Producer Patents (Class 48/203)
  • Patent number: 10428285
    Abstract: The invention relates to chemical technology and equipment, in particular to apparatuses of processing of solid household and industrial waste, as well as other carbon-containing feedstock into combustible gasification gas and methods for pyrolysis and downdraft gasification process.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: October 1, 2019
    Inventor: Sergii Y. Stryzhak
  • Patent number: 10280114
    Abstract: Method of operating a long direct-fired inclined counterflow rotary kiln for the thermal treatment of material and counterflow rotary kiln adapted for same, whereby material to be treated is introduced into the kiln at the inlet end and treated material is evacuated from the kiln at the outlet end, whereby a main combustion zone extends inside the kiln over a distance of ¼ to ? of the internal length Lint of the kiln, whereby a supplementary combustion zone in which supplementary combustion takes place with an oxygen-rich oxidant extends inside the kiln over a distance from the inlet end of at most ¼ of the internal length Lint, and whereby no combustion takes place in a heat exchange zone located between the main combustion zone and the supplementary combustion zone.
    Type: Grant
    Filed: December 24, 2015
    Date of Patent: May 7, 2019
    Assignee: L'Air Liquide Societe Anonyme Pour L'Etude Et L'Exploitation Des Procedes Georges Claude
    Inventors: Bernard Labegorre, Carlo Renna, Remi Tsiava, Sergio Fernandes
  • Patent number: 9115321
    Abstract: The invention concerns a gasification device for the creation of a flammable gas from a solid, comprising a gasification zone, in which the solid can be filled through a fill opening, an oxidation zone for the oxidation of the resulting gas, which is connected to the gasification zone to conduct the gas created in the gasification zone into the oxidation zone. According to the invention, the efficiency of the gasification device is improved in that the gasification zone is divided into several neighboring gasification sectors, a temperature metering unit is present that is configured to measure the temperature prevailing in each gasification sector, and the temperature metering unit is coupled by signal technology to a control unit, which is coupled to an air supply device by signal technology, that is designed to supply air individually to each gasification sector, and the amount of air supplied to each gasification sector per unit of time is dependent on the temperature measured therein.
    Type: Grant
    Filed: February 16, 2010
    Date of Patent: August 25, 2015
    Assignee: BIG DUTCHMAN INTERNATIONAL GMBH
    Inventors: Armin Schwarz, Mario Urra Saco
  • Patent number: 9109832
    Abstract: An aeration duct apparatus has a plurality of aeration tubes connected together by hollow connectors, each hollow connector defining at least three connection ports. Each aeration tube is connected at each tube end thereof to one of the connection ports, and each connection port is connected to a tube end such that the connected aeration tubes and hollow connectors form a substantially rigid structure. A transition duct is connected to one of the aeration tubes at an inside end thereof and is adapted at an outside end thereof for attachment to a fan. The aeration tubes and transition duct are configured such that air can flow from the fan through the transition duct into each aeration tube and out through a perforated area of walls of the aeration tubes.
    Type: Grant
    Filed: May 24, 2013
    Date of Patent: August 18, 2015
    Inventor: Jeremy Hartsook
  • Patent number: 9028571
    Abstract: A process and system for cooling syngas provides effective syngas cooling and results in reduced levels of fouling in syngas cooling equipment. A process for cooling syngas includes blending syngas with cooled recycled syngas in an amount effective for providing a blended syngas with a temperature at an inlet of a syngas cooler of about 600° F. to about 1400° F. The blended syngas changes direction of flow at least once prior to the inlet of the syngas cooler.
    Type: Grant
    Filed: December 13, 2011
    Date of Patent: May 12, 2015
    Assignee: Ineos Bio SA
    Inventors: Peter S. Bell, Nicolas Vanhecke, Bernard Descales
  • Patent number: 9028568
    Abstract: A system includes a carbon dioxide treatment system that includes a catalyst configured to treat carbon dioxide to produce a treated carbon dioxide. The system also includes a gasifier injector configured to inject the treated carbon dioxide, a fuel, and oxygen into a gasifier. The gasifier injector may be coupled to or located inside the gasifier.
    Type: Grant
    Filed: September 2, 2010
    Date of Patent: May 12, 2015
    Assignee: General Electric Company
    Inventors: Raymond Douglas Steele, Pradeep Stanley Thacker
  • Patent number: 9017435
    Abstract: A system, including a gasifier comprising a wall defining a chamber, an inlet, an outlet, and a port, a combination feed injector coupled to the inlet, wherein the combination feed injector is configured to inject a first fuel and air or oxygen into the chamber to preheat the gasifier, and the combination feed injector is configured to inject a second fuel and oxygen into the gasifier after preheating to gasify the second fuel, an optical device coupled to the port, a sensor coupled to the optical device, and a monitoring system coupled to the sensor, wherein the monitoring system is configured to acquire data from the sensor, process the data, and provide an output representative of a condition of the gasifier based on the data.
