4)-alkyl, (C1-C3)-haloalkyl, halogen, (C1-C3)-alkoxy, (C1-C3)-haloalkoxy or cyano; A is CH2 or O or a direct bond, and the component (B) is one or more herbicides from the group of compounds consisting of (B1) thiencarbazone, tembotrione, SYN-523, pyroxsulam, penoxsulam, SYN-449, (B2) pyrasulfotole, trifloxysulfuron, saflufenacil, aminopyralid, ethofumesate, aminocyclopyrachlor and (B3) pyroxasulfone (KIH-485) are suitable for controlling harmful plants or for regulating the growth of plants.
    Type: Grant
    Filed: January 13, 2015
    Date of Patent: August 9, 2016
    Assignee: Bayer Intellectual Property GmbH
    Inventors: Erwin Hacker, Martin Hess, Martin Jeffrey Hills, Georg Bonfig-Picard, Thomas Auler