    Type: Grant
    Filed: October 8, 2010
    Date of Patent: April 28, 2015
    Assignee: General Electric Company
    Inventor: Thomas Frederick Leininger
  • Patent number: 9011561
    Abstract: A solids circulation system receives a gas stream containing char or other reacting solids from a first reactor. The solids circulation system includes a cyclone configured to receive the gas stream from the first reactor, a dipleg from the cyclone to a second reactor, and a riser from the second reactor which merges with the gas stream received by the cyclone. The second reactor has a dense fluid bed and converts the received materials to gaseous products. A conveying fluid transports a portion of the bed media from the second reactor through the riser to mix with the gas stream prior to cyclone entry. The bed media helps manipulate the solids that is received by the cyclone to facilitate flow of solids down the dipleg into the second reactor. The second reactor provides additional residence time, mixing and gas-solid contact for efficient conversion of char or reacting solids.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: April 21, 2015
    Assignee: Thermochem Recovery International, Inc.
    Inventors: Ravi Chandran, Jonathan A. Zenz, Dave G. Newport, Hamilton Sean Michael Whitney
  • Patent number: 8999019
    Abstract: The present invention relates to a process and system for gasifying biomass or other carbonaceous feedstocks in an indirectly heated gasifier and provides a method for the elimination of condensable organic materials (tars) from the resulting product gas with an integrated tar removal step. More specifically, this tar removal step utilizes the circulating heat carrier to crack the organics and produce additional product gas. As a benefit of the above process, and because the heat carrier circulates through alternating steam and oxidizing zones in the process, deactivation of the cracking reactions is eliminated.
    Type: Grant
    Filed: October 23, 2006
    Date of Patent: April 7, 2015
    Assignee: Taylor Biomass Energy, LLC
    Inventor: Mark A. Paisley
  • Patent number: 8999022
    Abstract: A method for producing synthetic gas from biomass by: a) grinding the biomass, feeding the biomass into a pyrolysis furnace while spraying a first superheated water vapor into the pyrolysis furnace, controlling the temperature of the pyrolysis furnace at 500-800° C., contacting the biomass with the first superheated water vapor for a pyrolysis reaction to yield crude synthetic gas and ash including coke; b) cooling the ash, and separating the coke from the ash; c) transporting the crude synthetic gas and the coke into a gasifier, spraying a second superheated water vapor into the gasifier, controlling the gasifier at an operating temperature of 1200-1600° C., contacting the biomass with the second superheated water vapor for a gasification reaction to yield primary synthetic gas; and d) cooling, removing dust, deacidifying, and desiccating the primary synthetic gas to obtain clean synthetic gas.
    Type: Grant
    Filed: January 20, 2013
    Date of Patent: April 7, 2015
    Assignee: Sunshine Kaidi New Energy Group Co., Ltd.
    Inventors: Yilong Chen, Hongming Tang, Yanfeng Zhang
  • Patent number: 8992640
    Abstract: The disclosed embodiments include systems for using an expander. In a first embodiment, a system includes a flow path and a gasification section disposed along the flow path. The gasification section is configured to convert a feedstock into a syngas. The system also includes a scrubber disposed directly downstream of the gasification section and configured to filter the syngas. The system also includes a first expander disposed along the flow path directly downstream from the scrubber and configured to expand the syngas. The syngas comprises an untreated syngas.
    Type: Grant
    Filed: February 7, 2011
    Date of Patent: March 31, 2015
    Assignee: General Electric Company
    Inventors: Khodaram Rustom Khosravian, Ronald Frederick Tyree, Patrick Joseph McKenna
  • Patent number: 8974557
    Abstract: The present disclosure provides tunable catalytic gasifier systems suitable for gasifying coal, biomass, and other fuel sources. The gasifier reactors of the disclosed systems may be heated by, e.g., a catalytic tube or other jacket that generates heat by catalytically combusting syngas, which syngas may be syngas produced by the gasifier system.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: March 10, 2015
    Assignee: Good Earth Power Corporation
    Inventor: John Dooher
  • Patent number: 8951311
    Abstract: A method and system for controlling a fuel gasification system includes optimizing a conversion of solid components in the fuel to gaseous fuel components, controlling the flux of solids entrained in the product gas through equipment downstream of the gasifier, and maximizing the overall efficiencies of processes utilizing gasification. A combination of models, when utilized together, can be integrated with existing plant control systems and operating procedures and employed to develop new control systems and operating procedures. Such an approach is further applicable to gasification systems that utilize both dry feed and slurry feed.
    Type: Grant
    Filed: February 17, 2011
    Date of Patent: February 10, 2015
    Assignee: U.S. Department of Energy
    Inventors: Peter L. Rozelle, Victor K. Der
  • Patent number: 8915980
    Abstract: A process for the discharge of slag and ash from a gasification reactor is disclosed. These solids are directed from the gasification reactor into a water bath housed with the gasification reactor in a pressure vessel. There are at least two lock hoppers underneath the water bath which are fed with a stream of water/solids via a pipe and a flow divider element, it being possible to supply the lock hoppers individually and in a controlled manner with a stream of water/solids via shut-off devices. The filling is performed in a manner that encourages the sett-ling process by withdrawing a stream of liquid from the lock hopper being filled, the filling time being controlled so as to prevent the solids settling above the valves and lock hoppers. Also disclosed is an apparatus with at least two lock hoppers underneath the water bath of a gasification reactor, there being, in an advantageous embodiment, a flow divider element and shut-off devices between the water bath and the lock hoppers.
    Type: Grant
    Filed: July 11, 2009
    Date of Patent: December 23, 2014
    Assignee: UHDE GmbH
    Inventor: Christoph Hanrott
  • Patent number: 8894728
    Abstract: In the case of a device for gasification of carbonaceous fuels, having a discharge for slags into a slag bath, a solution is supposed to be created with which the gasifier discharge opening is reliably kept at a temperature that guarantees that the slag will flow out. This is achieved in that the gasifier discharge opening (6) is equipped with a ceramic drip edge (7) that can be electrically heated.
    Type: Grant
    Filed: August 13, 2009
    Date of Patent: November 25, 2014
    Assignee: ThyssenKrupp Uhde GmbH
    Inventors: Domenico Pavone, Ralf Abraham, Muhammad Iqbal Mian
  • Patent number: 8845770
    Abstract: A gasification system including a gasifier, a feed injector, and a fuel feed system that includes a first feed line, a second feed line, and a controller that includes a processor. The processor is programmed to enable the first feed line to supply a fuel gas into the feed injector, enable the second feed line to supply oxygen into the feed injector, receive instructions to add a slurry to the gasifier, prevent the first feed line from supplying the fuel gas into the feed injector, enable the first feed line to supply the slurry into the feed injector, enable the second feed line to simultaneously supply the oxygen and the inert gas into the feed injector, and prevent the second feed line from supplying the inert gas into the feed injector.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: September 30, 2014
    Assignee: General Electric Company
    Inventors: Ronald Frederick Tyree, Huan Van Ho
  • Patent number: 8828109
    Abstract: A method of assembling a gasification reactor includes extending an injection device at least partially into the gasification reactor. The injection device includes a plurality of substantially concentric conduits coupled to a modular tip and at least one outer surface. The modular tip includes a plurality of cooling channels and a plurality of substantially annular nozzles defined therein. The method further includes forming at least one layer of insulation about at least a portion of the at least one outer surface to facilitate insulating at least a portion of the injection device from heat within the gasification reactor.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: September 9, 2014
    Assignee: General Electric Company
    Inventors: John Saunders Stevenson, John Duckett Winter, Constantin Bugescu, Kenneth M. Sprouse, David R. Matthews
  • Patent number: 8808411
    Abstract: Disclosed is a process for making a high-purity gas. The process includes an interrelationship among at least four bath vessels, each of which has a molten metal bath. In one embodiment, the process generally includes adding a gas stream into a first bath vessel and then removing that gas stream to introduce it into a third bath vessel. The third bath gas stream is removed to ultimately obtain hydrogen. Steam is added to a fourth bath vessel to ultimately produce additional hydrogen. One or more gas streams produced in the third and/or fourth bath vessels are added to a second bath vessel to ultimately result in production of methane or carbon monoxide.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: August 19, 2014
    Inventors: Michael C. Collins, Robert D. Bach
  • Patent number: 8778038
    Abstract: A method for controlling the peak temperature of a fluid gasification zone used for the gasification of carbonaceous materials to a syngas. Pulsed oxygen is used to control the peak temperature of the gasification zone and to avoid hot spots in the gasifier.
    Type: Grant
    Filed: February 10, 2012
    Date of Patent: July 15, 2014
    Assignee: Syngas Technology, LLC
    Inventors: Duane A. Goetsch, Jacqueline R. Hitchingham, Lloyd R. White
  • Patent number: 8764860
    Abstract: A system includes a gasification vessel configured to receive a fuel and an oxidizer. The system also includes a gasifier disposed in the gasification vessel. The gasifier is configured to partially oxidize the fuel and the oxidizer to generate a syngas. The system further includes a convective syngas cooler configured to cool the syngas via heat exchange with a coolant. The convective syngas cooler is disposed in an interior of the gasification vessel.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: July 1, 2014
    Assignee: General Electric Company
    Inventors: Aaron John Avagliano, James Michael Storey
  • Patent number: 8696773
    Abstract: In a reforming apparatus, for use in a fuel cell, for reforming a raw fuel into a hydrogen-rich reformed gas, a reformer generates the reformed gas from the raw fuel. A shift reactor reduces carbon monoxide contained in the reformed gas through a shift reaction. A selective oxidation unit reduces the carbon monoxide contained in the reformed gas that has passed through the shift reactor by performing selective oxidation on the carbon monoxide. A reforming reaction tube houses linearly the reformer, the shift reactor and the selective oxidation unit in this order.
    Type: Grant
    Filed: March 27, 2012
    Date of Patent: April 15, 2014
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Akira Fuju, Masataka Kadowaki, Kazumi Kobayashi, Kazuaki Nakajima, Yasushi Sato, Ken Samura
  • Patent number: 8541637
    Abstract: A system and method for converting biomass into fluid hydrocarbon products to minimize the use of fossil fuels, provide energy and chemical feedstock security, and sustainable and/or carbon neutral electric power, are disclosed. For example, fast pyrolysis can be performed on biomass to produce pygas and char using a maximum processing temperature of about 650° C. The pygas is provided to an independent reactor without the addition of an oxidizing agent for catalytically converting the pygas to hydrocarbons using a maximum processing temperature of about 650° C. A system comprising fast pyrolysis means producing a pygas and char, independent catalytic conversion means downstream of the fast pyrolysis for converting the pygas to hydrocarbons, and a hydrogen source, external to the system and/or produced by a steam reformer by steam reformation of at least a portion of the hydrocarbons, coupled to catalytic conversion means, also are described.
    Type: Grant
    Filed: March 5, 2010
    Date of Patent: September 24, 2013
    Assignee: G4 Insights Inc.
    Inventors: Matthew L. Babicki, Brian G. Sellars, Bowie G. Keefer, Edson Ng
  • Patent number: 8518133
    Abstract: A gasifier is disclosed. The gasifier may include a housing and a refractory system contained within the housing. The refractory system may comprise an upper manifold, an intermediate portion, and a lower manifold. The refractory system may also include columnar cavities. The columnar cavities may extend vertically through the intermediate portion and place the upper manifold in communication with the lower manifold.
    Type: Grant
    Filed: January 30, 2012
    Date of Patent: August 27, 2013
    Inventors: Alan M. Neves, Grover R. Brockbank, Morris K. Ebeling, Jr.
  • Patent number: 8480771
    Abstract: A gasification process for making producer gas is disclosed. A consistent quality of raw carbon source material is supplied for gasification. The impurity content of the raw carbon source material is adjusted to within an acceptable consistent range of impurity content. The raw carbon source material is heated in a non-oxidizing environment to adjust the tar content and to remove volatile hydrocarbon constituents and to produce a devolatilized carbon source material. The devolatilized carbon source material is gasified by heating the carbon source material to a gasification temperature in a gasification generator, supplying steam, and supplying enhanced oxygen content air to react with the devolatilized carbon source material and to thereby form consistent, high energy value, low impurity producer gas.
    Type: Grant
    Filed: April 10, 2008
    Date of Patent: July 9, 2013
    Inventors: Siddhartha Gaur, Vibha Bansal
  • Patent number: 8475546
    Abstract: A reactor vessel includes a dipleg connecting a tubular syngas collection chamber and a quench chamber. The collection chamber connects to the dipleg via a slag tap having a frusto-conical part starting from the lower end of the collection chamber and diverging to an opening connected to an interior of the dipleg. The slag tap has a first tubular part connected to the opening of the frusto-conical part and extending in the direction of the dipleg. A second tubular part connects to the frusto-conical part or to the tubular part and extends toward the dipleg. The second tubular part is spaced away from the dipleg to provide an annular space having a discharge conduit. The discharge conduit has a discharge opening located to direct water along the inner wall of the dipleg. At least half of the vertical length of the first tubular part extends below the discharge opening.
    Type: Grant
    Filed: December 2, 2009
    Date of Patent: July 2, 2013
    Assignee: Shell Oil Company
    Inventors: Benedict Ignatius Maria Ten Bosch, Thomas Ebner, Wouter Koen Harteveld, Hans Joachim Heinen, Manfred Heinrich Schmitz-Goeb
  • Patent number: 8475547
    Abstract: In a reactor for gasification of entrained solid and liquid fuels at temperatures between 1,200 and 1,900° C. and at pressures between ambient pressure and 10 MPa using an oxidizing agent containing free oxygen, the cooling screen is connected to the pressure shell in a gastight manner via a sliding seal in order to allow length changes. Continuous gas purging of the annular gap between pressure shell and cooling screen is unnecessary and gasification gas is prevented from flowing behind.
    Type: Grant
    Filed: September 11, 2008
    Date of Patent: July 2, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Volker Kirchhübel, Christian Reuther, Manfred Schingnitz, Heidrun Toth
  • Patent number: 8475548
    Abstract: In a reactor for the gasification of solid and liquid fuels in the entrained flow at temperatures between 1200 and 1900° C. and pressures between ambient pressure and 10 MPa with an oxidizing agent containing free oxygen, the cooling screen is connected in a gas-tight manner to the pressure shell via a bellows compensator to accommodate linear deformation. Continuous sweeping by gas of the annular gap between pressure shell and cooling screen is unnecessary and backflow by producer gas is prevented.
    Type: Grant
    Filed: September 16, 2008
    Date of Patent: July 2, 2013
    Assignee: Siemens Aktiengesellschaft
    Inventors: Volker Kirchhübel, Manfred Schingnitz, Heidrun Toth
  • Patent number: 8425636
    Abstract: In certain embodiments, a system includes a gasification system configured to output grey water. The system also includes a grey water zero liquid discharge (ZLD) system configured to receive the grey water and to generate a first stream of distillate. The grey water ZLD system comprises an ammonia stripping system. An amount of water into and out of the grey water ZLD system is approximately equal.
    Type: Grant
    Filed: November 12, 2009
    Date of Patent: April 23, 2013
    Assignee: General Electric Company
    Inventors: Sampath K. Bommareddy, Dinh-Cuong Vuong, James Scott Kain, Anil Dhansukh Amlani, Robert Henry Weed
  • Patent number: 8404007
    Abstract: An object of the present invention is to provide a reforming apparatus and the like capable of uniformly mixing water (steam) and a raw material together, of preventing the precipitation of carbon without using a temperature controller, and of efficiently heating the water and the mixture by heating gas. Accordingly, the reforming apparatus has the following configuration. The reforming apparatus includes: a first vaporizer (05) that is cylindrically shaped and includes a first flow passage; a second vaporizer (06) that is cylindrically shaped and includes a second flow passage; a duct (027) that connects an outlet of the first flow passage to an inlet of the second flow passage; a raw-material mixing portion (028) formed at a certain point of the duct. The first vaporizer and the second vaporizer are concentrically disposed. An interstice between the first vaporizer and the second vaporizer serves as a heating-gas flow passage (024).
    Type: Grant
    Filed: November 26, 2007
    Date of Patent: March 26, 2013
    Assignee: JX Nippon Oil & Energy Corporation
    Inventors: Naohiko Matsuda, Katsuki Yagi, Keiji Tanizaki, Akira Goto
  • Patent number: 8398729
    Abstract: Methods and systems for a gasifier having a partial moderator bypass are provided. The gasifier includes a partial oxidation reactor including an inlet and an outlet and a primary reaction zone extending therebetween, the partial oxidation reactor configured to direct a flow of products of partial oxidation including fuel gases, gaseous byproducts of partial oxidation, and unburned carbon, and a secondary reaction chamber coupled in flow communication with the partial oxidation reactor, the secondary reaction chamber is configured to mix a flow of moderator with the flow of gaseous byproducts of partial oxidation and unburned carbon such that a concentration of fuel gases is increased.
    Type: Grant
    Filed: August 25, 2011
    Date of Patent: March 19, 2013
    Assignee: General Electric Company
    Inventor: Paul Steven Wallace
  • Patent number: 8394154
    Abstract: A process for preparation of synthesis gas and/or hydrogen by counter-currently providing an oxidation reactant stream through an oxidation chamber and a reforming reactant stream through a steam reforming chamber is described. Also provided is a reactor for conducting the reaction.
    Type: Grant
    Filed: December 28, 2007
    Date of Patent: March 12, 2013
    Assignee: Texaco Inc.
    Inventors: Lixin You, Curtis Krause, Kevin Nguyen, Amanda Vincent
  • Patent number: 8388708
    Abstract: A process and device for the material utilization of soot from the waste water of a gasification appliance (heavy oil POX) in which a hydrogen- and carbon monoxide-containing (crude synthesis gas) is generated from relatively high-boiling hydrocarbons by partial oxidation, is disclosed. The soot-loaded waste water from the heavy oil POX is mixed with naphtha and is subsequently introduced into a separator (decanter) from which a substantially soot-free water fraction and a substantially water-free naphtha/soot mixture are taken off separately, where the naphtha/soot mixture is fed as feed to a further gasification appliance (naphtha POX), in which appliance predominantly naphtha is converted into a crude synthesis gas by partial oxidation.
    Type: Grant
    Filed: June 24, 2008
    Date of Patent: March 5, 2013
    Assignee: Linde Aktiengesellschaft
    Inventor: Juergen Glaser
  • Patent number: 8377156
    Abstract: The present subject matter is directed to a method for operating a fuel reformer. The method may generally include directing a fluid stream around a reactor assembly of the fuel reformer to cool the reactor assembly, and mixing a heated reformate stream produced by the reactor assembly with the fluid stream to cool the heated reformate stream.
    Type: Grant
    Filed: August 3, 2012
    Date of Patent: February 19, 2013
    Assignee: General Electric Company
    Inventors: Jonathan Dwight Berry, Hasan Karim, Abdul Rafey Khan
  • Publication number: 20120311991
    Abstract: Biomass gasification systems including a biofilter assembly adapted to be disposed within a filter unit of a biomass gasification system are provided. The biofilter assemblies may be adapted to filter particulate matter from a producer gas flowing through the filter unit while allowing a remainder of the producer gas to pass through the biofilter assembly. The biofilter assembly may include a support structure and a biofilter disposed on the support structure and including a biomaterial adapted to be gasified in a biomass gasification reactor of the biomass gasification system.
    Type: Application
    Filed: June 9, 2011
    Publication date: December 13, 2012
    Applicant: General Electric Company
    Inventors: Omprakash Mall, Amol Mahulkar
  • Patent number: 8323481
    Abstract: A method of sequestering carbon dioxide emissions during recovery of hydrocarbons from hydrocarbonaceous materials can include forming a constructed permeability control infrastructure. This constructed infrastructure defines a substantially encapsulated volume. A comminuted hydrocarbonaceous material can be introduced into the control infrastructure to form a permeable body of hydrocarbonaceous material. The permeable body can be heated sufficient to remove hydrocarbons therefrom. During heating, the hydrocarbonaceous material is substantially stationary as the constructed infrastructure is a fixed structure. Additionally, during heating, any carbon dioxide that is produced can be sequestered. Removed hydrocarbons can be collected for further processing, use in the process, and/or use as recovered.
    Type: Grant
    Filed: February 5, 2010
    Date of Patent: December 4, 2012
    Assignee: Red Leaf Resources, Inc.
    Inventors: Todd Dana, James W. Patten
  • Patent number: 8317886
    Abstract: An apparatus and method for starved air gasification of solid organic materials, including biomass and other wastes, to convert the chemical energy stored in such materials to thermal energy or gaseous products that may be used in biochemical and/or chemical synthesis. Specifically, the system utilizes a gasifier having a “moving bed of ash” hearth wherein the feedstock is partially oxidized at a low temperature (less than 1500 degrees F.) in a square or rectangular chamber having a vaulted, tapered or flat roof.
    Type: Grant
    Filed: November 7, 2003
    Date of Patent: November 27, 2012
    Assignee: Nexterra Systems Corp.
    Inventors: Robert G. Graham, Jan Barynin, Kenneth M. Davison, Dave Berner
  • Patent number: 8292977
    Abstract: The invention has its object to arbitrarily adjust an amount of particles to be circulated without changing a flow rate of a gasification agent to thereby enhance gasification efficiency in a fluidized bed gasification furnace. The fluidized bed gasification furnace 107 comprises first and second chambers 113 and 114 in communication with each other in a fluidized bed 105. The hot particles 102 separated in the separator 104 and raw material M are introduced into the first chamber 113. The particles 102 introduced from the first chamber 113 through interior in the fluidized bed 105 to the second chamber 114 are supplied in an overflow manner to the fluidized bed combustion furnace 100.
    Type: Grant
    Filed: March 2, 2007
    Date of Patent: October 23, 2012
    Assignee: IHI Corporation
    Inventors: Toshiyuki Suda, Yoshiaki Matsuzawa, Toshiro Fujimori
  • Patent number: 8268027
    Abstract: Gas generation apparatus and methods are provided, including apparatus and methods for efficient vaporization, and optional burning, of meltable fuels. The apparatus and methods provide controlled generation and combustion of any low melting point dimensionally stable combustible meltable fuel. This is preferably accomplished by first converting the solid or semi solid meltable fuel material into a liquid state, then into vapor, and finally mixing with an air source or other oxidizer before combustion.
    Type: Grant
    Filed: February 22, 2010
    Date of Patent: September 18, 2012
    Inventor: Raymond M Gatt
  • Patent number: 8257466
    Abstract: Hydrogen-producing fuel processing systems, hydrogen purification membranes, hydrogen purification devices, fuel processing and fuel cell systems that include hydrogen purification devices, and methods for operating the same. In some embodiments, operation of the fuel processing system is initiated by heating at least the reforming region of the fuel processing system to at least a selected hydrogen-producing operating temperature. In some embodiments, an electric heater is utilized to perform this initial heating. In some embodiments, use of the electric heater is discontinued after startup, and a burner or other combustion-based heating assembly combusts a fuel to heat at least the hydrogen producing region, such as due to the reforming region utilizing an endothermic catalytic reaction to produce hydrogen gas.
    Type: Grant
    Filed: November 14, 2011
    Date of Patent: September 4, 2012
    Assignee: Idatech, LLC
    Inventors: David J. Edlund, William A. Pledger, R. Todd Studebaker
  • Patent number: 8252251
    Abstract: The present subject matter discloses a fluid cooled reformer for gas turbine systems and a method for cooling both a fuel reformer and a heated reformate stream produced by such fuel reformer. The fluid cooled reformer may include a pressure vessel and a reactor assembly disposed within the pressure vessel. The reactor assembly may include a reactor and may be configured to receive and reform an oxygen/fuel mixture to produce a heated reformate stream. Additionally, the fluid cooled reformer may include an inlet configured to direct a fluid stream into the pressure vessel. At least a portion of the fluid stream may be used to cool the reactor assembly. A reformate cooling section may be disposed downstream of the reactor of the reactor assembly and may be configured to cool the heated reformate stream.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: August 28, 2012
    Assignee: General Electric Company
    Inventors: Jonathan Dwight Berry, Hasan Karim, Abdul Rafey Khan
  • Patent number: 8236071
    Abstract: A quench ring for use with a gasifier system. The quench ring including an annular manifold having a radius, an annular channel coupled in flow communication with said manifold, and at least one inlet coupled in flow communication with said manifold, said at least one inlet having a center line aligned substantially tangentially to said annular manifold.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: August 7, 2012
    Assignee: General Electric Company
    Inventors: Judeth Helen Brannon Corry, Yulianto Salahuddin Mohsin
  • Patent number: 8192514
    Abstract: A fixed bed coal gasifier (300) includes a coal gasification chamber with a coal lock above the chamber. A static coal distribution device inside the gasification chamber includes a hollow coal distributor which flares downwardly outwardly with a skirt depending downwardly from an inside of the coal distributor so that a gas collection zone is defined between the skirt and the coal distributor. The gasifier (300) has an ash discharge outlet (606) and a rotatable grate (600) above the outlet (606). The rotatable grate (600) includes at least one upwardly projecting finger or disturbing formation (500) to disturb the ash bed formed in use above and around the grate (600).
    Type: Grant
    Filed: November 30, 2005
    Date of Patent: June 5, 2012
    Assignee: Sasol Technology (Proprietary) Limited
    Inventors: Jacobus Andreas Stadler, Eric Graham Van De Venter, Paul Smit Baumann
  • Patent number: 8163047
    Abstract: A method of cooling hot fluid flowing through a chamber is provided. The method includes channeling cooling fluid through at least one cooling tube that extends through a passage of the chamber, and circulating the hot fluid flowing within the passage around the at least one cooling tube using at least one fluid diverter.
    Type: Grant
    Filed: January 10, 2007
    Date of Patent: April 24, 2012
    Assignee: General Electric Company
    Inventors: George Albert Goller, Daniel Anthony Nowak
  • Patent number: 8105401
    Abstract: A method for using a downdraft gasifier comprising a housing and a refractory stack contained within the housing. The refractory stack may comprise various sections. Apertures in the sections may be aligned to form multiple columnar cavities. Each columnar cavity may comprise an individual oxidation zone. The method of use may include the steps of placing a feedstock into an upper portion of the refractory stack, measuring the temperature of each columnar cavity, and adjusting the flow of oxygen to a particular columnar cavity to maintain the temperature of the particular columnar cavity within a particular range.
    Type: Grant
    Filed: July 9, 2008
    Date of Patent: January 31, 2012
    Assignee: Refill Energy, Inc.
    Inventors: Alan M. Neves, Grover R. Brockbank, Morris K. Ebeling, Jr.
  • Patent number: 8100992
    Abstract: A biomass thermochemical gasification apparatus is provided that can manufacture high-quality fuel gas out of solid biomass in an industrial manner. This fuel gas can be used as fuel for a gas engine and a gas turbine for example and also can be used as synthesis gas for methanol synthesis. A high-temperature combustion gas generation apparatus (101) for biomass operates entirely by biomass and the heat source thereof does not depend on fossil fuel. A coarsely-ground powder biomass (205) subjected to gasification and gasification agent (303) are introduced to a primary gasification reaction room (202) and generate gasification reaction by, as reaction heat, radiation heat from a wall face of the primary gasification reaction room (202) heated by combustion gas (109a) generated in the high-temperature combustion gas generation apparatus (101) and are dissolved. Consequently, the biomass (205) is converted to clean and high-quality generated gas.
    Type: Grant
    Filed: October 22, 2007
    Date of Patent: January 24, 2012
    Assignee: Nagasaki Institute of Applied Science
    Inventors: Masayasu Sakai, Toshiyuki Takegawa, Hachiro Kawashima, Nobuaki Murakami
  • Patent number: 8088188
    Abstract: A system and process for gasifying carbonaceous feedstock with staged slurry addition in order to prevent the formation of tar that causes deposition problems. Dry solid carbonaceous material is partially combusted, then pyrolyzed along with a first slurry stream comprising carbonaceous material in two separate reactor sections, thereby producing mixture products comprising synthesis gas. The second slurry stream comprising particulate carbonaceous material is fed to a drying unit downstream of a heat recovery zone along with the mixture product exiting the heat recovery zone The resulting final temperature of the second stage mixture products and dried particulate carbonaceous material is between 450° F. and 550° F., a temperature range that is typically not conducive to the emission of heavy molecular-weight tar species.
    Type: Grant
    Filed: April 1, 2011
    Date of Patent: January 3, 2012
    Assignee: ConocoPhillips Company
    Inventors: David L. Breton, Albert C. Tsang, Max W. Thompson
  • Patent number: 8083817
    Abstract: An entrained bed gasifier for operation with particulate or liquid fuels is provided. A reaction chamber defined by a cold screen and a quenching chamber connected to the reaction chamber using a crude gas and slag outlet, wherein at least the cold screen is enclosed by a pressure-resistant pressure mantle. The annular gap between the cold screen and pressure jacket may be filled with a fluid, for example, water or heat transfer oil. A rough pressure equalization between the gasification chamber and the annual gap may be guaranteed using a connection between the annular gap and the quenching chamber or the crude gas line, hence the pressure in the gasification chamber normally remains slightly higher than in the inner water jacket.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: December 27, 2011
    Assignee: Siemens Aktiengesellschaft
    Inventors: Volker Kirchhübel, Friedemann Mehlhose, Manfred Schingnitz, Heidrun Toth
  • Patent number: 8057575
    Abstract: Hydrogen-producing fuel processing systems, hydrogen purification membranes, hydrogen purification devices, fuel processing and fuel cell systems that include hydrogen purification devices, and methods for operating the same. In some embodiments, operation of the fuel processing system is initiated by heating at least the reforming region of the fuel processing system to at least a selected hydrogen-producing operating temperature. In some embodiments, an electric heater is utilized to perform this initial heating. In some embodiments, use of the electric heater is discontinued after startup, and a burner or other combustion-based heating assembly combusts a fuel to heat at least the hydrogen producing region, such as due to the reforming region utilizing an endothermic catalytic reaction to produce hydrogen gas.
    Type: Grant
    Filed: October 21, 2010
    Date of Patent: November 15, 2011
    Assignee: Idatech, LLC
    Inventors: David J. Edlund, William A. Pledger, R. Todd Studebaker
  • Patent number: 8038746
    Abstract: A system and process are disclosed for the controlled combustion of a wide variety of hydrocarbon feedstocks to produce thermal energy, liquid fuels, and other valuable products with little or no emissions. The hydrocarbon feeds, such as coal and biomass, are first gasified and then oxidized in a two-chamber system/process using pure oxygen rather than ambient air. A portion of the intermediate gases generated in the system/process are sent to a Fischer-Tropsch synthesis process for conversion into diesel fuel and other desired liquid hydrocarbons. The remaining intermediate gases are circulated and recycled through each of the gasification/oxidation chambers in order to maximize energy production. The energy produced through the system/process is used to generate steam and produce power through conventional steam turbine technology.
    Type: Grant
    Filed: May 5, 2008
    Date of Patent: October 18, 2011
    Inventor: Steve L. Clark
  • Patent number: 8038744
    Abstract: A system and process for maximizing the generation of marketable products from a variety of hydrocarbon feedstocks. The hydrocarbon feedstocks are first gasified and then oxidized in a two-chamber system and process using oxygen gas rather than ambient air. Intermediate gases generated in the system and process are recirculated and recycled to the gasification and oxidation chambers in order to maximize both energy generation and the resulting stoichiometric reaction products. The energy produced through the system and process is used to generate steam and produce power through conventional steam turbine technology. In addition to the release of heat energy, the hydrocarbon feedstocks are oxidized to the pure product compounds of water and carbon dioxide. The carbon dioxide is subsequently purified and marketed. The water recovered from the system and process is collected and electrolyzed to generate oxygen and hydrogen gases.
    Type: Grant
    Filed: October 1, 2007
    Date of Patent: October 18, 2011
    Inventor: Steve L. Clark